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Abstract 

Background:  Natural variation in protein expression is common in all organisms and contributes to phenotypic 
differences among individuals. While variation in gene expression at the transcript level has been extensively inves‑
tigated, the genetic mechanisms underlying variation in protein expression have lagged considerably behind. Here 
we investigate genetic architecture of protein expression by profiling a deep mouse brain proteome of two inbred 
strains, C57BL/6 J (B6) and DBA/2 J (D2), and their reciprocal F1 hybrids using two-dimensional liquid chromatography 
coupled with tandem mass spectrometry (LC/LC-MS/MS) technology.

Results:  By comparing protein expression levels in the four mouse strains, we observed 329 statistically significant 
differentially expressed proteins between the two parental strains and characterized the genetic basis of protein 
expression. We further applied a proteogenomic approach to detect variant peptides and define protein allele-spe‑
cific expression (pASE), identifying 33 variant peptides with cis-effects and 17 variant peptides showing trans-effects. 
Comparison of regulation at transcript and protein levels show a significant divergence.

Conclusions:  The results provide a comprehensive analysis of genetic architecture of protein expression and the 
contribution of cis- and trans-acting regulatory differences to protein expression.

Keywords:  Proteome, Mouse, Brain, Protein expression, Allele-specific expression, Protein regulation, Mass 
spectrometry
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Background
One of the fundamental goals of biological research is 
to understand the genetic basis of phenotypic variation. 
The phenotypic variation is substantially contributed by 
the regulation of gene expression at both transcriptional 
and protein levels [1]. Previous studies revealed that the 
regulation of gene expression is ubiquitous in humans 
and other organisms and is controlled by the interplay 
between genetic and environmental factors [2, 3]. The 
regulation of gene expression at the cell-type and single-
cell level has also recently been investigated owing to 

advances in single-cell transcriptomics [4, 5]. While pro-
teins are more relevant to phenotypic variation than tran-
scripts, the regulation of protein expression has lagged 
behind considerably.

Recently, liquid chromatography coupled with tandem 
mass spectrometry (LC-MS/MS) technology has become 
a powerful platform for profiling deep proteomes, ena-
bling us to investigate the regulation of protein expres-
sion. Genome-wide analysis of mRNA and protein 
expression in mice revealed a discrepancy between their 
regulations using quantitative trait loci (QTLs) map-
ping [3, 6]. In addition, allele-specific expression (ASE) is 
also used to further dissect the regulation into cis- and 
trans- components. Although ASE at the transcript level 
has been extensively explored and pervasive allelic imbal-
ance across different tissues was identified [7, 8], only one 
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study to date examined protein allele-specific expression 
(pASE) in yeast using stable isotope labeling by amino 
acids in cell culture (SILAC) technology [9].

Recombinant inbred (RI) strains are a useful resource 
for identifying genetic variation in phenotypic traits [10]. 
The BXD RI panel, derived from C57BL/6 J (B6) and 
DBA/2 J (D2), exhibits high and uniform levels of genetic 
and phenotypic variation [11]. Genetic regulation of gene 
expression and ASE at the transcript level have been 
studied in multiple tissues from the BXD RI panel. For 
example, over 50% of transcripts showing ASE in the liver 
were detected in the two reciprocal F1 hybrids (B6D2F1 
and D2B6F1) [12, 13]. However, the transcript level is 
often not an accurate indicator of protein abundance [14, 
15]. More importantly, genetic inheritance of protein 
expression and protein ASE (pASE) are not well defined.

To characterize the genetic regulation of protein 
expression, we first perform deep proteome profiling of 
brain tissue from B6 and D2 mouse strains, as well as 
their two reciprocal F1 hybrids using 11-plex tandem 
mass tag (TMT)-based LC/LC-MS/MS (Fig.  1A). We 
then detect differentially expressed proteins between the 
two parental strains (Fig.  1B) and characterize genetic 
basis of protein expression (Fig.  1C). We finally define 
cis- and trans-regulation of protein expression using the 
proteogenomics approach (Fig. 1D) and examine the dif-
ference in the regulation at transcript and protein levels 
(Fig. 1E).

Results
Comprehensive and quantitative proteome profiling 
of the mouse brain
To characterize genetic architecture of protein expres-
sion, we generated a deep brain proteome of four mouse 
strains, including B6 and D2, and their two recipro-
cal F1 hybrids (i.e., B6D2F1 and D2B6F1) (Fig.  2A). By 
using 11-plex TMT-based LC/LC-MS/MS with exten-
sive fractionation, we identified a total of 273,063 pep-
tide-spectrum matches (PSMs) and 87,892 peptides, 
corresponding to 9979 proteins (9688 genes) at protein 
FDR < 1% (Fig. 2A; Additional file 1: Table S1). Principal 
component analysis shows that two replicates of four 
mouse strains grouped well (Fig.  2B). Pearson correla-
tion analysis also shows a high correlation (r2 = ~ 0.99) 
between the two replicates (Additional file 2: Fig. S1). The 
agreement of biological replicates indicates a high quality 
of the proteomic data.

We next ask to what extent mRNA expression can be 
detected by our proteomic data and whether there are 
differences between mRNAs across four mouse strains 
reflected at the level of proteins. To this end, we com-
pared our proteomic data with transcriptome data from 
the same mouse strains generated by RNA sequencing [7, 

8] with respect to protein coverage and absolute abun-
dance (i.e., concentration). The proteins identified in this 
study cover most (80.5%) of highly abundant genes (i.e., 
log2(tpm) > 5), indicating deep coverage of the expressed 
proteome (Fig. 2C). Consistent with previous reports [14, 
15], comparison of absolute abundance showed a mod-
est correlation between mRNA and proteins (correlation 
coefficient r2 = 0.459; p value < 2.2 × 10− 16) (Fig.  2D). 
The discrepancy between proteins and mRNAs could 
be ascribed to protein translation rates and post-transla-
tional modifications as well as biases of RNA-sequencing 
and mass spectrometry technologies.

Genetic variation can lead to the difference in expres-
sion level of the same protein across different mouse 
strains. To determine which proteins are influenced by 
the genetic variation, we calculated the coefficient of 
variation (CV) across all four strains for each protein. We 
found that a subset of proteins (1347/9979) showed high 
variation in protein expression (Fig.  2E), defined as two 
standard deviations above the average of the CV. Gene 
Ontology (GO) enrichment analysis showed that these 
variable proteins were enriched in chromatin modifica-
tion and protein secretion.

Genetic difference in protein expression
We next sought to identify differentially expressed pro-
teins (DEPs) between B6 and D2 strains, as they are 
highly polymorphic in genotypes and phenotypes. 
In our data, we identified 329 DEPs at the FDR of 0.05 
and log2 fold change (log2FC) cut-off of 1.5 (Fig.  3A; 
Additional file  2: Fig. S2), including 113 and 216 pro-
teins with higher expression in B6 and D2, respectively 
(Additional file  1: Table  S2). A large proportion (71.4%) 
of proteins show a modest level of expression alteration 
(log2FC between 1.5 and 2). Among the 322 out of 329 
DE proteins on autosomes, we identified 25 proteins with 
single parent expression (SPE), defined as an extreme 
form of differential expression in which either B6 or D2 
shows a high expression abundance (log2 expression 
level z-score > 25th percentile) while the other is silent 
(log2 expression level z-score < 5th percentile) (Fig.  3B). 
Gene ontology enrichment analysis of all 329 DEPs dis-
played the highest enrichment for the cellular compo-
nent of mitochondrial inner membrane, suggesting a 
difference in mitochondrial function between the two 
strains (Fig. 3C, Additional file 1: Table S3). Enrichment 
analysis performed on the 113 and 216 DEPs with higher 
expression in B6 and D2, respectively, revealed that DEPs 
with higher relative expression in D2 were significantly 
enriched for terms related to mitochondrial function, 
electron transfer activity, and cytochrome-c oxidase 
activity (Additional file  2: Fig. S3). In contrast, DEPs 
with higher relative expression in B6 were significantly 
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enriched for GO terms related to prostaglandin response; 
however, this enrichment was driven by the three pro-
teins, AKAP8, GNAS, and P2RY4.

We also define a correlation of the relative expres-
sion (B6 vs. D2) between mRNA and protein levels. We 
observed a fairly low correlation of relative expression 
ratio in mRNA compared to protein (Fig. 3D), indicating 
potential buffering at the protein level caused by genetic 
variation. Despite their low correlation, we confirmed 

consistent changes at both transcript and protein levels, 
such as ALAD and HDHD3 (Fig. 3E, F), for which, in our 
previous study, we found that ALAD and HDHD3 span 
with a copy number variation (CNV) and are associ-
ated with high variation in mRNA expression in multiple 
brain regions between B6 and D2 strains [11].

The differences in protein expression across strains 
can be further partitioned into heritable and non-herita-
ble variation. To calculate the heritability, we considered 

Fig. 1  Schematic diagram of the experimental design and data analysis of this study. A Experimental scheme. Four strains, including B6, D2, and 
the two reciprocal F1s (B6D2F1 and D2B6F1), were used. B Mouse brain proteome was profiled by TMT-based proteomics, followed by data quality 
control and differential expression analysis. C Genetic variance analysis. D Allele-specific expression was defined by the proteogenomics approach. 
E Regulations at the transcript and protein levels were compared
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the genetic relatedness for both additive and dominant 
variances. The proportion of heritable variation (genetic) 
contributing to the total observed variation is known as 
the broad-sense heritability (H2). The median heritability 
estimate among all expressed proteins is 77% (Additional 
file 1: Table S4), which is higher than that of transcripts 
in BXD strains [16]. We found that 7594 (76.1% of the 
total) proteins showed heritability > 50% (Fig.  4A). We 
evaluated the inheritance patterns of protein expression 
using the distribution of D/A (i.e., dominance/additiv-
ity), revealing that the dominant expression pattern is 
more common than the additive pattern (Fig. 4B).

Identification of protein allele‑specific expression in cis‑ 
and trans‑regulations
The highly variable genome sequences between B6 and 
D2 strains provide an opportunity to investigate allele-
specific expression. While several studies have inves-
tigated ASE in mice using transcriptomics data, there 

is no research for pASE. Recently, the proteogenomics 
approach that integrates genomic and proteomic data has 
been proven to be a valuable method in detecting vari-
ant peptides [17–19]. We performed the proteogenomics 
analysis to detect variant peptides using JUMPg, a prote-
ogenomics pipeline we recently developed.

Using 11,115 missense variants detected in our pre-
vious D2 sequencing project, we identified a total of 
286 variant peptides, including 169 and 205 D-allele 
and B-allele peptides, respectively, at the peptide FDR 
of 1% (Fig. 5A; Additional file 1: Table S5). By compar-
ing B-allele and D-allele peptides, we found a total of 
88 pairs of variant peptides (Fig.  5B, Additional file  1: 
Table S6). Two examples of B-allele peptide and D-allele 
peptide are shown in Fig.  5C. The B-allele peptide can 
only be detected in the B6 strain and both F1 hybrids, 
whereas the D allele peptide can be detected in the D2 
strain and both F1 hybrids. Even though the signal of 
the two allelic peptides cannot be directly compared 

Fig. 2  Proteome-wide profiling of mouse brain tissue. A 10-plex TMT-based global proteome analysis workflow. A total of 10 samples were 
analyzed by LC/LC-MS/MS. All proteomic data were analyzed using JUMP software. More than 228,000 distinct peptides, corresponding to 9979 
proteins, were identified and quantified. B Principal-component analysis of all quantified proteins. C Histogram showing the coverage of proteomic 
data compared to RNAseq data from B6 and D2 mice. The open bar represents the distribution of protein coding genes detected by RNAseq, 
whereas the red bar indicates the distribution of protein coding genes from proteomic data. D Scatter plot showing a comparison of absolute 
expression between proteins and protein-coding transcripts. E Distribution of coefficient of variation (CV) for all proteins
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Fig. 3  Analysis of differentially expressed (DE) proteins between B6 and D2. A The volcano plot of the differentially expressed proteins. Log2 
fold change was plotted against the −log10 adjusted p-value with two criteria: (1) 4-fold change and 1% FDR; (2) 2-fold change and 5% FDR. B 
Distribution of z-score transformed relative expression between B6 and D2 for all 9979 proteins. An extreme form of differential expression was 
used to define single-parent expression. C Enrichment analysis of DE proteins. D Scatter plot showing a comparison of relative expression between 
proteins and protein-coding transcripts. E-F Expression levels of ALAD and HDHD3 between B6, D2, and the two F1s
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due to different chemical properties that alter ioniza-
tion efficiency, the ratio of the two alleles in parents and 
F1 hybrids can be calculated, allowing us to determine 
pASE. By comparing the allelic ratio in parents and F1 
hybrids, the regulation of protein expression is classified 
into five different categories: cis-, trans-, compensatory, 
conserved, and unexpected bias (Fig.  5D). The ratio of 
the two parental alleles is contributed by a combination 
of cis- and trans-regulatory effects. If the allelic ratio in 
the F1 is similar to the parental proportions, the differ-
ential expression in the parents is likely due to variation 
in cis-acting elements because the common trans-effect 
is present in the F1 hybrids. In contrast, if the change 
in the allelic ratio is only observed in parental strains 
but not in F1s (log2 ratio < 1), it is likely to be caused by 
trans-acting factors. If there is no change in parental 
strains, but with significant changes in F1 hybrids, the 
cis- and trans- effects in the parental are compensatory. 
We define conserved regulation as there are no changes 
in both parental strains and F1 hybrids.

Among those 88 pair variant peptides with both 
B- and D-types (Fig.  5E), we found 33 displaying cis-
regulation, followed by 25 with conserved regulation. 
In addition, 17 displayed trans-regulation and 5 com-
pensatory regulation. In addition, two proteins showed 
unexpected bias, which could be due to peptide false 
identification or quantitative measurement error in 
the shot-gun proteomics.

Comparison of regulations at transcript and protein 
expression levels
We next sought to compare regulation at transcript and 
protein expression levels. To identify ASE at the transcript 

level, we analyzed the transcriptome of the hippocampus 
of matched samples (i.e., B6, D2, D2B6F1, and B6D2F1). 
By mapping RNA-seq data to both B6 reference and D2 
customized genomes, we identified 2630 protein-coding 
transcripts with ASE expression (Fig.  6A), including 215 
cis-, 500 trans-, 213 compensatory, 1666 conserved, and 
36 unexpected bias regulation. By comparing regulation 
between transcripts and proteins, we found that there is 
a significant overlap between transcripts and proteins 
showing ASE (Fisher’s exact test p = 2.2 × 10− 9). The con-
served regulation showed the highest overlapped in both 
levels. However, only two genes/proteins were found to 
show ASE in trans-regulations (Fig. 6B).

Discussion
In this study, we profiled the mouse brain proteome of B6 
and D2 strains, as well as their two reciprocal F1 hybrids, 
allowing us to investigate the regulation of protein 
expression. With this deep proteomic data, we identi-
fied 329 DEPs between B6 and D2 strains and 25 proteins 
with SPE. We further estimated broad-sense heritability 
for all 9979 proteins identified. We finally defined the 
allele-specific expression and cis- and trans-regulation 
of variant peptides detected by the proteogenomics 
approach. The deep proteomic data provides a unique 
opportunity to investigate the genetic regulation of pro-
tein expression in the mouse brain.

Our experimental design of including two inbred mice 
and their F1 hybrids enabled us to analyze the heterosis 
of protein expression. As expected, we found the two 
F1s are highly correlated (r = 0.99; p value = 1 × 10− 5) 
(Additional file  2: Fig. S4A). By comparing expression 
levels between B6D2F1 and D2B6F1, we observed 47 

Fig. 4  Patterns of genetic inheritance in protein expression. A Distribution of broad-sense heritability (H2) of protein expression. B Distribution of 
dominance to additivity (D/A) ratio. Dominance is the difference between the observed F1 transcript abundance (in this case averaged over the 
two reciprocal F1 genotypes) and the midpoint of the two parents. Additivity is the absolute value of the difference between the parental means 
relative protein abundance
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proteins with significant change in expression (p value 
< 0.01 and Fold change > 0.3), including 31 and 16 pro-
teins showed up- and down-regulated, respectively. The 
relative expression of the two hybrids allows us to iden-
tify proteins with imprinted expression. We found 6 out 
of 47 proteins are found to be potentially associated with 
imprinting status including NLRP5, AFX15, TMSB10, 
GAP43, BUD23, and HMGA1 (Additional file  2: Fig. 
S4B). For example, NLRP5 (MATER) is a single-copy 
gene expressed exclusively in oocytes and has previously 

been described as a maternal-effect gene in mice [20]. 
However, surprisingly, we observed only 25 proteins 
exhibiting single-parent expression (SPE) at the protein 
level. In contrast, previous studies found 347 genes show-
ing SPE at the transcript level in the mouse brain [21]. 
One possible reason for this discrepancy is that divergent 
translation regulation buffers mis-expression of mRNA 
abundance [22]. In addition, TMT ion suppression in the 
shot-gun proteomics could alleviate the difference in pro-
tein expression.

Fig. 5  Protein allele-specific expression. A Workflow of allele-specific expression detection using the proteogenomic approach. B Venn diagram 
showing the overlap number of B-type and D-type variant peptides. C Two examples showing expression pattern of B-type and D-type variant 
peptides. D Conceptual diagram of cis-, trans-, compensatory, and conserved regulation. E Scatterplot of protein allelic ratios in parental and F1 
strains showing different regulations: cis-, trans-, compensatory, and conserved
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In the GO analysis of DEPs between B6 and D2, the 
most significantly enriched GO term was regulation of 
exocytosis (p = 5.7 × 10− 6). The main contributing genes 
are derived from regulation of synaptic vesicle (STXBP2, 
DOC2b, and SCAMP5), intracellular signal transduc-
tion (STAM and GLRX), axon elongation (ADORA2B 
and TSG101), and key regulators of presynaptic func-
tion (SYT7). This observation is consistent with previous 
proteomics studies in the mouse brain that have shown 
reduced expression of exocytosis proteins in D2 [23]. Cel-
lular response to fatty acid is also found to be enriched in 
DEPs (p = 9.6 × 10− 5), which is in agreement with consti-
tutive differences in regional brain fatty acid composition 
between B6 and D2 [24].

Compared with gene ASE analysis of transcriptomic 
data, protein ASE has not been well studied and only one 
study to date examined it in yeast using SILAC technol-
ogy [9]. Instead of using the SILAC approach, we used a 
TMT-based approach to quantify the expression of vari-
ant peptides. There are several advantages of the TMT 
method over the SILAC when applied to the pASE study: 
(1) it is capable of including a larger number of samples 
that can be compared, which can increase protein cov-
erage and reduce the batch effect. For example, we used 
10 samples in one batch of a TMT experiment, whereas 
it requires at least five batches for a SILAC experiment; 
(2) since isobaric labeling methods (i.e., TMT, iTRAQ) 
are a chemical labeling approach, they can be applied to 
human samples and are less expensive to use in small 
mammals.

While the proteogenomics approach has been widely 
used to detect variant peptides [17–19], we extended its 

application to defining ASE for variant peptides detected 
in quantitative proteomic data. Compared with the fact 
that ASE can be defined by read counts at the transcript 
level, one of the major challenges in defining protein cis- 
and trans-regulation is that the expression level of variant 
peptides cannot be directly compared because they have 
different amino acid compositions altering their mass 
and ionization efficiency, which significantly complicates 
the accurate analysis of pASE. In this study, we propose 
to define the regulation using relative ratios of expression 
level between two types of variant peptides in F1 hybrids 
and their expression in their two parental strains.

One of the limitations of this study is the number of 
ASE events detected at the protein/peptide levels due to 
the constraints of the current shot-gun proteomics tech-
nology. While we generated, to the best of our knowl-
edge, the deepest proteome coverage (~ 10,000 unique 
proteins) in mice, we only detected 374 variant peptides 
and 88 shared B-type and D-type variant peptides out 
of 11,115 missense genomic variants detected from the 
whole genome sequencing. The number is also substan-
tially fewer than the number of variants (2630) detected 
from RNA-seq based transcriptomic data. With further 
advances in mass spectrometry technology, it will be pos-
sible to improve the ability to detect more variant pep-
tides and ultimately define genome-wide pASE events.

Another limitation of this study is the small sample size 
for each biological sample. In a TMT-based quantitative 
proteomics experiment, it is of paramount importance 
to have adequate statistical power to minimize the false 
positive identification rate. This statistical power is influ-
enced by sample size and effect size. Although a small 

Fig. 6  Comparison of allele-specific expression at transcript and protein levels. A Scatterplot showing regulations at the transcript level. B UpSet 
plot showing the number of different regulations between transcript and protein levels
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sample size (n = 2) was used in this study, we believe that 
we can detect a similar number of differentially expressed 
proteins (DEPs) compared to other studies (~ 3000–5000 
proteins) as we generated extreme deep protein coverage 
(~ 9000) using two-dimensional liquid chromatography 
coupled to mass spectrometry (i.e., 40 fractions), which 
was demonstrated by a simulation study (Additional 
file 2: Fig. S5). The deep proteome allows us to detect a 
reasonable number of differentially expressed proteins 
with a small sample size.

Conclusion
In summary, our study provides a framework for inves-
tigating allele-specific expression. Allele-specific expres-
sion could be caused by epigenetic regulation, such as 
methylation. Further investigations are needed to under-
stand the mechanisms underlying allele-specific expres-
sion by methylome profiling. Further investigation may 
provide important insights into the pathways that pro-
tein allele-specific expression contributes to phenotypic 
and disease variation. With the development of cell-type 
proteomics technology [25], genetic regulation of protein 
expression and pASE will be eventually defined at the 
cell-type or even single-cell level.

Methods
Animals
The following mouse strains were used in this study: 
C57BL/6 J (B6) and DBA/2 J (D2), and two reciprocal F1 
hybrids (i.e. B6D2F1 and D2B6F1). The B6D2F1 hybrid 
is created by mating a B6 female to a D2 male mouse, 
whereas the D2B6F1 is created by mating a D2 female to a 
B6 male mouse. Both male and female mice of each strain 
were used as biological replicates in this study (n = 2). B6 
and D2 mice were purchased from JAX (stock number 
000664 and 000671, respectively). The two reciprocal F1 
hybrids (B6D2F1 and D2B6F1), were bred at the Univer-
sity of Tennessee Health Science Center (UTHSC). Ani-
mals were housed and maintained on a 12: 12 light/dark 
cycle, with ad  libitum access to food and water. Mice at 
12-week-old were sacrificed, and whole brain tissue sam-
ples (Left and right olfactory bulbs were removed) were 
dissected rapidly, frozen in liquid nitrogen, and stored 
at − 80 °C for the subsequent proteome profiling. The 
euthanasia was carried out by cervical dislocation. Cri-
teria for euthanasia were based on an assessment by our 
veterinary staff following AAALAC guidelines.

Protein extraction and quantification
The frozen samples were weighed and homogenized in 
the lysis buffer (50 mM HEPES, pH 8.5, 8 M urea, and 
0.5% sodium deoxycholate, 100 μl buffer per 10 mg tis-
sue) with 1x PhosSTOP phosphatase inhibitor cocktail 

(Sigma-Aldrich). Protein concentration was measured by 
the BCA assay (Thermo Fisher) and then confirmed by 
Coomassie-stained short SDS gels.

Protein digestion and tandem‑mass‑tag (TMT) labeling
Quantified protein samples (∼1 mg in the lysis buffer 
with 8 M urea) for each TMT channel were proteolyzed 
with Lys-C (Wako, 1:100 w/w) at 21 °C for 2 h, diluted by 
4-fold to reduce urea to 2 M for the addition of trypsin 
(Promega, 1:50 w/w) to continue the digestion at 21 °C 
overnight. The digestion was terminated by the addi-
tion of 1% trifluoroacetic acid. After centrifugation, the 
supernatant was desalted with the Sep-Pak C18 cartridge 
(Waters), and then dried by Speedvac. Each sample was 
resuspended in 50 mM HEPES (pH 8.5) for TMT labe-
ling, and then mixed equally, followed by desalting for 
the subsequent fractionation. For whole proteome analy-
sis alone, 0.1 mg protein per sample was used.

Extensive two‑dimensional liquid 
chromatography‑tandem mass spectrometry (LC/LC‑MS/
MS)
The TMT labeled samples were fractionated by offline 
basic pH reverse phase LC, yielding 40 fractions. Each 
fraction was analyzed by the acidic pH reverse phase 
LC-MS/MS [26]. In the acidic pH LC-MS/MS analy-
sis, each fraction was run sequentially on a column 
(75 μm × 20 cm for the whole proteome, 50 μm × ∼30 cm 
for phosphoproteome, 1.9 μm C18 resin, 65 °C to reduce 
backpressure) interfaced with a Q Exactive HF Orbitrap 
or Fusion MS (Thermo Fisher). Peptides were eluted by 
a 2–3 h gradient (buffer A: 0.2% formic acid, 5% DMSO; 
buffer B: buffer A plus 65% acetonitrile). MS settings 
included the MS1 scan (410–1600 m/z, 60,000 or 120,000 
resolution, 1 × 106 AGC and 50 ms maximal ion time) 
and 20 data-dependent MS2 scans (fixed first mass of 
120 m/z, 60,000 resolution, 1 × 105 AGC, 100–150 ms 
maximal ion time, HCD, 35–38% normalized collision 
energy, ∼1.0 m/z isolation window).

Identification of proteins by database search with JUMP 
software
We used JUMP search engine [27] to search MS/MS raw 
data against a composite target/decoy database to evalu-
ate FDR [28]. All original target protein sequences were 
reversed to generate a decoy database that was concat-
enated to the target database. FDR in the target data-
base was estimated by the number of decoy matches (nd) 
and the number of target matches (nt), according to the 
equation (FDR = nd/nt), assuming mismatches in the 
target database were the same as in the decoy database. 
The target database was downloaded from the UniProt 
mouse database (59,423 entries), and decoy database was 
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generated by reversing targeted protein sequences. Major 
parameters included precursor and product ion mass 
tolerance (±15 ppm), full trypticity, static mass shift for 
the TMT tags (+ 229.16293) and carbamidomethyl modi-
fication of 57.02146 on cysteine, dynamic mass shift for 
Met oxidation (+ 15.99491), maximal missed cleavage 
(n = 2), and maximal modification sites (n = 3). Putative 
PSMs were filtered by mass accuracy and then grouped 
by precursor ion charge state and filtered by JUMP-based 
matching scores (Jscore and ΔJn) to reduce FDR below 
1% for proteins during the whole proteome analysis. If 
one peptide could be generated from multiple homolo-
gous proteins, based on the rule of parsimony, the pep-
tide was assigned to the canonical protein form in the 
manually curated Swiss-Prot database. If no canonical 
form was defined, the peptide was assigned to the protein 
with the highest PSM number.

TMT‑based peptide/protein quantification by JUMP 
software suite
Protein expression was quantified using the follow-
ing steps with JUMP software suite: (i) TMT reporter 
ion intensities were extracted for each PSM; (ii) the raw 
intensities were corrected based on isotopic distribution 
of each labeling reagent; (iii) PSMs with very low intensi-
ties (e.g. minimum intensity of 1000 and median intensity 
of 5000) were excluded from the subsequent analysis; (iv) 
Sample loading bias was normalized with the trimmed 
median intensity of all PSMs; (v) the mean-centered 
intensities across samples was calculated, (vi) protein 
relative intensities by averaging related PSMs was cal-
culated; (vii) protein absolute intensities by multiplying 
the relative intensities by the grand-mean of three most 
highly abundant PSMs was computed.

Principal component analysis
Principal component analysis (PCA) was used to visual-
ize the differences among samples. All gene and metab-
olite abundance were used as features of PCA. The 
pairwise Euclidean distance between features was calcu-
lated. PCA was performed using the R package prcomp 
(version 3.4.0).

Differential expression analysis
Differentially expressed proteins between the two strains 
were identified using the limma R package (version 3.46.0). 
The Benjamini-Hochberg method for false discovery rate 
correction was used, and proteins with an adjusted p-value 
< 0.05 and log2 fold change > 1.5 were defined as differen-
tially expressed between the B6 and D2 strains.

Pathway enrichment
To assess the functional relevance of the differentially 
expressed proteins, the R package clusterProfiler (ver-
sion 3.18.1) was used for gene ontology enrichment 
analysis. Gene ontology terms with a Benjamini-Hoch-
berg adjusted p-value < 0.05 were defined as significantly 
enriched.

Characterization of additive and dominance inheritance
The additive effect, A, is estimated as half of the observed 
difference between the parental strains. The dominance 
effect, D, was estimated as the difference between the F1 
and the mid-parent values. We defined the scaled differ-
ence in expression levels between F1s and mid-parent 
strains as follows,

Analysis of patterns of genetic inheritance
To estimate heritability, we first calculate the variance 
components for additive effect (A), dominant effect (D), 
sex effect (Vs), and residue (Ve). These variances were 
estimated using a mixed linear model with population 
dependence structures:

where y is a vector of n × 1 observations (i.e., the expres-
sion level of each protein); n is the number of samples 
across different mouse strains with different genders; μ is 
the model average; A is the random additive effect, which 
follows the distribution N 

(

0, σ2aR1

)

 , in which σ2a is the 
additive genetic variance and R1 is the relatedness matrix 
of additive variance. D is the random dominant effect, 
which follows the distribution N 

(

0, σ
2
dR2

)

 , in which σ2d 
is the dominant genetic variance and R2 is the related-
ness matrix of dominant variance. Relatedness matrix 
of genetic variance describes how individuals are geneti-
cally related to each other in terms of additive and domi-
nant inheritance. These values are the expectations of the 
relatedness values derived from the pedigree structure. S 
is the fixed effect of sex, and ε is the residual error. Each 
variance component was estimated with Solving Mixed 
Model Equations in R (SOMMER) package.

R1 and R2 matrices are defined below:

D/A =

[

(B6D2F1+D2B6F1)
2 −

(B6+D2)
2

]

max (B6,D2)− (B6+D2)
2

y = µ+ A + D+ S+ ε

R1 =







1 0
0 1

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

1 0.5
0.5 1






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Heritability was estimated as the proportion of total 
genetic variance for each protein:

Protein ASE detection
D2 SNPs (dbSNP version: 142) were downloaded from 
the UCSC genome browser database and were re-anno-
tated using the genome annotation tool ANNOVAR [29] 
based on the GRCm38 (mm10) genome assembly. A cus-
tomized protein database was constructed by append-
ing mouse UniProt database with SNPs with the amino 
acid sequences of nonsynonymous variants. MS data 
were searched by JUMPg [19], a proteogenomic tool we 
recently developed. The false discovery rate (FDR) for 
variant peptide identification was set to 1% at the peptide 
level.

B6 variant peptides were identified from the original 
peptides quantified using JUMP if they contained a non-
synonymous variant. Variant peptides with their respec-
tive alleles detected in both B6 and D2 were retained for 
the detection of protein allele-specific expression (pASE). 
An empirical Bayes-moderated t-test between alleles with 
a Benjamini-Hochberg adjusted p-value < 0.05 was used 
to detect peptides displaying pASE. To compare cis- and 
trans- regulation of pASE, allelic expression ratios were 
calculated as log2(B6 peptide abundance) – log2(D2 pep-
tide abundance) in both the parental strains and F1 strains.

Transcriptomic analysis and ASE analysis at the transcript 
level
Paired-end RNA-seq data was downloaded from the 
European Nucleotide Archive for parental strains 
B6 and D2 whole brain tissue (accession number 
ERP000614) and for B6xD2 hybrid whole brain tissue 
(accession number ERP000591). Reads were trimmed 
to remove low-quality sequences using Trimmomatic 
(version 0.39), resulting in ~ 134 m read pairs for paren-
tal strains and ~ 148 m read pairs for the hybrid strain 
(2 × 30–76 bp).

A reference sequence for D2 was created using 
vcftools (version 0.1.17) by merging D2 SNPs with 
the current GRCm38 (mm10) reference assembly. 
Trimmed RNA-seq reads from all samples were aligned 
to both the consensus D2 and the GRCm38 reference 
sequences using STAR (version 2.7.1) with the param-
eter “--outFilterMultiMapNmax 1” to only retain 

R2 =







1 0
0 1

0 0
0 0

0 0
0 0

1 0.25
0.25 1







H
2
=

Va + Vd

Va + Vd + Vs + Ve

uniquely mapped reads. Reads that aligned to regions 
containing SNPs were sorted based on mapping quality 
to either the B6 (GRCm38) or D2 allele using a python 
script [30]. Genes displaying ASE were identified in the 
hybrid samples using a binomial test with a Benjamini-
Hochberg adjusted p-value < 0.05.
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