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Abstract 

Background:  Alternative splicing is the process of selecting different combinations of splice sites to produce variably 
spliced mRNAs. However, the relationships between alternative splicing prevalence and level (ASP/L) and variations 
of intron size and organism complexity (OC) remain vague. Here, we developed a robust protocol to analyze the rela-
tionships between ASP/L and variations of intron size and OC. Approximately 8 Tb raw RNA-Seq data from 37 eumeta-
zoan species were divided into three sets of species based on variations in intron size and OC.

Results:  We found a strong positive correlation between ASP/L and OC, but no correlation between ASP/L and 
intron size across species. Surprisingly, ASP/L displayed a positive correlation with mean intron size of genes within 
individual genomes. Moreover, our results revealed that four ASP/L-related pathways contributed to the differences in 
ASP/L that were associated with OC. In particular, the spliceosome pathway displayed distinct genomic features, such 
as the highest gene expression level, conservation level, and fraction of disordered regions. Interestingly, lower or no 
obvious correlations were observed among these genomic features.

Conclusions:  The positive correlation between ASP/L and OC ubiquitously exists in eukaryotes, and this correlation is 
not affected by the mean intron size of these species. ASP/L-related splicing factors may play an important role in the 
evolution of OC.
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Background
  Alternative splicing plays important roles in the func-
tional diversity of proteins in higher eukaryotic genomes. 
Alternative splicing allows one gene to generate function-
ally distinct isoforms, which is an important driving force 
for increasing organism complexity (OC) [1]. The alter-
native splicing prevalence (ASP) is influenced by OC and 
intron size [2, 3]. Approximately 95% of human intron-
containing genes undergo alternative splicing [4], but this 
ratio is 60.7% in the fruit fly and only 2.9% in green alga 
[5, 6]. Comparative analyses revealed that species with 

higher OC have higher ASP [3, 7–10]. In addition, several 
studies found that both ASP and alternative splicing level 
(ASL) are positively correlated with intron size among 
genes within individual genomes [7, 10–12]. Gener-
ally, intron size is positively correlated with genome size 
in animals [13]. However, genome size, as measured by 
the C-value, does not strongly correspond to OC, which 
causes the C-value paradox [14]. Therefore, whether the 
relationship between ASP and ASL (ASP/L) and OC is 
confounded by intron size remains unclear.

OC is often measured as the cell type number (CTN) 
per species [15, 16], and has been widely used in studies 
to investigate the relationship between OC and genomic 
features [3]. OC is clearly correlated with several genomic 
features, including ASP/L [3], the fraction of disordered 
residues in proteins [8, 17], degree of protein−protein 
interactions [8], total number of transcription factors [18] 
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and average number of their isoforms [19], functional 
diversity [20], and proteome size [8, 17]. Moreover, it is 
known that the splicing factors interact with other RNA-
binding proteins to regulate alternative splicing through 
binding to the cis-regulatory elements on the gene body 
[21]. However, whether the splicing factors contribute to 
OC and is linked to numbers of genes and numbers of 
disordered residues remains unknown.

In the past two decades, some studies have compared 
ASP/L across species. Different tissues were found to 
display substantially different splicing levels [22], and 
genes with higher expression levels tend to undergo more 
splicing [23]. In addition, isoform/splicing events can be 
measured at three levels, the isoform, exon, and intron 
levels, by level-specific software packages, and each of 
these approaches has distinct merits and drawbacks [24]. 
There have been extensive comparisons of ASP/L across 
species based on expressed sequence tag data [2, 3, 7, 8, 
25–27]. With the reductions in sequencing costs in recent 
years, several studies have been able to directly compare 
ASP/L across multiple species in a single experiment 
by performing RNA-Seq on the same tissues of closely 
related species, applying the same analysis methods, and 
basing the calculations of ASP/L on equal quantities of 
orthologous exon or intron data [9, 28–30]. However, 
because none of the orthologs showed complete con-
servation of splicing structures among distantly related 
species, direct comparisons between distantly related 
organisms such as deuterostomes and protostomes are 
still impossible [31]. In addition, although subsampling 
of 20× sequencing depth data to estimate species-level 
ASP is performed across remote species, 20× sequencing 
depth is far from saturation [23].

In this study, we used both ASP and ASL measure-
ments. ASP denotes the proportion of multi-exon genes 
with more than one isoform, whereas ASL denotes 
the average number of isoforms per multi-exon gene. 
To remove the effect of intron size on the relationships 
between ASP/L and OC, we designed three sets of spe-
cies. The first set of species (FirstSpeciesSet) covered 
the species with larger introns (2−42 Kb) and extremely 
varied OC (CTN, 50−216). The second set of species 
(SecondSpeciesSet) covered the species with smaller 
intron sizes (0.7−3 Kb) and extremely varied OC (CTN, 
22−119). The third set of species (ThirdSpeciesSet) 
included species with a fixed OC (CTN, 59) but greatly 
varying intron sizes (0.3−14 Kb), and was comprised of 
dipteran insect species. The three sets of species included 
~8 Tb of raw RNA-Seq data from 37 eumetazoan species, 
and were analyzed by three isoform/splicing event iden-
tification methods, expression level-based binning, both 
ASP and ASL measurements, and a corrective calculation 

method. We found common regulation of ASP/L relative 
to OC and intron size.

Results
Experimental design
We first reanalyzed the species used in Chen’s study 
[3], in which 112 eukaryotes were used and they found 
that the ASP/L is positively correlated with OC, and we 
found that the mean intron size is positively correlated 
with OC (Fig. 1 A; Spearman’s ρ = 0.82, P = 7.6e-13). We 
thus argue that the positive correlation between ASP/L 
and OC may be confounded by intron size. To assess 
whether ASP/L is determined by OC or intron size, we 
compiled three sets of species (Fig.  1B, C, and D) from 
37 species. These species were selected because first of all 
they have high-quality genome assemblies (Scaffold N50 
> 200 Kb; Additional file  1: Table  S1) and gene annota-
tions (complete BUSCO > 80%; Fig.  1D), and adequate 
RNA-Seq data (unique mapped base > 16 Gb; Additional 
file  2: Table  S2). To select as many species as possible, 
two species (Pvi and Pst) that don’t satisfy these criteria 
were included, and the alternative results without these 
species were specifically denoted. Secondly, these spe-
cies satisfy our requirements for the relationship between 
intron size and OC (see later). We found the mean intron 
size was also positively correlated with OC across these 
37 species (Fig. 1 C; Spearman’s ρ = 0.35, P = 0.02). We 
collected approximately 8 Tb of RNA-Seq data that were 
mapped to their corresponding genomes (Additional 
file 1: Table S1 and Additional file 2: Table S2). Evaluation 
with BUSCO indicated that these three sets of species 
had high-quality gene annotations (Fig. 1D).

The first set of species (FirstSpeciesSet) was comprised 
of 14 bilaterian species, which included 11 deuteros-
tome species (such as Homo sapiens) and three protos-
tome species. This species set has extremely varied OC 
(CTN, 50−216), larger introns (> 2 Kb), and the intron 
size varied 21-fold (2–42 Kb) (Fig. 1 C; Additional file 1: 
Table S1.1). Especially, all non-human species had lower 
OC but larger genome sizes than the human genome. 
As expected, these 14 species displayed a negative cor-
relation between mean intron size and CTN (all species, 
Spearman’s ρ = −0.23, P = 0.24; without Ame, Mun, and 
Pvi, ρ = −0.85, P = 8e-04; Fig. 1 C).

Because the splicing mechanism differs among exons 
that are flanked by differently sized introns [7], we con-
structed the second set of species (SecondSpeciesSet) 
with a mean intron size ranging from 700  bp to 3  kb 
and an extremely varied OC (CTN, 22−119). We found 
a negative correlation between OC and the mean intron 
size (Spearman’s ρ = −0.32, P = 0.26; Fig.  1B and C; 
Additional file 1: Table S1.2).
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To remove the impact of OC on the investigations of 
the relationship between ASP/L and intron size, for the 
ThirdSpeciesSet, we selected 12 dipteran species with 
the same OC (CTN, 59) but greatly varying intron size 
(0.3−14 Kb; Fig. 1B and C; Additional file 1: Table S1.3). 
These 12 species displayed 18-fold genome size varia-
tion (2247 Mb/125 Mb) and 41-fold intron size variation 
(347–14,117 bp).

To minimize the impact of several potential sample and 
technological biases on alternative splicing event identi-
fication, such as sequencing depth, tissue type, software 
used, and gene expression level, we designed a strategy to 
combine the datasets and analysis methods and applied 
it to the FirstSpeciesSet (see Materials and Methods; 
Fig.  1E; Additional file  3: Figure S1 and Additional files 
4, 5, 6 and 7: Table S3-6). Generally, we constructed six 

RNA-Seq datasets according to the sequencing depth 
and tissue type, and named D1 to D6, respectively. We 
employed three representative tools to identify isoform/
splicing events: LeafCutter, StringTie, and SpliceTrap. We 
used two bin sizes, 100 and 500, to measure the influence 
of sequencing depth to the ASP/L. We also utilized three 
methods to calculate the correlation between ASP/L and 
OC: Spearman, linear regression, and phylogenetic gen-
eralized least squares (PGLS) regression.

ASP/L is positively correlated with OC
In general, we found a significantly positive correlation 
between ASP/L and OC in the FirstSpeciesSet (Fig. 2 A; 
Additional file  6: Table  S5.1). Combining all datasets 
and analyses methods, 80% of the correlations had P val-
ues < 0.05. We used these P values of the correlation to 

Fig. 1  Experimental design. (A) The organism complexity (OC) of 50 species exhibited a positive correlation with their mean intron size (Spearman’s 
ρ = 0.82, P = 7.6e-13) in [3]. (B) Statistics of the three sets of species constructed in the present study. CTN, cell type number; M, mean intron 
size (Kb). (C) The distribution of mean intron size versus the CTN of the 37 species used in the present study. The mean intron size was positively 
correlated with CTN across all 37 species (gray line; Spearman’s ρ = 0.35, P = 0.02), and negatively correlated with CTN in the FirstSpeciesSet [all 
species (red and gray data points), Spearman’s ρ = −0.23, P = 0.24; without Ame, Mun, and Pvi (three gray data points), Spearman’s ρ = −0.85, P = 
8e-04] and the SecondSpeciesSet (blue points; Spearman’s ρ = −0.32, P = 0.26). (D) Information regarding the 37 selected species, including their 
CTN (D1), genome size (D2), intron size (D3), percentage of complete BUSCO (D4), and phylogenetic tree (D5). The three colors used for text and 
bars represent the three sets of species and are the same in (B) and (C). Three species, Dps, Dsim, and Gpa, were shared among the Second- and 
ThirdSpeciesSet. (E) Workflow of the analysis used to explore the correlation between alternative splicing prevalence/level (ASP/L) and OC using the 
FirstSpeciesSet. This procedure included six datasets, three splicing event/isoform identification methods, two ASP and ASL calculation strategies, 
and three correlation-level calculation methods. Following our evaluation, we selected the following strategies for ASP/L calculation: LeafCutter was 
used to analyze all RNA-Seq data, calculate ASP/L using Bin500/100 genes, and calculate the correlation level using Spearman’s correlation
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evaluate the impact of different datasets and methods on 
the calculation of ASP/L. We did not find any dataset that 
outperformed all other datasets across all combinations 
of methods. However, the datasets that contained more 
data and included a larger number of different tissues 
showed higher significance levels (Fig.  2B; e.g., D1 vs. 
D3, student’s t-test, P < 0.01 for all three tools; D1_Leaf-
Cutter vs. LeafCutter for all three of the other datasets). 
We also observed that D2_SpliceTrap exhibited higher 
significance than D1_SpliceTrap (student’s t-test, P < 
0.001), but there was no difference between D3 and D4 
(Fig. 2B). We speculated that the difference between D2_
SpliceTrap and D1_SpliceTrap resulted from the different 

quantities of data included from the 14 species that com-
prised each dataset. However, no correlations were found 
between CTN and data quantity in D1 and D3 (Fig. 2 C; 
Spearman’s ρ = 0.09, P = 0.75 in D1; Spearman’s ρ = 0.21, 
P = 0.52 in D3). Therefore, we inferred that the correla-
tion between ASP/L and CTN would be greater than the 
correlations between CTN and data quantity in D1 and 
D3. Surprisingly, we found that most of the ASP/L values 
calculated using StringTie and SpliceTrap had a higher ρ 
value relative to the data quantity than the CTN (Fig. 2D). 
However, the ASP/L values calculated using LeafCutter 
for datasets D2 and D4 were not influenced by variations 
in data quantity. To eliminate the effect of data quantity, 

Fig. 2  ASP/L is positively correlated with organism complexity in the FirstSpeciesSet. (A) The 10 columns are combinations of four datasets (D1–D4) 
and three tools (LeafCutter, SpliceTrap, and StringTie). StringTie was not run for the D2 and D4 datasets because it failed to construct full-length 
transcripts as a result of the uneven distribution of the sampled reads. The 30 rows are combinations of the three numbers of genes used for 
ASP/L calculation (all genes, Bin 500, and Bin 100), two statistics for alternative splicing level [alternative splicing prevalence (ASP) and alternative 
splicing level (ASL); for the binned genes, we also calculated the predicted ASP (PASP) and ASL (PASL)], and three correlation calculation methods 
[Spearman’s correlation, linear regression, and phylogenetic general least squares (PGLS) regression]. The colors of the cells represent the Spearman’s 
correlation or adjusted R-squared value of the linear regression and PGLS regression. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, +P ≤ 0.1, and −P > 0.1. (B) 
Distribution of the P values in (A) across the four datasets and three tools. (C) Comparisons of cell type number (CTN) and data quantity in the D1 
and D3 datasets of the 14 species. (D) Distribution of the correlation differences between the Spearman’s ρ between ASP/L and CTN, and between 
ASP/L and data quantity. (E) Distributions of P values calculated using the three gene selections (all, Bin 500, and Bin 100). (F) Distribution of P 
values calculated using the four measurements of ASP/L. (G) Distribution of P values calculated using the three correlation methods. (H) Boxplots of 
Spearman’s ρ between ASP/L and CTN using either all 14 species or 13 species without Pvi. The mean ρ values with and without Pvi were 0.61 and 
0.59, respectively
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we excluded the results of StringTie and SpliceTrap for 
D1 and D3 from later analyses.

The P values of the correlations calculated using genes 
selected based on the binning method were more signifi-
cant than those calculated using all of the genes (Fig. 2E; 
student’s t-test, P < 0.015 for both binning methods), 
which indicated that the ASP/L values estimated using 
highly expressed genes were more accurate than those 
estimated using all genes. We also observed that the P 
values of correlations calculated using the predicted ASP 
or ASL (PASP or PASL) based on the binning method 
were slightly more significant than those calculated using 
the actual ASP or ASL [Fig.  2  F; mean −log10 P values 
from the PASP and actual ASP, 2.5 and 2.3, respectively; 
mean −log10 P values from PASL and actual ASL, 2.4 and 
2.2, respectively], which indicated that the model used 
for fitting the data was suitable for the ASP/L calcula-
tions. The positive correlation between ASP/L and OC 
was still present after correcting for phylogenetic dis-
tance and displayed a slightly higher level of significance 

than Spearman’s correlation (Fig.  2G). Based on the 
above evaluation, we selected LeafCutter to analyze all 
datasets from the SecondSpeciesSet and ThirdSpecies-
Set, the determination of ASP/L using bins of 100 or 500 
genes, and calculation of the correlation using Spear-
man’s correlation.

We also recalculated the Spearman’s ρ between ASP/L 
and CTN after removing species Pvi, which was the only 
species with a percentage of complete BUSCO < 80% 
(65.9%, Fig. 1D4). Spearman’s ρ displayed a similar distri-
bution when including or excluding Pvi (Fig. 2 H). After 
removing the effect of intron size, Spearman’s ρ remained 
unchanged (Fig.  3  A). To produce a sharper contrast 
between OC and mean intron size, we removed three 
outlier species, Ame, Mun, and Pvi. The residual 11 spe-
cies produced a significant negative correlation between 
OC and mean intron size (Spearman’s ρ = −0.85, P = 
8e-04; Fig.  1  C). InterestinglyTherefore, the correlation 
coefficient between ASP/L and OC calculated using the 
11 species was a little higher than that calculated using 

Fig. 3  ASP/L does not correlate with intron size among genomes. (A) Distribution of Spearman’s ρ and P values of the correlations between ASP/L 
and CTN plus the three intron size-related statistics for the three sets of species. The correlation was calculated using all species (blue) or fewer 
species (pink). For the ThirdSpeciesSet, the fewer species calculation excluded Pst. The blue boxes represent the partial correlation produced by 
removing the effect of CTN or mean intron size. (B) The scatter plots depict the correlation between three intron size-related statistics, mean intron 
size (left), coding sequence (CDS) density (middle), and intron density (right), and two species-level complexity proxies, organism complexity 
(CTN; the blue points and the y-axis on the left) and alternative splicing level (ASL2; the red points and the y-axis on the right) from Chen’s data 
[3]. (C) Same analysis as in (B) but only using species from the FirstSpeciesSet. The gray data points represent the three species that were excluded 
because of the outlier relationship between mean intron size and CTN. The gray line represents the linear regression line that was fitted using all 
of the species. The three excluded species were Ame, Pvi, and Mun. ASL was calculated using the LeafCutter tool and a Bin500 gene number. (D) 
Same analysis as in (B) but only using species from the SecondSpeciesSet. The three excluded species were Ofa, Hvu, and Tca. The Spearman’s ρ in 
(B–D) was illustrated in Additional file 11: Figure S4. (E) Same analysis as in (B) but using only species from the ThirdSpeciesSet with fixed organism 
complexity
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14 species (0.61 vs. 0.57; Fig. 3 A). These results indicated 
that our data and the methods used to calculate the cor-
relations with ASP/L were reliable and that the positive 
correlation between ASP/L and OC was robust.

We found that the positive correlation between ASP/L 
and OC was also present at the tissue-level, especially for 
brain tissue (Additional file  8: Figure S2). Interestingly, 
we found that the brain had the highest ASP/L, followed 
by testis tissue (Additional file 9: Table S7).

When we analyzed the SecondSpeciesSet (Additional 
file 1: Table S1.2, Additional file 2: Table S2.2, and Addi-
tional file 6: Table S5.2), we did not find a significant cor-
relation between ASP/L and OC. Surprisingly, we found 
three species with lower OC but higher ASP/L values 
(Ofa, Hvu, and Tca; Additional file  10: Figure S3). For 
example, Hvu and Tca had 22 and 29 cell types, but their 
ASPs (0.79 and 0.80, respectively) were higher than the 
mean ASP (0.74) of seven species for which the CTN 
was 119; this is probably due to species-specific genetic 
features, which are discussed later. After removing these 
three outlier species, ASP/L showed a positive correla-
tion with OC (Fig. 3 A). Upon combining these three spe-
cies sets, we observed a positive correlation between OC 
and ASP/L (Additional file  10: Figure S3A; Spearman’s 
ρ = 0.63, P = 1.27e-05).

ASP/L does not correlate with intron size across genomes
To investigate the relationship between ASP/L and mean 
intron size across the genomes in the two sets of species, 
FirstSpeciesSet and SecondSpeciesSet, we simultane-
ously tested another two intron size-related statistics, the 
coding sequence (CDS) density (mean CDS length/gene 
length) and intron density (introns per kb exon). Surpris-
ingly, we found that the correlation between these three 
intron size-related statistics and ASP/L co-varied with 
OC (Fig. 3B−D; Additional file 11: Figure S4) in both our 
sets of species and those of a previous study [3]. The cor-
relation levels calculated using the combinations of the 
above-mentioned six datasets and various methods were 
also consistent with this result (Fig.  3  A). The two sets 
of species showed negative correlations between mean 
intron size and OC. Interestingly, we also observed a neg-
ative correlation between mean intron size and ASP/L in 
both sets of species, a positive correlation between CDS 
density and ASP/L in the FirstSpeciesSet, and a negative 
correlation between CDS density and ASP/L in the Sec-
ondSpeciesSet. The positive correlations between intron 
density and both OC and ASP/L were not influenced by 
the datasets (Fig. 3 A−D). In both the First- and Second-
SpeciesSet, the positive correlation between ASP/L and 
OC had the highest ρ and significance among the com-
parisons of ASP/L with CTN and the three intron size-
related statistics. These correlations remained robust 

after removing the outlier species and the impact of 
mean intron size (Fig. 3 A). Conversely, the correlations 
between ASP/L and the three intron size-related statis-
tics displayed lower ρ values that were around zero and P 
values that were mostly > 0.1. These results suggest that 
the relationships between ASP/L and the intron size-
related statistics were confounded by OC.

To further remove the impact of OC on the calcula-
tion of relationships between ASP/L and intron size, 
we calculated ASP/L by using LeafCutter (Additional 
file  2: Table  S2.3) based on the ThirdSpeciesSet from 
12 dipteran species. Interestingly, although the intron 
size varied markedly, ASP/L did not correlate with any 
of the three intron size-related statistics (Fig.  3  A and 
E; Additional file 6: Table S5-3). After removing Pst, for 
which the complete BUSCO was 67.4%, the Spearman’s ρ 
between OC and the intron size-related statistics varied 
somewhat but was still not significant (P > 0.1; Fig. 3 A). 
After combining these three species sets, we observed a 
weak positive partial correlation between mean intron 
size and ASL with controlling OC (Additional file 10: Fig-
ure S3B; Spearman’s ρ = 0.33, P = 0.04). In contrast, the 
partial correlation between ASL and OC was higher and 
more significant (Spearman’s ρ = 0.55, P = 2.8e-4).

As highly expressed genes tend to have shorter introns 
[32] and the ASP/L calculated using the binning method 
employed highly expressed genes, we recalculated the 
correlation of ASP/L with the three intron size-related 
statistics using the same genes as those used for the 
ASP/L calculation. We found that the Spearman’s ρ val-
ues calculated using the highly expressed genes were 
distributed similarly to those using all genes (Additional 
file  12: Figure S5). Taken together, these results suggest 
that there is no correlation between ASP/L and intron 
size-related statistics across genomes.

ASP/L is significantly correlated with intron size 
within individual genomes
Using the highly expressed genes, we investigated the 
correlations between ASP/L and the three intron size-
related statistics among genes within individual genomes. 
Combining the three sets of species and removing redun-
dancy, 37 species were included in this analysis. We 
found that ASP/L was positively correlated with mean 
intron size and intron density, and was negatively corre-
lated with CDS density (Fig. 4).

Genomic features of ASP/L‑related pathways are positively 
correlated with OC
Why do the significant correlations between ASP/L 
and intron size-related statistics exist within individ-
ual genomes, but not exist across genomes with differ-
ent OC? We speculated that this phenomenon may be 
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attributable to splicing factors, because they regulate the 
splicing process through binding to the cis-regulatory 
elements on the gene body. To verify this, we generated 
a dataset comprising genes from four ASP/L-related 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, namely Spliceosome (ko03040), mRNA Sur-
veillance (ko03015), RNA Degradation (ko03018), and 
RNA Transport (ko03013). Six genomic features of these 
genes were analyzed and their relationships to OC were 
investigated. These six genomic features included gene 
expression level, number of orthologous genes, protein 
evolutionary distance, ASP/L, fraction of disordered resi-
dues, and fraction of disordered binding residues.

Interestingly, in the FirstSpeciesSet, we found that the 
expression levels of genes along the spliceosome pathway 
were higher than those of the genes of the other three 
pathways (Fig. 5 A). Furthermore, the expression levels of 
genes along the spliceosome pathway did not change with 
increasing OC, whereas the genes along the other three 
pathways showed decreasing expression with increasing 
OC. Thus, the gene expression differences between the 
spliceosome pathway and the combination of the other 
three pathways increased significantly with increasing 
OC (Fig. 5B; Spearman’s ρ between Wilcoxon W-statistic 
and CTN = 0.7, P = 0.004; see the figure legend for the 
detail method). The results were supported by expression 
data from different datasets and tools (Additional file 13: 
Figure S6).

We found that more complex species tend to have 
more orthologous ASP/L-related genes with their total 
gene number as the background (Fig.  5  C; Chi-square 
test: ko03013, P = 2.5e-08; ko03040, P = 9.3e-7; ko03015, 

P = 7.2e-04; ko03018, P = 2.7e-03). We found that the 
evolutionary distance based on the species tree displayed 
a strong positive correlation with OC (Fig. 5D left; Spear-
man’s ρ = 0.78, P = 4.7e-20). The evolutionary distances 
calculated using the genes specific to the four pathways 
also displayed similar correlation levels (Fig.  5D right; 
for the four pathways, 0.63 < Spearman’s ρ < 0.65, 2.3e-
12 < P < 2.7e-11). Interestingly, the spliceosome path-
way showed the shortest evolutionary distance (Fig.  5D 
right), which indicated that this pathway is under high 
evolutionary pressure. Using the D1 dataset and applying 
the LeafCutter tool to all genes, we found a positive cor-
relation between ASP and OC (Fig.  5E left; Spearman’s 
ρ = 0.6, P = 0.02). Using the same dataset and method, 
analysis of the four pathways displayed similar distribu-
tions, with the spliceosome pathway having the highest 
correlation coefficient (Fig.  5E right; Spearman’s ρ for 
ko03040, ko03013, ko03018, and ko03015 were 0.71, 0.71, 
0.66, and 0.56, the P values were 4.3e-03, 4.7e-03, 9.5e-03, 
and 3.7e-02, respectively).

We observed a positive correlation between the frac-
tion of disordered residues and OC using all of the pro-
tein-coding genes (Fig. 5 F left; Spearman’s ρ = 0.36, P = 
0.2). The four pathways displayed similar patterns, with 
the spliceosome pathway having the highest correla-
tion coefficient (Fig. 5 F right; Spearman’s ρ for ko03040, 
ko03013, ko03018, and ko03015 were 0.72, 0.64, 0.60, 
and 0.28, the P value were 3.5e-03, 1.3e-02, 2.4e-02, and 
0.33, respectively). For the fraction of disordered binding 
residues, we observed a positive correlation between this 
parameter and OC when using all of the protein-coding 
genes (Fig.  5G left; Spearman’s ρ = 0.53, P = 0.05). The 
four pathways showed similar patterns, with the spli-
ceosome pathway having the highest correlation coeffi-
cient (Fig. 5G right; Spearman’s ρ for ko03040, ko03013, 
ko03018, and ko03015 were 0.83, 0.68, 0.66, and 0.73, 
the P values were 2.6e-04, 6.9e-03, 1.1e-02, and 2.9e-03, 
respectively).

The SecondSpeciesSet displayed similar relationships 
between OC and these genomic features (Additional 
file  14: Figure S7). These results suggest that the four 
ASP/L-related pathways, especially the spliceosome 
pathway, have significant correlations with OC.

Genomic features of ASP/L‑related pathways 
independently regulate OC
To investigate whether some specific gene families 
(KEGG Orthology: KO) from the four ASP/L-related 
pathways displayed a higher correlation with OC across 
most of these six genomic features, we set the PGLS P 
< 0.05 and Spearman’s ρ > 0.4 as the cut-offs for filter-
ing the results. In the FirstSpeciesSet, we annotated 316 
KOs from the ASP/L-related pathways; approximately 

Fig. 4  ASP/L is significantly correlated with the three intron 
size-related statistics within individual genomes. After combining the 
three sets of species and removing redundancy, a total of 37 species 
were used for this analysis
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208 of them had significant correlations with OC for at 
least one genomic feature, and 13 KOs appeared to have 
significant correlations with OC across at least three 
features (Fig.  6  A; Additional file  15: Table  S8.1−7). 
Surprisingly, we did not find any KOs that were signifi-
cant across all six features, and only one KO was sig-
nificant across five features. The genomic features are 
probably independent of each other, and the principal 

component analysis using the Spearman’s ρ between 
each genomic feature and OC for the 219 KOs sup-
ported this hypothesis (Fig.  6B). We found that these 
six features were separated well using the first three 
principal components, except for the group containing 
the fractions of disordered binding residues and disor-
dered residues. The SecondSpeciesSet displayed a simi-
lar pattern (Additional file 16: Figure S8).

Fig. 5  Genomic features of four ASP/L-related pathways are positively correlated with organism complexity in the FirstSpeciesSet. The four 
pathways investigated were RNA transport (ko03013), mRNA surveillance pathway (ko03015), RNA degradation (ko03018), and spliceosome 
(ko03040). The gene expression levels were calculated using D1 LeafCutter data (A), and for each species, the Wilcoxon W-statistics was calculated 
between ko03040 and the combination of the other three pathways (B). (C) Scatter plots of the genome-wide number of protein-coding genes 
(left) and that of the four pathways (right) vs. the cell type number (CTN). (D) Scatter plots of the evolutionary distance and organism complexity 
differences across the 14 species based on the phylogenetic tree shown in Fig. 1 A (left) and the protein alignment of the KEGG Orthologs from the 
four pathways (right). The CTN difference was calculated as diff(a,b)/max(a,b) and ranged between 0 and 1. (E) Scatter plots of alternative splicing 
prevalence and CTN using the D1 dataset and LeafCutter tool for all genes (left) or the genes from the four pathways (right). (F) Scatter plots of the 
fraction of disordered residues vs. CTN for all genes (left) and genes along the four pathways (right). (G) Scatter plots of the fraction of disordered 
binding residues vs. CTN for all genes (left) and the genes along the four pathways (right)
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Discussion
Our results indicated that the positive correlation 
between ASP/L and OC is a general feature of eukary-
otes. We found that the positive correlation was inde-
pendent of intron size. Therefore, our present study 
largely extended the relevant conclusion as listed below 
[3].

Our study indicated that ASP/L is not always corre-
lated with intron size-related statistics among species. 
We found no correlation between ASP/L and intron size 
across species based on evidence from three sets of spe-
cies with varied or fixed OC. This result is different from 
the results of a previous study derived from a set of spe-
cies with a positive correlation between intron size and 
OC [2]. Intuitively, it is reasonable that Lmi and Ame 
should have a lower ASP/L than humans even though 
their introns are longer (Additional file  6: Table  S5), 
because their organism complexities are lower than 
humans.

Intriguingly, however, several species had lower OC 
accompanied by a higher ASP/L than expected. For Hvu, 
there are currently no species from the same order or 
class that satisfied our requirements regarding the quality 
of genome assembly and gene annotation or the quantity 
of RNA-Seq data available. It is thus unclear whether a 
high ASP level is ubiquitous within the Hydrozoa class or 
specific to Hvu. Tca is from the same order, Rhabditida, 
as Caenorhabditis elegans, for which ASP is only 0.25 
[33]. Therefore, the higher level of ASP in Tca is species-
specific. This then begs the question, why do these spe-
cies with a higher ASP have a lower CTN? This seeming 
paradox may be partially explained by the similar expres-
sion levels of genes along all four ASP/L-related path-
ways, or the smaller differences in expression between 
genes along the spliceosome pathway and the other three 
ASP/L-related KEGG pathways in Hvu and Tca com-
pared with those observed for species with a higher OC 
(Additional file 14: Figure S7A). Therefore, although Hvu 
has a higher ASP that is attributable to the higher expres-
sion of genes along the spliceosome pathway, most of its 
transcripts are degraded by the mRNA surveillance and 
RNA degradation pathways. Consequently, only a frac-
tion of its transcripts is translated into proteins. Our 
findings that the brain and testis have the highest ASP/L 
is consistent with a previous study performed across 
three mammals [34], which indicates a conserved phe-
nomenon within the Metazoa.

ASP/L displays a positive correlation with mean intron 
size and intron density and is negatively correlated with 
CDS density among genes within individual genomes. 
The underlying mechanisms of these results are still being 
revealed. It is reported that exon definition, which tends 
to occur on cassette exons flanked by longer introns, is 

Fig. 6  Six genomic features of ASP/L-related genes independently 
regulate organism complexity. (A) Intersection of significant 
KEGG Orthologs (KOs) among six genomic features. Spearman’s 
correlation and phylogenetic general least squares (PGLS) regression 
were calculated between these genomic features and organism 
complexity for each KO in the FirstSpeciesSet of 14 species. 
Significant KOs were defined as having Spearman’s ρ > 0.4 and PGLS 
P < 0.05. (B) Principal component analysis of the six genomic features 
based on the Spearman’s ρ for 219 KOs. The data points represent 
KOs and the shapes represent the four KEGG pathways. (C) Summary 
of the correlations among ASP/L, the six genomic features of 
ASP/L-related proteins, and organism complexity
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less efficient than intron definition, which tends to occur 
on constitutive exons flanked by shorter introns [11]. 
Several studies have found that exons flanked by longer 
introns tend to have a higher density of exonic splicing 
enhancers (ESEs) at both ends [35–37] and strong splice 
sites [36, 38], which facilitate effective exon splicing. 
Longer introns also harbor more non-conserved splicing 
sites, which occur in the vicinity of regions enriched in 
genomic features that define exons [39]. This result sug-
gests that longer introns tend to produce more usable 
transcripts.

The next question then is why do the mechanisms that 
produce higher ASP/L for longer introns within indi-
vidual genomes not work across species? Previous stud-
ies have found that the cis-acting splicing regulatory 
elements, including ESEs and splice sites, are conserved 
within vertebrates [37, 38]. Splicing-related genomic 
features, such as the number of U12 introns, of a large 
genome from an invertebrate are more similar to those 
of vertebrates than to those of small genomes from inver-
tebrates [13]. Therefore, we speculate that the trans-
regulatory factors interacting with other ASP/L-related 
proteins are responsible for this regulation, as discussed 
below.

In our study, the four ASP/L-related pathways con-
tributed to the ASP/L differences across the species 
with different OC. In particular, the spliceosome path-
way, which is comprised of splicing factors, displayed 
distinct genomic features, including the highest expres-
sion level, smallest evolutionary distance, and high-
est fraction of disordered regions across all species. 
Furthermore, the spliceosome pathway displayed the 
most significant correlations between OC and ASP/L, 
the fraction of disordered regions, and the fraction of 
disordered binding regions. These results suggested 
that (1) the relationships between the spliceosome and 
the other three pathways with respect to these features 
are conserved across Metazoan species, and (2) the 
spliceosome pathway may play a more important role 
than the other three pathways in the evolution of OC. 
Several studies have reported that various phenotypes 
and diseases are regulated by splicing factors through 
their varying expression level, copy number, amino acid 
mutation, and number of isoforms among individuals 
from the same species or among multiple species [28, 
40–43]. In line with these findings, we revealed direct 
correlations between OC and various genomic features 
of splicing factors. Several of these features, such as 
gene copy number, ASP/L, the fraction of protein dis-
ordered region, and the fraction consisting of the pro-
tein disordered binding sites, have been reported to 
be associated with OC with regard to the protein-cod-
ing genes in the genome [3, 8, 17] or specific groups, 

such as transcription factors [18, 19]. These genomic 
features are capable of expanding the number of dis-
tinct proteins with an unchanged gene number and an 
increasing number of interacting proteins, which, in 
turn, contributes to increasing OC [3]. Our finding of a 
positive correlation between the evolutionary distance 
of splicing factor proteins and OC suggests that varia-
tions at the sequence level of splicing factors also con-
tribute to OC [44, 45]. To the best of our knowledge, 
this is the first report of a direct correlation between 
OC and splicing factors.

Although the six genomic features were positively cor-
related with OC, only weak or no correlations were found 
among them. This result indicates that these features may 
independently promote ASP/L through specific means. 
Thus, from a network perspective, these features likely 
impact distinct parts of the network [46]. Increasing the 
level of gene expression means intensifying a single node, 
whereas a higher ASP/L and gene copy number mean 
that more nodes will be present in the network. Fur-
thermore, a lower evolutionary distance implies a higher 
functional similarity among nodes within the networks 
from different species, whereas the disordered region and 
disordered binding site expansion produce more edges in 
the network. We thus depicted our findings as Fig. 6 C. It 
may through the cooperated six genomic features, splic-
ing-related proteins increase organism’s splicing level, 
which further promote the organism complexity to a 
higher level.

Although we included as many species as possible in 
this study, many more species were excluded for vari-
ous reasons. Besides the above-mentioned exclusion of 
low-quality genome assemblies and gene annotations 
along with inadequate RNA-Seq data, the main reason 
for species exclusion was a lack of CTN information. 
There are currently only 42 orders that have at least one 
species with known CTNs, and there are only 30 unique 
CTNs [3]. Therefore, more publicly available high-quality 
annotated genomes and additional RNA-Seq data from 
various tissues and developmental stages are required for 
future studies, particularly data from species with known 
CTNs.

Conclusions
Our results suggest that the positive correlation between 
ASP/L and OC ubiquitously exists in eukaryotes, and 
this correlation is not affected by the mean intron size 
of these species. However, within a single genome, we 
showed that ASP/L was indeed affected by the mean 
intron size. We further demonstrated that splicing fac-
tors may improve OC through gradually changing several 
genomic features.
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Methods
Datasets used
The FirstSpeciesSet comprised 14 species with a 
genome size equal to or greater than that of the 
human genome for which the full genome sequence, 
gene annotations, and at least 19 Gb RNA-Seq data 
were available. These species included 11 from Deu-
terostomia (Homo sapiens, Pan troglodytes, Dasypus 
novemcinctus, Monodelphis domestica, Ambystoma 
mexicanum, Leptobrachium leishanense, Microcae-
cilia unicolor, Scyliorhinus torazame, Chiloscyllium 
punctatum, Erpetoichthys calabaricus, and Spheno-
don punctatus) and three from Protostomia (Locusta 
migratoria, Procambarus virginalis, and Euprymna 
scolopes) (Additional file 1: Table S1.1). The SecondSpe-
ciesSet comprised 14 species, which included 12 from 
Bilateria (Toxocara canis, Amphibalanus amphitrite, 
Penaeus vannamei, Drosophila pseudoobscura, Gloss-
ina pallidipes, Drosophila simulans, Ciona savignyi, 
Branchiostoma floridae, Takifugu rubripes, Cyclop-
terus lumpus, Anarrhichthys ocellatus, and Seriola 
lalandi) and two from Cnidaria (Orbicella faveolata 
and Hydra vulgaris) (Additional file 1: Table S1.2). The 
ThirdSpeciesSet comprised 12 dipteran species, which 
included five from Culicidae (Culex quinquefasciatus, 
Aedes aegypti, Aedes albopictus, Anopheles albimanus, 
Anopheles gambiae), three from Drosophilidae (Dros-
ophila melanogaster, D. simulans, D. pseudoobscura), 
two from Muscidae (Musca domestica, Stomoxys cal-
citrans), and one each from Chironomidae (Parochlus 
steinenii) and Glossinidae (Glossina pallidipes) (Addi-
tional file 1: Table S1.3). The quality of the protein sets 
used for each species was evaluated using BUSCO (v10) 
[47]. The parameter “-l metazoa” was used for the First- 
and SecondSpeciesSet, and “-l diptera” was used for the 
ThirdSpeciesSet.

OC data measured based on CTN were from [3]. 
For the species without CTN data, the CTN informa-
tion from the most closely related species was used 
instead. Genome sequence and gene annotation data 
were downloaded from the US National Center for 
Biotechnology Information (NCBI) Genome database 
(https://​www.​ncbi.​nlm.​nih.​gov/​genome). RNA-Seq 
data for each species were downloaded from the NCBI 
Sequence Read Archive (SRA) database (https://​www.​
ncbi.​nlm.​nih.​gov/​sra) and the European Bioinformat-
ics Institute (EBI) ArrayExpress database (https://​www.​
ebi.​ac.​uk/​array​expre​ss). For the study with “selection 
method” denoted as “RANDOM” or “unspecified”, we 
manually confirmed their selection method as “Oligo-
dT” through reading the published literature that cited 
the corresponding data set, or the description of the 

entry in NCBI/SRA database. The datasets used are 
summarized in Additional file 2: Table S2.

Construction of six RNA‑Seq datasets
To test the impact of sequencing depth and tissue type on 
alternative splicing detection, we constructed four RNA-
Seq datasets derived from the FirstSpeciesSet, D1 to D4. 
D1 consisted of all available data for each species with a 
minimum of 19 Gb data. By using a binning method with 
500 genes in each bin, we found that there were at least 
four bins with unchanged ASP/L, as predicted by the fit-
ted sigmoid curve, which indicates that the sequencing 
depth was saturated (Additional file 3: Figure S1). D2 was 
comprised of 100 million reads with an equal length of 
75  bp that were randomly sampled from total reads for 
each species. This dataset allowed us to test the splicing 
level among species with equivalent data quantities. D3 
included all available data for four tissue types (brain, 
liver, testis, and kidney) for 12 species (two species had 
data from fewer than four tissues and were excluded 
from this dataset; Additional file  5: Table  S4). The D3 
dataset allowed us to test ASP/L with the same number 
and types of tissues. D4 consisted of 12 million reads that 
were randomly sampled from data for each of the four 
tissues and across all 12 species in D3 so that a total of 48 
million reads were included.

To test whether the positive correlation between 
ASP/L and OC still existed on the single-tissue level, we 
designed another two data sets, D5 and D6. D5 contained 
all of the available data from five tissue types (brain, liver, 
kidney, testis, and muscle) for which at least six species 
had RNA-Seq data. D6 included equal quantities of data 
sampled randomly across all species for each of the five 
tissues in D5 (Additional file 7: Table S6).

Measurement of ASP/L
To identify isoforms/splicing events, we chose three 
widely used and representative tools: LeafCutter [24], 
StringTie [48], and SpliceTrap [49]. These tools use differ-
ent quantification strategies: junction-level (LeafCutter), 
isoform-level (StringTie), and exon-level (SpliceTrap). 
None of these strategies are completely accurate [50, 51]. 
ASP/L was calculated based on all expressed multi-exon 
genes and using an expression level rank-based binning 
method with either 100 or 500 genes in each bin (Addi-
tional file 3: Figure S1).

To run LeafCutter, we first aligned the raw RNA-Seq 
raw reads to the corresponding reference genome 
sequence using HISAT2 [52] with default parameters. 
The unique mapped reads were used to produce junc-
tions with the bam2junc.sh script in LeafCutter [24]. 
Multiple junction files for each species were merged 

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress
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and the number of reads supporting the junctions was 
summed. The leafcutter_cluster.py script was used to 
cluster the junctions and produce the intron clusters 
with the parameters ‘-l 500000 -m 30’. We filtered the 
intron clusters that connected more than one reference 
gene. The coverage depth of each species was calculated 
using bedtools genomecov with the parameters ‘-bg 
-split’ for each sample and then merged using bedtools 
unionbedg. The expression level was approximated as 
the maximum coverage depth in the gene exon regions. 
Multi-exon genes were considered expressed if their 
exon regions had at least one bp length with a coverage 
depth > 2. ASP was defined as the percentage of 
expressed multi-exon genes with at least one intron 
cluster. We used Shannon’s entropy to measure ASP/L 
[53]. For each intron cluster with m junctions, each 
junction was connected by nk reads, such that the per-
centage of reads that supported the k junction was 
fk =

nk∑m
k=1

nk
 . We then calculated the Shannon’s entropy 

of the intron cluster as H = −
∑m

k=1
fk log2fk and 

summed the entropy from all intron clusters of each 
gene as the gene-level ASL.

With the StringTie tool, we first ran StringTie (v1.3.4) 
for each sample with the parameter ‘-j 3’ and then merged 
the multiple gtf files using “stringtie --merge” with the 
parameters ‘-c 0.01 -F 1 -T 1 -f 0.01’. We only used the 
genes that were de novo annotated by StringTie and over-
lapped with genes from Official Gene Set for alternative 
splicing analysis. We calculated the gene expression level 
as the Fragments Per Kilobase of transcript per Million 
mapped reads (FPKM) using StringTie with the param-
eters “-b -e -G” for each sample. For the transcripts from 
each gene, we summed their expression levels across 
samples to determine the gene expression level. ASP was 
calculated as the percentage of expressed multi-exon 
genes (FPKM > 0.1) with more than one isoform. ASL 
was calculated as the mean number of isoforms for each 
expressed multi-exon gene.

With the SpliceTrap tool, we first created pseudochro-
mosomes comprised of a maximum of 30 chromosomes 
and concatenating scaffolds with 100 ‘N’s. We used the 
merged gtf files generated by StringTie using all available 
data for each species as the reference to create a TXdb 
database using the TXdbgen scripts in SpliceTrap. Splice-
Trap was run using the Bowtie aligner without Inclusion-
Ratio distribution Model correction for each sample. We 
merged the ratio files from all samples for each species 
by summing the number of junction reads across all sam-
ples. The apply_cutoff.sh script was used to filter the data 
in the final ratio result file with the cutoffs of medium 
stringency and at least five junction reads. The gene 
expression level was calculated using StringTie. The ASP 

was calculated as the percentage of expressed multi-exon 
genes (FPKM > 0.1) with more than one splicing event. 
ASL was calculated as the mean number of events for 
each multi-exon gene.

Influence of sequencing depth on ASP/L
To simulate the influence of sequencing depth on ASP/L, 
we used a previously published method [23] to split the 
expressed multi-exon genes into bins of the same size 
according to their expression level. For each bin, we cal-
culated the ASP/L. A sigmoid curve was then fitted to the 
functionF(x) = α

1+e1(x−α)∗b for ASP/L (F(x)) in each bin as 
a function of gene expression (x), where α, the upper 
asymptote, represented the true extent of ASP/L. The sig-
moidal model was computed using nls in the basic stats 
package of R and SSlogis function. In contrast to the 
results of Wang et  al. [23], we discovered a decreasing 
trend in ASP/L when the sequencing depth or expression 
level was greater than a certain level. Therefore, in addi-
tion to the estimated upper asymptote, we also calculated 
the mean ASP/L values of the bins with a predicted value 
variation of < 0.0001.

For the binning size selection, Wang et  al. [23] have 
found that the standard deviation (SD) of ASP is 0.01 
when the binning size varied from 50 to 500 with step 
50. However, because the data amount and species used 
in this study are very different from Wang’s study, we 
re-evaluated the robustness of binning size using the 
same binning size set as Wang’s. The evaluation was 
performed using the D1 to D4 dataset from the First-
SpeciesSet and all three isoform/event identification 
software as Fig.  2  A illustrated. For each combination 
of the dataset, software, and species, we calculated the 
ASP/L at ten binning size levels, then calculated the SD 
of the ASP/L. Totally, 520 SD values were obtained, half 
of them are ASL and ASP, respectively. We found 95% of 
these SD values from ASP are less than 0.007, this value 
for ASL is 0.06. We also calculated the Spearman’s cor-
relation coefficient between ASP/L and OC and then the 
SD for each combination of the dataset and software. 
Totally, 40 SD values were obtained, and 95% of these SD 
values are less than 0.03. These results suggest that the 
binning size used in this study is robust and the correla-
tion results in this study is not influenced by the binning 
size. We therefore selected two bin sizes, 500 and 100, to 
calculate the ASP/L in this study.

Correlation calculations
To measure the correlation between ASP/L and OC, we 
used three methods, i.e., Spearman’s correlation, linear 
regression, and PGLS regression. The first two methods 
were performed using the cor and lm functions in the R 
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stats package. The PGLS regression was performed using 
the pgls function in the R caper package. The λ parameter 
was estimated using the maximum likelihood method. 
The phylogenetic trees were constructed as described 
below.

Species phylogenetic tree construction
To construct a phylogenetic tree of the FirstSpeciesSet, 
we used Dendronephthya gigantea (GCF_004324835.1, 
DenGig_1.0) as the outgroup. We retained the long-
est isoforms for genes with multiple isoforms. The 
OrthoFinder (v2.3.11) package [54] was used to con-
struct the phylogenetic tree of the 15 species with the 
parameters ‘-S diamond -T fasttree’. The rooted species 
tree was inferred using STRIDE [55], which is embed-
ded in OrthoFinder. The same method was used to con-
struct a phylogenetic tree of the SecondSpeciesSet, which 
included 14 species and Amphimedon queenslandica as 
the outgroup, and the ThirdSpeciesSet, which included 
12 dipteran species and Bombyx mori as the outgroup.

KEGG pathway‑based analysis
Genome-wide KEGG pathway annotation was performed 
using the webserver GhostKOALA [56]. The expres-
sion levels of the ASP/L-related genes were calculated 
as quantiles, with larger quantiles representing higher 
expression. The evolutionary distance calculations based 
on the phylogenetic species trees were performed using 
the cophenetic.phylo function in the R ape package [57]. 
For each KO, we first performed multiple sequence align-
ment using MUSCLE (v3.8.31) [58] and then calculated 
the evolutionary distance using the dist.alignment func-
tion in the R seqinr package [59]. Disordered residues 
and disordered binding residues were predicted using the 
IUPred2A tool [60]. Residues were considered disordered 
residues or disordered binding residues if their predic-
tion score was > 0.5.

Visualization and statistics
ComplexHeatmap [61] was used to visualize the P value 
matrix (Fig. 2 A) and set interaction (Fig. 6 A). Principal 
component analysis was performed using the R ggfortify 
package [62].

Abbreviations
RNA-Seq: RNA-sequencing; ASL: alternative splicing level; ASP: alternative 
splicing prevalence; ASP/L: alternative splicing prevalence and level; CTN: 
cell type number; OC: organism complexity; PGLS: phylogenetic generalized 
least squares; PASP: predicted alternative splicing prevalence; PASL: predicted 
alternative splicing level; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
KO: KEGG Orthology.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​021-​08172-2.

Additional file 1: Table S1. Summary of the three sets of species used in 
this study.

Additional file 2: Table S2. Details of the RNA-Seq datasets used in this 
study.

Additional file 3: Figure S1. Distribution of alternative splicing preva-
lence. This analysis was performed using dataset D1, the LeafCutter tool, 
and 500 genes in each bin. The black line was plotted using real data, 
whereas the red line was simulated using the sigmoid function. AS, 
alternative splicing.

Additional file 4: Table S3. Summary statistics of the RNA-Seq data from 
the FirstSpeciesSet.

Additional file 5: Table S4. The four selected tissues used for each spe-
cies in the FirstSpeciesSet.

Additional file 6: Table S5. ASP/L and correlation with the cell type num-
ber (CTN) and mean intron size for the three sets of species.

Additional file 7: Table S6. Statistics of the five tissues used for tissue-
level ASP/L calculation for the FirstSpeciesSet.

Additional file 8: Figure S2. ASP/L displayed a positive correlation with 
organism complexity when using the D5 and D6 datasets. The boxplot 
indicates the P value with -log10 transformation for each column. PASP, 
predicted alternative splicing prevalence; ASP, actual alternative splic-
ing prevalence; PASL, predicted alternative splicing level; ASL, actual 
alternative splicing level; GeneNum, gene number; SplicLvl, splicing level; 
CorMethod, correlation calculation method.

Additional file 9: Table S7. The two tissues with the highest ASP/L in the 
FirstSpeciesSet.

Additional file 10: Figure S3. Distribution of alternative splicing preva-
lence and level (ASP/L) against cell type number (CTN) and mean intron 
size across all 37 species used in this study. (A) The red points represent 
three outlier species that have higher ASP but lower CTN. ASP was calcu-
lated using all RNA-Seq data for each species, LeafCutter software, and the 
Bin 500 method. Spearman’s ρ  = 0.63, P = 1.27e-05. (B) The scatter plots 
depict the correlation between mean intron size and two species-level 
complexity proxies, organism complexity (CTN; the blue points and the 
y-axis on the left) and alternative splicing level (ASL; the red points and 
the y-axis on the right). ASL was calculated using the LeafCutter tool and 
a Bin500 gene number. Spearman’s ρ between mean intron size and CTN 
is 0.36 (P = 0.02), and between mean intron size and ASL is 0.46 (P = 
0.0026).

Additional file 11: Figure S4. Distribution of Spearman’s ρ  between 
three intron size-related statistics and cell type number (CTN) and alterna-
tive splicing level (ASL) when using the data from Chen et al. (2014), the 
FirstSpeciesSet, and the SecondSpeciesSet.

Additional file 12: Figure S5. Influence of highly expressed genes on the 
calculation of correlations between ASP/L and intron size-related statistics 
across all three sets of species. The analysis details are the same as those 
described in the figure legend for Fig. 3E. The green boxes represent the 
correlations or P values calculated using highly expressed genes, whereas 
the purple boxes represent those values calculated using genes with all 
genes. Although the correlations and P values varied between the highly 
expressed genes and all genes, these differences were not significant. 
MeanIntr, mean intron size; CDSdens, coding sequence density; IntrDens, 
intron density.

Additional file 13: Figure S6. Species with higher organism complexity 
had higher expression-level differences between genes along the spliceo-
some pathway (ko03040) and the other three mRNA biogenesis and trans-
port pathways (ko03013, ko03025, and ko03018). (A, B) StringTie analysis 
using the expression data from the D1 dataset. (C, D) LeafCutter analysis 
using the D2 dataset. (A, C) Expression-level distribution of ASP/L-related 
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pathways and organism complexity. (B, D) Positive correlation between 
the Wilcoxon W-statistics and organism complexity (represented by 
cell type number, CTN) (D1_StringTie, Spearman’s ρ = 0.63, P = 0.015; 
D2_LeafCutter, ρ = 0.62, P = 0.017). The Wilcoxon rank-sum test was used 
to calculate the W-statistic between the spliceosome pathway (ko03040) 
and the other three mRNA biogenesis and transport pathways (ko03013, 
ko03025, and ko03018).

Additional file 14: Figure S7. Relationships between organism complex-
ity and the six genomic features of splicing factors in the SecondSpecies-
Set. The analysis details are the same as those described in the figure 
legend of Fig. 5. The four ASP/L-related pathways investigated were RNA 
transport (ko03013), mRNA surveillance pathway (ko03015), RNA degrada-
tion (ko03018), and spliceosome (ko03040). The gene expression levels 
were calculated using LeafCutter (A), and, for each species, the Wilcoxon 
W-statistics was calculated between ko03040 and the combination of the 
other three pathways (B), which yielded Spearman’s ρ = 0.39, P = 0.17. (C) 
Scatter plots of the genome-wide protein-coding genes (left) and those 
along the four pathways (right) vs. the cell type number (CTN). The gene 
numbers in the four pathways were positively correlated with organ-
ism complexity using the genome-wide protein-coding genes as the 
background (Chi-square test: ko03040, ko03013, ko03018, and ko03015, 
P = 5.8e-26, 6.9e-15, 6.3e-07, and 7.7e-12, respectively). (D) Scatter plots 
of the evolutionary distance and organism complexity differences across 
the 14 species based on the species phylogenetic tree and the protein 
alignment of the KEGG orthologs along the four pathways (right) vs. the 
CTN difference. The CTN difference was calculated as diff(a,b)/max(a,b) 
and ranged between 0 and 1. The evolutionary distances were positively 
correlated with the organism complexity differences (left: Spearman’s ρ 
= 0.4, P = 6.5e-05; right: for ko03040, ko03013, ko03015, and ko03018, ρ 
= 0.49, 0.43, 0.44, and 0.44, respectively, and P = 1.4e-04, 1.2e-03, 7.8e-04, 
and 8.5e-04, respectively). (E) Positive correlations between ASP and CTN 
using the LeafCutter tool for all genes (left) and the genes along the four 
pathways (right) (left: Spearman’s ρ = 0.66, P = 0.03; right: for ko03013, 
ko03015, ko03018, and ko03040, Spearman’s ρ = 0.54, 0.5, 0.42, and 0.61, 
respectively, and P = 0.09, 0.11, 0.2, and 0.05, respectively). (F) Positive 
correlations between the fraction of disordered residues and CTN for 
all genes (left: Spearman’s ρ = 0.31, P = 0.28) and genes along the four 
pathways (right: for ko03013, ko03015, ko03018 and ko03040, Spearman’s 
ρ = 0.38, 0.3, 0.52, and 0.58, respectively, and P = 0.19, 0.31, 0.06, and 0.03, 
respectively). (G) Scatter plots of the fraction of binding residues vs. CTN 
for all genes (left: Spearman’s ρ = 0.3, P = 0.3) and genes along the four 
pathways (right: for ko03013, ko03015, ko03018 and ko03040, Spearman’s 
ρ = 0.55, 0.38, 0.62, and 0.52, respectively, and P = 0.04, 0.19, 0.02, and 
0.06, respectively).

Additional file 15: Table S8. Correlation between organism com-
plexity and the six genomic features of ASP/L-related pathways in the 
FirstSpeciesSet.

Additional file 16: Figure S8. Correlation among genomic features 
of ASP/L-related genes in the SecondSpeciesSet. (A) Intersection of 
significant KOs among six genomic features. Spearman correlation and 
PGLS regression were calculated between these genomic features and 
organism complexity for each KO in the SecondSpeciesSet. Significant 
KOs were defined as Spearman’s ρ > 0.4 and PGLS P < 0.05. (B) Principal 
component analysis of these six genomic features based on the Spear-
man’s ρ in 112 KOs. The points represent KOs and the shapes represent 
the four pathways.
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