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Abstract 

Background:  Microexons are a particular kind of exon of less than 30 nucleotides in length. More than 60% of 
annotated human microexons were found to have high levels of sequence conservation, suggesting their potential 
functions. There is thus a need to develop a method for predicting functional microexons.

Results:  Given the lack of a publicly available functional label for microexons, we employed a transfer learning skill 
called Transfer Component Analysis (TCA) to transfer the knowledge obtained from feature mapping for the predic-
tion of functional microexons. To provide reference knowledge, microindels were chosen because of their similari-
ties to microexons. Then, Support Vector Machine (SVM) was used to train a classification model in the newly built 
feature space for the functional microindels. With the trained model, functional microexons were predicted. We also 
built a tool based on this model to predict other functional microexons. We then used this tool to predict a total of 
19 functional microexons reported in the literature. This approach successfully predicted 16 out of 19 samples, giving 
accuracy greater than 80%.

Conclusions:  In this study, we proposed a method for predicting functional microexons and applied it, with the 
predictive results being largely consistent with records in the literature.
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Background
With the development of RNA sequencing and corre-
sponding computational tools, a specific kind of exon 
called microexon (3–30 nucleotides (nt) in length) was 
found, which has been attracting increasing interests 
[1–3]. In 2014, Irimia et  al. designed VAST-TOOLS to 
analyze vertebrate alternative splicing (AS) and iden-
tified 696 AS microexons (3–27 nt) in 603 genes [4]. Li 
then developed ATMap and identified 13,145 constitu-
tive and AS microexons of 6–51 nt [5]. In the same year, 
Yan reported 2,008 AS microexons (6–30 nt) from 1,587 
genes [6]. These studies revealed that microexons are 
more prevalent and present in many more genes than 

previously anticipated. Given this abundance of micro-
exons, there is a need to develop a method to predict 
potentially functional microexons.

More than 60% of annotated human microexons 
exhibit high levels of sequence conservation, suggestive 
of potential functions [2]. Compared with normal exons, 
microexons with the short length of less than 30 nt more 
frequently result in exon skipping, which confers a clear 
transcriptional disadvantage [7, 8]. This is consistent with 
the observation that AS exons are generally much shorter 
than constitutive ones. However, amino acid sequences 
affected by synonymous AS microexons show striking 
enrichment in protein domains involved in protein–pro-
tein interactions, which are parts of stable protein com-
plexes and frequently act as central nodes in protein 
interaction networks [4, 5]. Several studies have indi-
cated that the inclusion of microexons leads to changes 
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in unstructured and disordered regions of proteins and 
remodels protein interaction networks. Meanwhile, AS 
microexons also affect protein functions in a tissue-spe-
cific manner. Despite their small size, microexons were 
found to play crucial roles in transcriptional and transla-
tional regulation through alternative splicing [3].

However, the insufficient data on functional labels 
of microexons make the task of predicting functional 
microexons difficult. This represents a typical machine 
learning problem because the acquisition of labeled data 
is often difficult. To solve this problem, recently, transfer 
learning has been developed through transferring shar-
able knowledge across different but related kinds of data 
to make the learning task feasible [9]. Here, we used a 
transfer learning method to design a model for identify-
ing functional microexons. Taking account of the many 
similarities between microindels and microexons, we 
chose microindels as the source and employed a trans-
fer learning skill called Transfer Component Analysis 
(TCA) to transfer the knowledge upon feature mapping 
for the prediction of functional microexons. First, we 
analyzed the characteristics of microexons and microin-
dels from two perspectives: the transcriptional and trans-
lational levels. Then, we mapped the retrieved features 
from both microexons and microindels into a new fea-
ture space simultaneously with TCA. This process mini-
mized the difference between the distributions of the 
two data sets while preserving the main properties of the 
data in the newly built space. After that, Support Vector 
Machine (SVM) was adopted to train the model with the 
transferred features of microindels as input. Finally, the 
trained model could predict functional microexons. In 
this approach, for a new microexon, the distance to each 
of our microexons would be computed using K-Nearest 
Neighbor (KNN) and its label would be predicted accord-
ing K nearest labeled microexons in our data. To test this 
method, we collected 19 functional microexons reported 
in various papers [10–15]. According to our predictive 
results, 16 microexons were successfully recognized. This 
shows the feasibility of the predictive method based on 
TCA.

Data and Methods
Selection of source domain
Because knowledge from a source domain is the basis 
of classification of the target domain, it is important to 
select a suitable source domain for transfer learning. The 
presence of more factors in common between the two 
different domains makes it easier to perform the trans-
fer learning. In this study, we selected microindels as the 
source domain, from which knowledge is transferred 
to the prediction of microexons. There are four reasons 
for this choice. (1) Both microindels and microexons are 

small segments in genes, which have similar sizes and 
components. (2) Microindels and microexons have simi-
lar effects on transcription. Exons smaller than 50 nt can 
more easily undergo AS events than larger ones, so they 
are often included or skipped in gene sequences. This 
constitutes a resemblance to microindels. (3) Evidence 
shows that functional microindels and functional micro-
exons have similar characteristics, such as being highly 
evolutionarily conserved, having a low probability of 
disorder, and exhibiting switch-like regulation. (4) Zhou 
has already proposed a model for predicting functional 
microindels called DDIG-in, which is known to exhibit 
good performance [16]. It is thus a good basis for pre-
dicting microexons. The process of predicting functional 
microexons by transfer learning is shown in Fig. 1.

Data
In this study, two kinds of data needed to be col-
lected. One was about microindels, and the other was 
about microexons. For data on microindels, the posi-
tive (pathogenic or functional) data came from the 
HGMD [17]1, and we obtained 2,036 non-frameshifting 
microindels(NFS-microindels) involving an insertion/
deletion shorter than 30 nucleotides in multiples of three 
nucleotides. Of those, 1,694 and 342 were microdele-
tions and microinsertions, respectively. The negative data 
were from the 1000 Genomes Project [18]. Similarly, we 
obtained a total of 2,546 neutral microindels, including 
1,806 microdeletions and 740 microinsertions.

The data about microexons were retrieved from hg19 
in the Ensemble database [19]. It was reported that exons 
smaller than 30 nt have a clear transcriptional disadvan-
tage according to the molecular dynamics of the splicing 
machinery, which frequently results in exon skipping. 
After excluding the frameshift microexons and those 
located in introns or containing stop codons, we obtained 
3,941 microexons, among which AS was found in 3,714 
microexons, namely, 94.2% of the total.

Feature extraction
We extracted features for microindels and microexons 
from two perspectives: the gene level and the protein 
level. All extracted features are listed in Table  1. We 
selected two kinds of feature from the gene sequences, 
exon length and DNA conservation score, where the 
DNA conservation scores were from phylop (phyloge-
netic p-values) in UCSC [20, 21]2. To obtain DNA con-
servation scores, we calculated maximum, minimum, and 

1   Obtained from opened data in https://​sparks-​lab.​org/​server/​ddig/ (Zhao, 
et al., 2013).
2   http://​hgdow​nload.​cse.​ucsc.​edu/​golde​nPath/​hg19/​phylo​P46way.

https://sparks-lab.org/server/ddig/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way
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average DNA conservation scores containing complete 
microexons/microindels area plus a fix before and after 
windows with nwindow=2. Namely, the numbers of bases 
used for the calculation of DNA conservation scores were 
as follows: ndel+2nwindow for microdeletions, 2+2nwindow 
for microinsertions, and nexon+2nwindow for microexons. 
At the protein level, structural characteristics of proteins 
coded by microindels and microexons were predicted 
by a series of SPINE tools, where secondary structures 
included α-helix (H), β-sheet (E), and random coil (C), 
and accessible surface areas (ASA) were predicted by 
SPINE-X and disorder scores were predicted by SPINE-
D [22–24]. Similar to the DNA conservation scores, we 
also considered the target area before and after 2nwindow 
residues. In addition, we examined three length-related 

features, namely, protein length, and distances to the pro-
tein amino and carboxyl terminal ends.

Component transfer
For transfer learning, the prediction can be thought 
of as involving the learning of knowledge from train-
ing data and using that knowledge to classify the target 
data. That is, the source domain can be considered as the 
training set and the target domain as the testing set. To 
reduce differences between source and target domain, it 
is necessary to build a new feature space where the map-
ping features from both source and target domain data 
have identical distributions. So, our task is to look for a 
mapping method to build a new space to reduce the dif-
ference between the distributions of source and target 

Fig. 1  The process of functional microexons prediction by transfer learning

Table 1  The extracted features

Overall, we selected six different features at the gene and protein levels and extracted 25 different features

Features Description

Gene level
Length (1) Microindels/microexons length

DNA conservation scores (3) Maximum, minimum, average

Protein level
Secondary structure probabilities (12) Maximum, minimum, average probability (C, H, E), 

Predicted secondary structure (C, H, E)

Disorder scores (3) Maximum, minimum, average

ASA(3) Maximum, minimum, average

Lengths (3) Protein length, Distances to terminals (start and end)
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mapping features while preserving the main properties of 
source and target data.

We used the transfer learning skill called Transfer 
Component Analysis (TCA) to accomplish this task. 
To learn transfer components underlying both source 
and target domain features to build a new feature space, 
the distance between the two feature distributions of 
microindels and microexons was measured using the 
empirical means of the two distributions as follows:

where XS and XT are the microindels’ and microexons’ 
original features; �·�H is the form of a reproducing kernel 
in Hilbert space; and φ is a nonlinear mapping function, 
which embeds both the resource and target domain data 
into a shared low-dimensional latent space.

Specifically, let the Gram matrices defined on the 
source domain, target domain, and cross-domain in the 
embedded space be KS,S, KS,T, KT,S, and KT,T. So, they can 
be concatenated as matrix K.

For this, the objective function is set to minimize the 
distance between the projected source and target domain 
data while maximizing the variance of the embedded 
data as follows:

where Lij =


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tradeoff parameter.
Then, to reduce computational complexity, the problem 

is simplified to compute the first m nonzero eigenvectors 
of the following matrix:

where H = In1+n2 − 1
/

(n1 + n2)11
T is the centering 

matrix, I is the identity matrix,1 ∈ R
n1+n2 is the column 

vector with all 1, µ is the nonzero coefficient to ensure 
that Eq.  (4) is viable mathematically, and µ = 0.1 in this 
project.

Functional microexons prediction
In the newly built feature space, we used SVM to train 
the model upon the transferred components from 
microindels for the prediction of functional microex-
ons. To prove the feasibility of transfer learning, 10-fold 
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cross-validation was performed for the modeling based 
on SVM to evaluate the model. Then, in predicting 
functional microexons, the SVM was trained by all 
microindels in new latent space after TCA.

According to the description of TCA above, it is 
a kind of feature mapping with a statistical method, 
which can only be used for feature mapping between 
data sets containing a large amount of data. It is dif-
ficult to find a mapping function that applies to a sin-
gle sample to fit TCA. Therefore, for a new microexon, 
TCA cannot be used directly. We found almost all NFS-
microexons with a length shorter than 30 nt and multi-
ples of three nucleotides in HG19 and predicted their 
functional probability using TCA+SVM. However, 
some microexons remained undiscovered. Therefore, 
in our software, a new microexon’s label can be pre-
dicted by employing KNN with k = 5. First, the same 
method as Sect.  2.3 can be used to extracted features 
in Table  1 for the new microexon. Then, KNN is used 
to calculate the distance of the new microexon to each 
of our microexons, as labeled by TCA+SVM. Finally, 
the label of this new microexon is decided by the mean 
of the results of the five nearest microexons. We pack-
aged this model as a publicly available tool that can be 
obtained at https://​github.​com/​Cheng-​qi/​Micro​exonP​
redict.

Results and Discussion
Distribution of data from source and target domains
  For TCA, it is important to ensure the similarity of the 
distribution between microindels and microexons in the 
new latent space. Only when their distributions are suf-
ficiently similar can microexons be considered as the 
testing set for microindels. Therefore, we first measured 
their distribution by using empirical means. The results 
indicated that the distance of their distribution is 0.092 
in the new transferred latent space. Compared with 0.54 
between the two original data spaces, this constitutes a 
reduction of about 83%. It is a great advantage of TCA 
that it can significantly reduce the difference between 
the source and target domains and then extract effective 
features on the basis of preserving characteristics of the 
data.

To prove the benefit of TCA, we also used Principal 
Components Analysis (PCA) to extract features. PCA is 
also a classical method to retrieve useful features from 
original data [25]. The feature distributions of microin-
dels and microexons based on TCA and PCA are pre-
sented in Fig. 2. Compared with the result based on TCA, 
the distance based on PCA is clearly larger. This indicates 
that TCA is more effective at reducing the difference 
between two different domains.

https://github.com/Cheng-qi/MicroexonPredict
https://github.com/Cheng-qi/MicroexonPredict
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Prediction of microindels
  To ensure that microexons can be predicted accurately, 
it is important that microindels can be predicted accu-
rately after transferring. Therefore, we employed SVM 
to build two predictive models, one based on original 
features of the microindels and the other based on trans-
ferred components of the microindels. All predicted 
results are summarized in Table 2; Fig. 3.

In Table 2, the results of predicting microindels before 
and after TCA were evaluated using a 10-fold cross-
validation method. First, we used the original features 

for modeling, obtaining precision of 74.9%, accuracy 
of 78.5%, MCC of 0.567, recall rate of 77.6%, and AUC 
of 0.85. Then, the features after TCA were trained in a 
new model, which achieved precision of 71.3%, accuracy 
of 76.9%, MCC of 0.542, recall rate of 80.4%, and AUC 
of 0.846. These results showed that, after TCA, regard-
ing some comprehensive performance factors, ACC and 

MCC were only reduced by 1.6% and 0.25, respectively, 
and AUC was only reduced by 0.004. At the same time, 
the recall rate of the model increased by 2.8% after TCA. 
Overall, the model based on transferred components 
maintains good predictive activity, which benefited from 
the substantial preservation of data properties after TCA.

Prediction of microexons
We mapped all the microindels and microexons to the 
new feature space using TCA. in new latent space after 
TCA, 3,941 microexons were classified using the SVM 

Fig. 2  Data distribution of microexons and microindels in the transferred latent space based on TCA and PCA. (a) Feature distribution after TCA (b) 
Feature distribution after PCA

Table 2  Performance for predicting microindels

Precision Acc MCC Recall AUC​

Original features 0.749 0.785 0.567 0.776 0.850

After TCA​ 0.713 0.769 0.542 0.804 0.846

Fig. 3  Comparison of ROC between the predictive results based on the original features (a) and TCA features (b)
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model trained by microindels. Of these, 2,021 microex-
ons were labeled as functional, accounting for 51.3% of 
the total. This suggested that despite microexons being 
shorter than 30 nucleotides, they may play important 
roles in biological activities. Next, PCA was employed to 
analyze the contribution of each feature to the prediction 
of functional microexons, as shown in 4.

Figure 4 shows that disorder score, secondary struc-
ture probability, and ASA greatly influenced the pre-
diction results of functional microexons, while DNA 
conservation and length had little influence on them. 
Focusing on these former three features, we conducted 
detailed analyses.

Fig. 4  Contribution of different features in the PCA space to the prediction results

Fig. 5  Distribution of average disorder scores of amino acid sequences encoded by microexons. For any microexon, the average disorder score is 
the mean value of the disorder scores for all amino acids encoded by it
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Figure 5 depicts the density distribution of average dis-
order scores of amino acid sequences encoding microex-
ons with different labels. It supports the view that most of 
the amino acid sequences encoded by functional micro-
exons have lower disorder scores.

We also analyzed the relationship between microexons 
with different labels and their secondary structure proba-
bility. As Fig. 6 shows, neutral microexons had two peaks 
of secondary structure probability at 0.83 and 0.97, while 
functional microexons had a single peak at 0.85, indicat-
ing that the microexons are most likely to be labeled as 
functional when their secondary structure probability is 
greater than 0.9. That is, microexons encoding proteins 
with a fixed secondary structure are more likely to be 
functional.

In fact, in some cases, amino acid sequences encoded 
by microexons can change the protein structure and 
show striking enrichment in protein domains, as shown 
in Fig.  7 [3]. Therefore, it can be concluded that func-
tional microexons tend to be associated with stable pro-
tein structures.

As indicated in Fig. 4, ASA is also an important feature 
related to the prediction of functional microexons. So, 
as shown in Fig. 8, we analyzed the density distributions 
of ASA under different labels, which are approximately 

Gaussians. The peak of the ASA distribution of micro-
exons labeled as functional is 25, but that of microexons 
labeled as neutral is 45. Therefore, it can be concluded 
that microexons with low ASA values are more likely to 
be functional than those with high ASA values.

Some cases
To check the ability of our method to predict functional 
microexons, we found 19 functional microexons cases 
in some published literatures, and used our method to 
predict their functional labels. The predictive results are 
listed in Table  3. If the threshold value was set to 0.5, 
16 out of 19 samples could be correctly predicted. Even 
when setting the threshold to 0.6, the number of cor-
rectly predicted samples was 15. This shows the feasibil-
ity of our method in the absence of sample labels.

Conclusions
To predict functional microexons, we employed trans-
fer learning to create a low-dimensional latent space 
where the feature distributions between the obtained 
microexons and microindels were sufficiently close. In 
this new space, SVM was used to train a classification 
model for the functional microindels. With this trained 
model, functional microexons were predicted, with the 

Fig. 6  Distribution of average probability values of the most probable secondary structure (among C, H, and E) of amino acid sequences encoded 
by microexons. First, the maximum score of three secondary structures C, H, and E is chosen for each amino acid in an amino acid sequence. Then, 
the average value is calculated as the most probable secondary structure score. Finally, we obtain two distributions corresponding to functional and 
neutral microexons
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Fig. 7  Diagram of the effects of microexons on protein domain structure. Inclusion of microexons leads to changes in protein structure

Fig. 8  Distribution of average ASA values under different labels. We obtained these by calculating ASA mean values of amino acid sequences 
corresponding to microexons
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prediction results being found to be consistent with 
records in literatures.
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