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Abstract 

Background:  With the emphasis on analysing genotype-by-environment interactions within the framework of 
genomic selection and genome-wide association analysis, there is an increasing demand for reliable tools that can be 
used to simulate large-scale genomic data in order to assess related approaches.

Results:  We proposed a theory to simulate large-scale genomic data on genotype-by-environment interactions and 
added this new function to our developed tool GPOPSIM. Additionally, a simulated threshold trait with large-scale 
genomic data was also added. The validation of the simulated data indicated that GPOSPIM2.0 is an efficient tool for 
mimicking the phenotypic data of quantitative traits, threshold traits, and genetically correlated traits with large-scale 
genomic data while taking genotype-by-environment interactions into account.

Conclusions:  This tool is useful for assessing genotype-by-environment interactions and threshold traits methods.

Keywords:  Data simulation, Genotype-by-environment interaction, Threshold trait, GPOPSIM2.0

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Access to dense single nucleotide polymorphism (SNP) 
markers across the genome has created the opportu-
nity for finely identifying quantitative trait loci (QTLs) 
through genome-wide association studies (GWASs) and 
accurately predicting genetic values through genomic 
selection (GS) for economically important traits in ani-
mal and plant breeding [1–3]. The related methodologies 
are developing rapidly, and generally, these new meth-
ods need to be evaluated through computer simulation 
before implementation with real data. Simulation is a 
cost-effective way to assess new approaches for GWASs 

and GS, and many simulation tools have been developed 
accordingly.

Genotype-by-environment (G-by-E) interactions have 
long been a topic of research interest. Generally, mod-
els applied to genetic evaluations do not consider G-by-
E interactions, resulting in reductions in genetic gains. 
Many studies have reported that models accounting for 
G-by-E interactions improved the accuracy of estimates 
of genetic parameters and breeding values for complex 
traits [4–6]. Meanwhile, an increasing number of investi-
gations on the detection of G-by-E interactions has been 
carried out in GWASs, although detecting such interac-
tions is inherently more difficult than determining addi-
tive genetic effects [7, 8]. Compared to those needed for 
traditional GWASs, a larger sample size and more envi-
ronmental levels for individual records are required to 
interpret G-by-E interactions, and it is obviously chal-
lenging to find such samples. Simulation is a key step 
in providing simulated data with large-scale genome 
SNP markers for assessing algorithms and methods for 
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detecting G-by-E interactions. However, most of the 
developed software tools cannot provide this functional-
ity [9, 10]. This greatly hinders the development of stud-
ies on G-by-E interactions in the framework of GWASs 
and GS.

Many traits of economic importance, such as litter 
size of large mammals, degree of calving difficulty and 
resistance to disease, show a discrete character of phe-
notypes, and are defined as threshold traits [11]. Due to 
phenotypic characters of threshold traits, the GWASs 
and GS methods for continuous traits are not appropriate 
for such kind of traits [12]. The threshold model, which 
links an underlying continuity with the outward pheno-
type, has been recommended for threshold trait analysis 
[11–14]. High-quality simulation data is a good option to 
carry out the investigation of GWASs and GS methods 
and breeding programs for threshold traits.

Previously, we developed the simulation tool GPOP-
SIM, which can simulate large-scale genomic data 
including population structure, polymorphic markers 
and multiple quantitative traits based on the mutation-
drift equilibrium model [15]. The objective of this article 
is to propose a theory on the simulation of large-scale 
genomic data with G-by-E interactions and add this new 
function to our developed tool GPOPSIM. In addition, 
the simulation of threshold traits is also added.

Implementation
Theory
Generally, G-by-E interactions are analysed by a multi-
trait model or a reaction norm model [11]. If environ-
mental factors are categorized, phenotypes in different 
environments are treated as genetically separate traits, 
and genetic correlations between environments are a 
measure of the existence of G-by-E interactions [16, 17]. 
If environmental factors are quantified and are described 
by a continuous variable, we analyse G-by-E interactions 
using the reaction norm model in which phenotypes 
generally have a linear relationship with the continuous 
environmental variable, and breeding values and genetic 
parameters change gradually along this continuous vari-
able [4, 18]. Because the reaction norm mode is widely 
used in G-by-E interactions, and GPOPSIM includes the 
function of multi-trait model, the reaction norm model 
was used to simulate a phenotypic value and an environ-
mental value. Different from the AlphaSimR [19], the 
more complex reaction norm model accounting for het-
erogeneous residual variance is used here:

where y is the phenotypic value; c is the environmen-
tal value; α0 and α1 are the zero- and first-order ran-
dom regression coefficients of the breeding value on c, 

y = α0 + α1 ∗ c + e0 + e1 ∗ c,

respectively; and e0 and e1 are the zero- and first-order 
random regression coefficients of the residual effect on c, 
respectively.

The environmental value c is further divided into two 
components:

where β is the random genetic effect and ϵ is the random 
residual effect.

We assume that α0, β and α1 are affected by all QTLs 
simultaneously, and these three effects of each QTL are 
drawn from a multivariate normal distribution with a 
vector of means 0 and the variance-covariance structure 
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we set β, σe0ǫ and σe1ǫ to zero, the phenotypic value y and 
the environmental value c do not have a genetic relation-
ship. Moreover, we can also generate the phenotype y and 
the environmental value c through the model 
y = α0 + α1 ∗ c + e0 without accounting for heterogeneous 
residual variance.

Design
A parameter file is required to run GPOPSIM2.0 soft-
ware. We specified various parameters for the simulation 
in this file. The parameter settings influence the historical 
population and the population structure, pedigree struc-
ture and genome structure of the current populations 
(Fig.  1). The simulation of populations starts with one 
historical population, and then one or more current pop-
ulations are generated. The genome structure is clearly 
defined with related parameters, such as the number of 
chromosome, markers and QTLs. We create the poly-
morphic markers and the linkage disequilibrium among 
markers in the historical population. The true breeding 
value (TBV) of one individual is defined as the cumula-
tive effect across all true QTLs, while the phenotypic 
value is generated by adding the TBV with a random 
residual error. Two or multiple genetically correlated 
quantitative traits can be also simulated. More details are 
described in our previous study [15].

c = β+ ǫ,
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Fig. 1  Workflow and parameter setting in GPOPSIM2.0

Fig. 2  The distributions of phenotypic and environmental values for one replicate of simulated data including the G-by-E interaction



Page 4 of 7Li et al. BMC Genomics          (2021) 22:877 

For the simulation of a G-by-E interaction, σ 2
α1

 is set 
in the parameter file to control the extent of the interac-
tion, while other parameters ( σ 2

α0
 , σ 2

β  , σα0β , σα0α1 , σβα1 , σ 2
e0

 , 
σ
2
e1

 , σ 2
ǫ  , σe0e1 , σe0ǫ and σe1ǫ ) are fixed in the program. This 

can simplify the simulation parameters for the G-by-
E interaction. The pseudo TBVs of an individual for 
α0,  β or α1 are its QTL effects multiplied by genotypes, 
and then the means of the pseudo TBVs are scaled to 
0. Finally, the environmental value c of each individual 
is obtained by adding the cumulative effect across all 
QTLs for β with the residual ϵ, and then the phenotype 
y of each individual is generated through the model 
y = α0 + α1 ∗ c + e0 + e1 ∗ c or the model y = α0 + α1 ∗ c + e0 
without accounting for heterogeneous residual variance.

Additionally, threshold traits can be simulated by 
GPOPSIM2.0, which lies in the idea that discontinuous 
characters have an underlying continuity liability (i.e., a 
continuous phenotype), and threshold values divide the 
liability into discontinuity, resulting in some kinds of vis-
ible expression [11]. It is assumed that the liability follows 
a normal distribution, and the incidence values set in the 
parameter file are used to calculate the single-tailed nor-
mal deviations, i.e., threshold values.

Source code and software availability
The GPOPSIM2.0 program is written in Fortran 90, 
and the source code is available free online. Executable 
files are currently performed on Windows and Linux 

Fig. 3  Phenotypic variation for different genotypes of 6 randomly selected SNPs in one replicate of simulated data with or without the G-by-E 
interaction (GEI). A The phenotypic values of individuals with three genotypes of the first SNP with GEI, B the phenotypic values of individuals with 
three genotypes of the first SNP without GEI; C the second SNP with GEI, D the second SNP without GEI; E the third SNP with GEI, F the third SNP 
without GEI; G the fourth SNP with GEI, H the fourth SNP without GEI; I the fifth SNP with GEI, J the fifth SNP without GEI; K the sixth SNP with GEI, 
(L) the sixth SNP without GEI
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platforms. GPOPSIM2.0 is free of charge for all users, 
and no licence is required (https://​github.​com/​SCAU-​
Anima​lGene​tics/​GPOPS​IMv2). GPOPSIM2.0 can now 
simulate one or more independent/correlated quantita-
tive traits, one or more independent/correlated threshold 
traits, genetically correlated quantitative-threshold traits 
and G-by-E interactions. The format of the input and 
output files is the same as that in GPOPSIM1.0.

Results and discussion
In this section, we generate simulated data consider-
ing a G-by-E interaction to assess GPOPSIM2.0. We set 
one continuous trait and one environmental factor to 
simulate a G-by-E interaction. The heritability was 0.1, 

and the additive variance of the interaction ( σ 2
α1

 ) was 
0.25. Twenty random seeds were used to produce 20 
replicates of simulation. According to the results of one 
replicate of simulation (10,000 individuals), the pheno-
types and environmental values followed normal distri-
butions (Fig. 2). The phenotypic variation for genotypes 
of 6 randomly selected SNPs in the data accounting for 
the G-by-E interaction was much larger than that with-
out the G-by-E interaction (Fig.  3). We used the soft-
ware DMU [20] to estimate σ 2

α0
 , σ 2

α1
 , σα0α1 and σ 2

e0
 with 

the reaction norm model with pedigree information (A 
matrix) and genomic information (G matrix). As shown 
in Table  1, these estimates were close to the assigned 
values. As expected, we obtained better estimates using 
the G matrix than using the A matrix because genomic 
information can more accurately estimate the relation-
ships between individuals. All of the above results indi-
cate that GPOPSIM2.0 is an ideal tool for simulating 
G-by-E interactions.

Additionally, GPOPSIM2.0 can generate good-quality 
simulated data for threshold traits. The incidences cal-
culated from simulated data were very close to the set 
incidences (30% or 40%) from Fig. 4. The estimates (mean 
± SD) of incidences were 0.301 ± 0.015 for the binary 
trait, 0.301 ± 0.009 for the binary-quantitative traits, and 
0.301 ± 0.010 and 0.400 ± 0.016 for the three-category 
traits. These estimates were not significantly different 
from 30 and 40%, respectively (P > 0.05), according to a 
two-sample t test.

Table 1  The assigned and estimated G-by-E parameters in 20 
replicates of simulated data from GPOPSIM2.0

Assigned: parameters set in the program; Estimates (A): estimated by using a 
reaction norm model with pedigree information; Estimates (G): estimated by 
using a reaction norm model with genomic information
*  Cov(a0,a1)= ∑2 ∗ pi ∗ (1 − pi) ∗ mi ∗ ni, where pi is the frequency of one allele of 
the ith QTL, mi is the effect of the ith QTL for α0, and ni is the effect of the ith QTL 
for α1

Parameter Assigned Estimates(A) Estimates(G)

Var(a0) 1 0.702(0.13) 0.943(0.117)

Cov(a0,a1) 0.026(0.059)* 0.033(0.113) 0.011(0.028)

Var(a1) 0.25 0.341(0.045) 0.239(0.028)

Var(e0) 9 8.828(0.148) 9.076(0.124)

Fig. 4  Estimates of the incidence from threshold trait data by GPOPSIM2.0 for 20 replicates. Single-2: one binary trait with an incidence of 0.3; 
single-3-1: one three-category trait with an incidence of 0.3 for the first category; single-3-2: one three-category trait with an incidence of 0.4 for the 
second category; two-2: binary- quantitative traits with an incidence of 0.3

https://github.com/SCAU-AnimalGenetics/GPOPSIMv2
https://github.com/SCAU-AnimalGenetics/GPOPSIMv2
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Conclusions
According to the validation of simulated data, GPOP-
SIM2.0 has successful new functions for simulating 
genomic data for G-by-E interactions and threshold 
traits. GPOPSIM2.0 is a user-friendly tool for simulat-
ing large-scale genomic data, and these new functions 
will aid in the development of new approaches for ana-
lysing G-by-E interactions and threshold traits within 
the framework of GS and GWASs. Nevertheless, there 
is still room for further improvement of GPOPSIM2.0, 
such as accommodating QTL epistatic effects and lon-
gitudinal genomic data.

Availability and requirements
Project name: GPOPSIM2.0.

Project home page: https://​github.​com/​SCAU-​Anima​
lGene​tics/​GPOPS​IMv2

Operating system(s): Compiled for Windows and 
Linux.

Programming language: Fortran 90.
Other requirements: None.
License: None.
Any restrictions to use by non-academics: None.

Abbreviations
SNP: Single nucleotide polymorphism; QTLs: Quantitative trait loci; GWASs: 
Genome-wide association studies; GS: Genomic selection; G-by-E interactions: 
Genotype-by-environment interactions; TBV: True breeding value.
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