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Abstract 

Background:  Melampsora spp. rusts are the greatest pathogen threat to shrub willow (Salix spp.) bioenergy crops. 
Genetic resistance is key to limit the effects of these foliar diseases on host response and biomass yield, however, the 
genetic basis of host resistance has not been characterized. The addition of new genomic resources for Salix provides 
greater power to investigate the interaction between S. purpurea and M. americana, species commonly found in the 
Northeast US. Here, we utilize 3′ RNA-seq to investigate host-pathogen interactions following controlled inoculations 
of M. americana on resistant and susceptible F2 S. purpurea genotypes identified in a recent QTL mapping study. Dif-
ferential gene expression, network analysis, and eQTL mapping were used to contrast the response to inoculation and 
to identify associated candidate genes.

Results:  Controlled inoculation in a replicated greenhouse study identified 19 and 105 differentially expressed genes 
between resistant and susceptible genotypes at 42 and 66 HPI, respectively. Defense response gene networks were 
activated in both resistant and susceptible genotypes and enriched for many of the same defense response genes, 
yet the hub genes of these common response modules showed greater mean expression among the resistant plants. 
Further, eight and six eQTL hotspots were identified at 42 and 66 HPI, respectively. The combined results of three 
analyses highlight 124 candidate genes in the host for further analysis while analysis of pathogen RNA showed dif-
ferential expression of 22 genes, two of which are candidate pathogen effectors.

Conclusions:  We identified two differentially expressed M. americana transcripts and 124 S. purpurea genes that are 
good candidates for future studies to confirm their role in conferring resistance.

Keywords:  Salix purpurea, Melampsora americana, Shrub willow, Leaf rust, Transcriptome, 3′ RNA-seq, WGCNA, 
Differential expression, eQTL
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Background
Shrub willow (Salix spp.) are fast-growing perennials 
that can be grown as a sustainable source of bioenergy, in 
riparian buffers, or as ornamentals [1]. Salix is incredibly 

diverse, comprised of over 350 species, with a native 
range that primarily spans the northern hemisphere, but 
is cultivated around the world [2]. Of the species found 
in the northeastern US, naturalized S. purpurea has 
been the focus of bioenergy breeding programs for its 
high yield, vertical growth habit, and broad resistance to 
pests and pathogens [3–5]. Genomic resources have been 
developed for the establishment of S. purpurea as a model 
bioenergy crop, which includes high-quality, annotated 
reference genomes [6] (https://​phyto​zome-​next.​jgi.​doe.​
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gov). In addition, genetic resources have been generated 
to better understand the inheritance of key traits used in 
breeding and selection.

The plant pathogen that is the greatest threat to 
shrub willow grown in commercial production is wil-
low leaf rust (Melampsora spp.) [7–9]. Melampsora 
rusts infecting willow are lesser-known members of the 
order Pucciniales that includes wheat stem rust (Puc-
cinia graminis), coffee rust (Hemileia vastatrix) and over 
7000 other species [9, 10]. Previous work has identified 
M. americana as the primary contributor to disease epi-
demics on S. purpurea in the northeastern US [11, 12]. 
Defined as a macrocyclic and heteroecious obligate bio-
troph, M. americana requires an alternate host to com-
plete all five spore stages in its life cycle and cannot be 
cultured outside of its living host [13, 14]. Aeciospores 
produced on Abies balsamea are the primary source of 
inoculum, traveling to susceptible willow hosts via winds 
in the late spring and early summer months [11]. The 
production and spread of asexual uredospores on wil-
low facilitates rapid host disease development and sub-
sequent significant yield losses [15]. Given the prolific 
nature of this disease, durable genetic resistance is essen-
tial to achieving sustained shrub willow biomass yield. 
Recent investigations have identified morphological 
characteristics that may impact rust infection, including 
stomatal and trichome density [12]. However, the genetic 
basis for M. americana rust resistance in willow is not 
well understood.

In closely related pathosystems, including poplar rust 
caused by M. larici-populina and flax rust caused by M. 
lini, research has identified quantitative and qualitative 
rust resistance using candidate gene analysis and quan-
titative trait loci (QTL) mapping approaches [16–21]. 
Most research in the Salix – Melampsora pathosystem 
has focused on S. viminalis and M. larici-epitea [22–24]. 
While S. viminalis is well-adapted and popular in Euro-
pean bioenergy willow breeding programs, S. purpurea is 
the most commonly used species in the US. Carlson et al., 
2019 [25] identified QTL on chromosomes (chr) 1, 5, and 
10 associated with leaf rust resistance in a S. purpurea F2 
population. Hanley et al., 2011 [26] also described a rust 
resistance QTL, Salix Rust Resistance 1 (SRR1), on chr 1. 
Although genetic mapping studies have identified major 
effect loci involved in rust resistance, specific genes 
responsible for host resistance in these populations were 
not characterized.

RNA-seq has been used to demonstrate that differ-
entially expressed genes coincide with the resistance 
response in many pathosystems, including potato - Phy-
tophthora infestans [27], soybean - Xanthomonas axo-
nopodis [28], and Verticillium wilt in cotton [29]. In 
willow, network analysis of 3′ RNA-seq from resistant S. 

purpurea and susceptible S. viminalis parents and their 
segregating F1 progeny identified key regulatory hub 
genes involved in the defense response to potato leafhop-
per (Empoasca fabea) [30]. These hub genes are the most 
connected genes within a co-expression module that are 
predicted to be highly influential in regulating the expres-
sion of the other genes within their module. Applying 
expression QTL (eQTL) analysis in a segregating pedi-
gree enables the identification of local cis and remote 
trans factors in the genome that regulate the expression 
levels of key genes correlated with traits of interest. For 
instance, Mähler et al., 2020 [31] used eQTL analysis to 
identify a key set of candidate genes that determine leaf 
shape characteristics in Populus.

While much has been learned about willow leaf rust 
over the past decades [11, 32, 33], no study has specifi-
cally investigated the transcriptomes of M. americana 
and S. purpurea shortly after inoculation. This project 
uses 3′ RNA-seq to investigate the post-inoculation 
expression profiles in resistant and susceptible progeny in 
a S. purpurea F2 mapping population [25], as well as in 
the pathogen, M. americana.

Results
Preliminary study of differential expression
We conducted a preliminary RNA-seq study by inocu-
lating M. americana on reference Salix genotypes to 
determine the optimum time post-inoculation to observe 
differential expression. We inoculated S. purpurea hosts 
‘Fish Creek’ and 94006 with uredospores of M. ameri-
cana isolate R15–033-03 and then extracted RNA at 
0, 18, 42, 66, 90, and 114 h post inoculation (HPI) from 
inoculated leaves and un-inoculated control leaves. ‘Fish 
Creek’ and 94006 were selected as hosts because they are 
the male parent and female grandparent of the F2 map-
ping population known to be segregating for resistance to 
M. americana [25]. A direct contrast between the inocu-
lated and control treatment for each genotype-by-time 
was performed to generate a total number of differen-
tially expressed genes (DEGs) up-regulated and down-
regulated for each host genotype (Fig. S1).

The total number of DEGs (p ≤ 0.05) for ‘Fish Creek’ 
were 0 (0 HPI), 0 (24 HPI), 5589 (48 HPI), 562 (72 HPI), 
1637 (96 HPI), and 3061 (120 HPI), whereas DEGs 
for 94006 were 0, 0, 3796, 948, 597, and 1293 for each 
ascending time-point (Additional Fig.  1). Neither par-
ent displayed symptoms of infection during the experi-
ment, however, signs of rust were visibly detected at 210 
HPI. While uredospore sporulation appeared greater on 
‘Fish Creek’ by 258 HPI, both genotypes were suscepti-
ble to the pathogen. The greatest number of DEGs was 
observed in both genotypes at 48 HPI (Additional Fig. 1). 
Thus, time points 42 and 66 HPI were selected for the full 

https://phytozome-next.jgi.doe.gov
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experiment to capture the maximum host and pathogen 
response after inoculation.

Greenhouse inoculation of selected resistant 
and susceptible F2 genotypes
Based on ratings of rust severity conducted in 2015 and 
2017 within a replicated field trial of the S. purpurea F2 
population [25], 28 resistant and 28 susceptible geno-
types were selected for controlled inoculation and 3′ 
RNA-seq alongside the F2’s parents and grandparents. At 
42 and 66 HPI, leaf discs were collected from two leaves 
per time point in both the inoculated and control treat-
ments. This experiment was conducted twice in sepa-
rate greenhouses. Leaf rust severity was assessed in the 
inoculated treatment at 9 DPI as total percent leaf area 
coverage of uredospore pustules. The greenhouse rat-
ings were moderately correlated with the 2015 and 2017 
field ratings, with Pearson’s correlation values of 0.48 
(p-value = 9.4 × 10− 5) and 0.53 (p-value = 1.6 × 10− 5), 
respectively. The susceptible genotypes had a signifi-
cantly greater mean rust severity (44.8% - CV: 17%) than 
the resistant genotypes (28.1% - CV: 54%) based on a 
t-test (CI = 95%) despite considerably more variability 
among the resistant genotypes (Fig. 1).

Differential expression analysis of S. purpurea transcripts
Two separate contrasts in DESeq2 were used to identify 
differentially expressed genes in this study. In the direct 
contrast between inoculated susceptible and resistant 
groups, there were 19 and 105 differentially expressed 

genes at time points 42 HPI and 66 HPI, respectively 
(Fig. 2A). Of the 19 DEGs at 42 HPI, six were up-regu-
lated in the resistant genotypes, including a polyubiquitin 
protein (UBQ10), a plasma membrane intrinsic protein 
(PIP2;8), a phosphoglycerate kinase 1 (PGK1), a chaper-
one DnaJ-domain superfamily protein, and two genes of 
unknown function (DUF). The remaining 13 differentially 
expressed genes at 42 HPI were up-regulated in the sus-
ceptible genotypes and included several genes associated 
with the flavanone synthesis pathway. The 105 DEGs at 
66 HPI consisted of 35 genes up-regulated in the resist-
ant group, while the remaining 70 were up-regulated in 
the susceptible group. Genes up-regulated at 66 HPI in 
the resistant group include several involved in defense 
response such as: wall-associated kinase 2 (WAK2), 
WRKY DNA-binding protein 51, CAP superfamily pro-
tein, cytochrome P450, and chitinase A, but as a group, 
were not significantly enriched for any GO terms. Gene 
enrichment of the up-regulated susceptible genes were 
response to heat, stress, and reactive oxygen species 
(Additional Table 1).

The contrast of inoculated treatments versus uninocu-
lated controls highlighted the response to infection. By 
performing separate paired analyses for both the resistant 
and susceptible groups, then intersecting DEGs, variable 
responses to inoculation were identified at each time-
point. We classified DEGs as susceptible-specific, resist-
ant-specific, and not-type-specific (common response 
between the resistant and susceptible groups). At both 
time points, the largest group of DEGs was the not-type-
specific, positive log2-fold change (LFC) group, with 
990 and 1862 genes at 42 HPI and 66 HPI respectively 
(Fig.  2B). All groups of DEGs that were up-regulated 
after inoculation were enriched for defense response 
at 42 HPI. However, only the resistant-specific and not-
type-specific groups retained enrichment of upregulated 
defense response genes at 66 HPI. At 66 HPI, the suscep-
tible-specific group lacked genes associated with defense 
response, but instead displayed upregulation of heat 
response genes (Additional Table  2). The resistant-spe-
cific and the susceptible-specific groups that were down-
regulated at 42 HPI were both enriched for chloroplast 
components, with the susceptible-specific category also 
enriched for down-regulated ‘response to heat’ genes. 
There was no significant GO term enrichment at 66 HPI 
for genes down-regulated in the susceptible-specific cat-
egory, while both the down-regulated resistant-specific 
and not-type-specific categories were enriched for genes 
associated with photosynthesis (Additional Table 2).

Network analysis of S. purpurea transcripts
A comparison between transcriptome-wide expression 
in the inoculated resistant and susceptible groups was 

Fig. 1  Greenhouse leaf rust severity (%) collected 9 days post 
inoculation for the resistant and susceptible groups of willow 
genotypes. Each grey point represents an individual genotype 
severity while the blue and red points are the mean severity for the 
resistant and susceptible groups, respectively. Error bars are the 
standard error of the mean. (CV – Coefficient of Variation)
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performed in WGCNA, which defined co-expression 
modules based on correlated gene expression. Each mod-
ule was randomly assigned a color name by the R pack-
age and is only relevant in distinguishing modules within 
networks, not in making comparisons between them. In 
this study, modules are referred to either as ‘R-module’ or 
‘S-module’ to distinguish between those associated with 

resistant (R-) or susceptible (S-) plant networks. After 
removal of outlier samples and genes with low counts, 
the resistant network retained 75 samples and 16,410 
genes, while the susceptible network retained 73 samples 
and 16,427 genes.

Of the 16,410 genes expressed in the resistant net-
work, 10,176 genes were assigned to 14 modules, while 

Fig. 2  A Volcano plots depicting differential expression analysis between inoculated resistant and susceptible groups. Each point represents a 
gene. Positive Log2 Fold Change (LFC) indicates upregulation in the susceptible genotypes (red points) while negative LFC are up-regulated in the 
resistant genotypes (blue points). B Differential expression in inoculated treatments compared with controls plotted as the LFC in expression of the 
susceptible genotypes on the x axis versus the LFC in expression of the resistant genotypes on the y axis. (HPI – Hours Post Inoculation)
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the other 6234 genes were assigned to the ‘grey’ mod-
ule (unassigned genes). Modules sizes ranged from 33 
to 5085 genes, of which nine modules were correlated 
with time-point (Additional Fig.  2). The largest module 
‘R - turquoise’ (n = 5085) was positively correlated with 
time point (r = 0.92) and was the only module enriched 
for defense-related GO terms in the resistant network 
(Additional Table  3). The ‘R-blue’ module (n = 1853) 
was inversely correlated with time point (r = − 0.89) and 
enriched for photosynthesis-related GO terms. A total 
of 10,977 genes in the susceptible network were placed 
into 15 modules, with the remaining 5450 placed within 
the ‘grey’ module. Co-expression modules ranged in size 
from 25 to 4661 genes, of which 12 were correlated with 
time point (Additional Fig. 2).

A hypergeometric test (p ≤ 0.05) facilitated a direct 
comparison between the resistant and susceptible net-
works to identify significant representation of the sus-
ceptible network modules within the ‘R-turquoise’ and 
‘R-blue’ resistant modules. The ‘R-turquoise’ and ‘R-blue’ 
modules shared significant portions of four and six mod-
ules, respectively (Fig. 3A). Two modules correlated with 
time point in the susceptible network with significant 
‘R-turquoise’ module representation were ‘S-turquoise’ 
(n = 4661, r = 0.88) and ‘S-salmon’ (n = 89, r = 0.51), and 
were the only susceptible modules enriched for defense-
related GO terms (Additional Table  4). Concomitantly, 
among the six susceptible modules represented within 
the ‘R-blue’ module and correlated with time point, only 
the ‘S-brown’ (n = 1258, r = − 0.83) and ‘S-red’ (n = 264, 

Fig. 3  Comparison between the gene expression networks in inoculated resistant and susceptible groups of willow genotypes. A Sankey plot of 
the modules from the resistant network on the left and the susceptible network on the right. Colors represent modules of co-expressed genes. 
Each connection is significant at the 0.05 level. B and C Numbers of genes in each group are indicated in the legends above each graph. (RH – 
Resistant Hub Gene; RM – Resistant Module Gene; SM – Susceptible Module Gene; SH – Susceptible Hub Gene; HPI – Hours Post Inoculation). B 
Mean expression, standard errors, and Fisher’s least significant difference (LSD) group for the ‘R-turquoise’ module compared to the ‘S-turquoise’ 
and ‘S-salmon’ modules. C Mean expression, standard errors, and Fisher’s LSD group for the ‘R-blue’ modules compared to the ‘S-brown’ and ‘S-red’ 
modules
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r = − 0.57) modules were enriched for photosynthetic 
genes.

To gain insight in the role of hub genes in module 
composition, hub gene analysis was performed on the 
‘R-turquoise’ and ‘R-blue’ modules, in addition to the 
‘S-turquoise’, ‘S-salmon’, ‘S-brown’, and ‘S-red’ modules 
from the susceptible network [34, 35]. Significant differ-
ences in mean expression of each module’s hub genes 
and genes commonly co-expressed across networks were 
determined using Fisher’s least significant difference 
(p < 0.05). The ‘R-turquoise’ and ‘S-turquoise’ modules 
had 3572 genes in common, yet at 42 HPI and 66 HPI 
the mean expression of these genes was greater among 
resistant genotypes (Fig.  3B). This trend persisted at 42 
and 66 HPI among their respective hub genes, whose 
expression exceeded that of the shared genes. There 
were only 57 genes shared between the ‘R-turquoise’ and 
‘S-salmon’ modules and were not differentially expressed 
throughout the experiment. However, the expression 
of ‘S-salmon’ hub genes did not significantly increase 
until 66 HPI, while ‘R-turquoise’ hub gene expression 
increased over time.

The ‘R-blue’ module from the resistant network was 
enriched for photosynthesis-related GO terms and 
shared commonly co-expressed genes with the ‘S-brown’ 
and ‘S-red’ modules from the susceptible network that 
were similarly enriched for photosynthesis (Fig.  3C). 
There were 773 shared genes between the ‘R-blue’ and 
‘S-brown’ modules with similar patterns of decreased 
expression over time. However, the mean expression of 
corresponding ‘R-blue’ hub genes was lower at each time 
point. The genes commonly co-expressed in ‘R-blue’ 
and ‘S-red’ only accounted for 188 genes that gradually 
decreased expression through time. Their hub genes, 
however, show that while the ‘R-blue’ genes decreased 
after 0 HPI and were beginning to level off by 42 HPI, the 
‘S-red’ genes held similar expression throughout.

eQTL analysis of S. purpurea transcripts
Mapping of eQTL was performed using 22,068 SNPs 
and 16,270 genes to interrogate eQTL associated with 
the response to inoculation, removing those that were 
detected either at T0 or within the control treatment at 
the same time point. A total of 38,480 cis and 9460 trans 
eQTL were identified at 42 HPI, 45,148 cis and 10,638 
trans eQTL at 66 HPI, and 13,860 cis and 1839 trans 
eQTL at both time points (Fig. 4A). Any SNP with more 
than 14 eQTL, the 95% confidence threshold identified 
through permutation, was identified as an eQTL hotspot. 
A hotspot is considered to be a locus influencing the reg-
ulation of multiple genes related to allelic phase. Simple 
correlation analysis (p < 0.05) condensed the significant 
eSNPs into eight eQTL hotspots at 42 HPI and six at 66 

HPI (Fig. 4B). Hotspot sizes ranged from 14 to 55 eQTL 
associations and only three hotspots were enriched for 
any GO terms (Additional Table 5). The chr 3 hotspot at 
42 HPI (C3) was enriched for cell communication and 
signaling while the chr 6 hotspot at 42 HPI (C6A) was 
enriched for chloroplast components. The only hotspot 
at 66 HPI showing GO enrichment was located on chr 16 
for photosynthesis and chloroplast components.

Candidate genes for S. purpurea resistance to M. americana
Candidate genes which potentially determine a com-
patible interaction (successful infection) between S. 
purpurea and M. americana were identified using the 
intersection of network analysis, differential expression, 
and eQTL mapping. Candidate genes were defined as 
the hub genes of modules found to be enriched for plant 
defense-related terms and differentially expressed either 
between resistant and susceptible genotypes or between 
the inoculated and control treatments. While associa-
tions with an eQTL hotspot for response to inoculation 
were not required for identification as candidate genes, it 
does aid in prioritization for further research. We identi-
fied candidate genes associated with the defense response 
enriched ‘R-turquoise’ module at 42 HPI (n = 31) and 66 
HPI (n = 69), of which 18 and 20 genes were correlated 
with leaf rust severity, respectively (Additional Table 6). 
Hub genes from the ‘R-blue’ module were associated with 
a reduction in photosynthesis through GO enrichment 
analysis. From these hub genes only 3 (42 HPI) and 21 (66 
HPI) met our criteria for candidate gene selection, with 
all three genes at 42 HPI and one gene at 66 HPI having a 
significant correlation with leaf rust severity (Additional 
Table 6).

Differential expression analysis of M. americana transcripts
Total raw reads of the inoculated treatments for each of 
the 60 willow genotypes (two replicates) were aligned 
to the M. americana reference genome R15–033-03 
v1.0 [36]. A direct contrast between genotypes previ-
ously identified as resistant and susceptible was per-
formed at each time point (42 HPI and 66 HPI). A total 
of 22 M. americana genes were differentially expressed 
(FDR = 0.1) between the resistant and susceptible wil-
low genotypes at 42 HPI, yet none at 66 HPI (Fig. 5). The 
majority of differentially expressed genes were up-reg-
ulated in the resistant group (20 genes) as compared to 
the susceptible (2 genes) (Additional Table 7). A BLAST 
search of these 22 DEGs was queried against the NCBI 
nt database [37]. One transcript sequence (CDS_5062) 
was homologous to a known effector ubiquitin carboxyl 
extension protein in the plant parasitic nematode Glo-
bodera rostochiensis [38].
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The in-silico proteome of the M. americana reference 
genome was analyzed using SignalPv5.0 using default set-
tings to generate an in silico secretome, which resulted in 
1779 predicted secreted proteins (Additional Table 8) and 
analyzed for effector prediction using EffectorPv2.0 using 
the default settings (Additional Table  9). These proteins 
were then cross-referenced to the list of differentially 
expressed fungal transcripts between resistant and sus-
ceptible host groups. One (CDS_12834) of the 22 tran-
scripts differentially expressed between the resistant and 
susceptible hosts was identified as a potential effector.

Discussion
Melampsora americana has previously been shown to 
be the dominant rust species infecting shrub willow in 
the northeast United States, yet little is known about the 
mechanisms of pathogen virulence or host resistance 
[11, 12]. By applying transcriptomics on willow leaf rust 
and its host, S. purpurea, at 42 and 66 HPI, we defined 
a coordinated response of DEGs and gene network hub 
genes associated with a reduction in photosynthesis and 

an increase in defense response, while simultaneously 
identifying two candidate effectors for pathogenicity. By 
leveraging network analysis, differential expression, and 
eQTL mapping of the host transcriptome, we identified 
124 candidate genes associated with a compatible inter-
action between M. americana and S. purpurea for future 
functional characterization.

Willow transcriptomics
Through the combined use of differential expression, 
network analysis, and eQTL mapping, this study dem-
onstrated that layering the strengths of each highlights 
the early response of S. purpurea to inoculation by M. 
americana and the varied response between resistant and 
susceptible genotypes. The contrast between the resist-
ant and susceptible genotypes produced only a moder-
ate number of DEGs. This could be, in part, attributed to 
the level of resistance observed in the greenhouse com-
pared to the field. While the susceptible genotypes had a 
high mean severity in the greenhouse with an acceptable 
CV, the resistant genotypes had a higher mean severity 

Fig. 4  eQTL mapping by time points. A 42 h post inoculation (HPI) B 66 HPI. For both time points, SNPs are sorted by chromosome across the x-axis. 
The y-axis of the top panels represents genes mapped to chromosomes. The y-axis of the bottom panels indicates eQTL frequency. The red line 
indicates the threshold for hotspots, set at 14 eQTL



Page 8 of 14Wilkerson et al. BMC Genomics           (2022) 23:71 

and CV than expected based on the two years of field 
ratings. This differential interaction is likely based on 
the environment. In the field there was the potential for 
multiple rust isolates that relied on the wind to spread, 
while in the greenhouse there was a single isolate that 
was brushed directly onto the leaf. A selection of resist-
ant genotypes with a lower, less variable mean severity 
would have resulted in a greater number of DEGs in this 
experiment and more refined network and eQTL analy-
ses. Given that the difference in mean severity between 
our resistant and susceptible genotypes was still signifi-
cant, the results presented in this study are valuable to 
research in this pathosystem.

The not-type-specific groups of DEGs identified by 
contrasting treatments showed many genes in both 
the resistant and susceptible genotypes that responded 
similarly to inoculation. A majority of the genes with 
increased expression in the inoculated treatment at both 
time points were associated with a defense response. 
This was supported by the network analysis that revealed 
that a large number of genes were shared between the 
‘R-turquoise’ and ‘S-turquoise’ modules, both enriched 
for defense response genes. Despite this common defense 
response, the LFC in expression of hub genes coordinat-
ing the resistant response was greater than those of the 
susceptible response (Fig. 3). By comparing the networks 

from the inoculated resistant and susceptible genotypes, 
changes in gene coordination were found that would oth-
erwise be difficult to resolve through a direct contrast 
given the sample size. Network hub genes are often found 
to have regulatory control over the other genes in the 
module, suggesting that small changes in their expression 
will cascade and resolve in larger changes downstream. 
This was not unexpected, because prior research has sug-
gested that control of leaf rust severity in the S. purpu-
rea F2 population used in this study was multi-genic and 
quantitative in nature [25] and would translate into many 
genes at lower LFCs that could be difficult to detect. Fur-
ther evidence for differential coordination is suggested 
by the resistant and susceptible specific genes that had 
greater expression in the inoculated treatment. Although 
both were enriched for defense response genes at 42 HPI, 
only the resistant specific genes maintained that enrich-
ment by 66 HPI. The susceptible specific genes instead 
showed enrichment for heat response, aligning well to 
the ‘S-salmon’ module that split away from ‘R-turquoise’ 
in the network analysis, but also to the DEGs identified 
by contrasting the expression within the resistant and 
susceptible genotypes. Many of the genes up-regulated 
in the susceptible genotypes at 66 HPI were heat shock 
proteins, which have been implicated as molecular chap-
erones that target misfolded proteins for proteolysis and 

Fig. 5  Volcano plot of differentially expressed transcripts of willow rust pathogen M. americana at 42 h post inoculation. Positive log2 fold change 
(LFC) indicates up-regulation of M. americana genes when grown on the susceptible genotypes (red) while negative LFC indicates up-regulation of 
M. americana genes when grown on the resistant genotypes (blue). Transcripts identified by arrows were predicted to play a role in fungal infection 
based on in silico effector prediction software Effector P 2.0 (CDS_12834) or through sequence homology to known effectors (CDS_5062). A 
modified Benjamini-Hochberg adjusted p-value cutoff of < 0.1 with no log fold change cutoff was used to determine significance
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are thought to prevent cell death [39], a benefit to bio-
trophic pathogens. Not only does this suggest that a 
potential determining factor in the compatible interac-
tion occurred between 42 and 66 HPI, but it also suggests 
that genes within the resistant specific group likely play 
an important role.

A reduction in photosynthesis has been shown in other 
systems to be an initial response to pathogen attack by 
redirecting resources toward defense response [40]. Here, 
co-expression modules enriched for photosynthesis and 
related terms were negatively correlated with time point 
following inoculation. While the ‘R-blue’ module was the 
only one in the resistant network enriched for photosyn-
thesis-related genes, it was split into six separate modules 
within the susceptible genotypes. In combination with 
the differential expression results, hub genes of ‘R-blue’ 
were better able to coordinate resources away from pho-
tosynthesis and toward defense response. A faster, more 
coordinated response in the resistant interaction has sim-
ilarly been found in the interaction between Populus and 
M. larici-populina [41].

Three of the 14 eQTL hotpots detected in this study 
were enriched for chloroplast components and photo-
synthesis (C6A at 42 HPI and C16 at 66 HPI) and com-
munication and signaling (C3 at 42 HPI). Although not 
significantly enriched for GO terms, several defense 
response genes were associated with all eQTL hotspots. 
It is likely that the effectiveness of this analysis was influ-
enced by sample size, as power was limited. Despite that, 
many differentially expressed genes and co-expression 
module hub genes were connected to an eQTL hot-
spot, either by direct association or genomic proximity. 
Based on the intersection of all three analyses, 124 genes 
predicted to be associated with promoting the defense 
response and aiding in the coordination of photosynthe-
sis that should be targeted for future studies.

Rust transcriptomics
As M. americana is an obligate biotroph, in silico tech-
niques can narrow down candidate effector genes that 
are most likely to modulate host immunity. Effector pre-
diction has been a successful initial strategy in the pop-
lar rust pathogen M. larici-populina [19, 21, 41, 42] and 
has led to functional assays that further validate can-
didate effector function [20, 43]. After in silico effec-
tor prediction, Petre et  al., 2016 [20] was able to utilize 
live cell imaging by laser-scanning confocal microscopy 
in combination with florescent tagged candidate effec-
tor chloroplast-targeted protein 1 (CTP1) in Nicotiana 
benthamiana to track cellular localization of the translo-
cated protein. To begin the process of effector discovery 
and validation of effectors in M. americana, we identified 
two candidate fungal effectors that were differentially 

expressed between resistant and susceptible hosts. These 
candidates were discovered based on direct homology 
to a known effector in nematode (CDS_5062) by using 
an effector prediction software (CDS_12834). Both tran-
scripts were identified when grown on resistant hosts, 
possibly indicating that corresponding R-genes exist in 
the susceptible pool that recognize these transcripts. It 
was surprising that CDS_5062 showed strong homology 
to a ubiquitin carboxyl extension effector protein in the 
nematode Globadera rostochiensis, which may be evi-
dence of convergent evolution. In this nematode, it was 
shown by Chronis et  al., 2013 [38] that the peptide is 
cleaved into a ubiquitin subunit involved in suppression 
of immunity and a carboxyl extension subunit involved in 
promoting feeding cell formation. Perhaps the translated 
CDS_5062 transcripts function similarly, utilizing free 
ubiquitin as an immunity suppressor. Future proteomic 
studies will determine if the protein product is similarly 
cleaved, and functional studies may reveal what role it 
plays in parasitism.

Both identified candidate effector sequences show 
promise for future studies, however the overall number 
of differentially expressed pathogen transcripts identi-
fied between the resistant and susceptible groups was 
quite small. It is possible that this accurately reflects a 
small number of differentially expressed transcripts and 
that most of the identified differentially expressed genes 
play an unknown role in infection. It is also possible that 
we lacked the proper statistical power to capture the 
true number of differentially expressed fungal genes and 
since less than 0.5% of transcripts aligned to the fungal 
genome, we likely only captured those with the greatest 
abundance. This could be due to the overrepresentation 
of willow RNA extracted from the leaf punch samples 
in the greenhouse experiment resulting in a low num-
ber of total genes aligning to the M. americana reference 
genome. This overrepresentation may be due to a deficit 
of fungal infection structures at these early infection time 
points, a phenomenon observed in similar rust pathosys-
tems targeting early infection [19, 44, 45]. Additionally, it 
is possible that the plant RNA extraction kit we used may 
not have been optimal for extracting fungal transcripts. 
Future studies utilizing highly-sensitive RNA extraction 
strategies like laser capture microdissection or haustoria 
extraction coupled with fungal specific RNA extraction 
chemistry may achieve greater sensitivity for differential 
expression studies of M. americana. Regardless, in silico 
prediction of rust effectors remains a challenging task. 
There are a few species-specific rust effector motifs, but 
these have not been proven to be suitable for universal 
predictions across all rust species [46, 47]. As a result, 
general peptide characteristics such as length, amino acid 
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proportions, and predicted secretion are used as indica-
tors of putative effectors [21, 41, 48, 49].

Conclusions
This study described the complex changes in the tran-
scriptomes of both the pathogen and host in the S. pur-
purea – M. americana pathosystem using differential 
expression, network analysis, and eQTL mapping. Dif-
ferential expression analysis of fungal RNA produced a 
short list of genes of interest, with two candidate effec-
tor genes that were highly expressed when grown on the 
resistant hosts. Analysis of host gene expression revealed 
124 candidate genes that were differentially expressed co-
expression module hub genes associated with an eQTL 
hotspot. Future research could use qRT-PCR to validate 
differential expression of listed candidate genes produced 
through this RNA-seq approach. Of particular interest 
are 14 candidate genes derived from the ‘R-turquoise’ 
hub genes with significant negative correlations with leaf 
rust severity and greater expression among the resistant 
genotypes at 66 HPI. This study represents a step toward 
developing true understanding of this pathosystem and 
unlocking the key to breeding shrub willow resistant to 
this devastating pathogen.

Methods
Inoculation of Salix purpurea leaves with Melampsora 
americana uredospores
Plants were established from dormant stem cuttings in 
the greenhouse and grown for two months before inocu-
lation. For the inoculated treatment, 1 mg of uredospores 
of M. americana rust isolate R15–033-03 was applied 
to each of five mature leaves per plant of each genotype 
using a paintbrush as previously described [12]. Plants 
were incubated for 12 h in mist chambers at 20 °C with 
100% humidity, then returned to greenhouse under 
14:10 photoperiod at 24 °C:18 °C respectively. Leaf discs 
(6.4 mm) were collected using a leaf disc puncher (Bio-
Spec Products, Bartlesville, OK) from two leaves starting 
with the first fully developed mature leaf on each of three 
shoots. The inoculated shoots were flagged to help iden-
tify inoculated leaves at later time points. To determine 
the optimal time for tissue collection, two replicated 
greenhouse inoculation experiments were completed on 
two ‘Fish Creek’ and two 94006 S. purpurea plants (treat-
ments = inoculated and control) and leaf discs were col-
lected every 24 h over the course of 5 d. Based on the 
analysis of that pilot study data, leaf discs were collected 
from the full study of 60 genotypes (see below) at 42 and 
66 HPI. Each time the leaf discs were collected between 
11 am and 2 pm then immediately frozen in liquid nitro-
gen and stored at − 80 °C until RNA was extracted. Meth-
ods described are depicted in Additional Fig. 3. Leaf rust 

severity ratings of the inoculated treatments were visu-
ally assessed based on the percentage leaf area covered 
in uredospore pustules at 9 DPI for comparison between 
the greenhouse replication and field survey data. Experi-
mental research and field studies on plants and the origi-
nal collections were conducted in compliance with all 
local, state, and federal regulations. Appropriate permis-
sions were obtained for any collections described.

RNA extraction and 3′ RNA‑seq analysis
Frozen leaf disc tissue was disrupted using GenoGrinder 
2000 (SPEX CertiPrep, Metuchen, NJ) and RNA was 
isolated using Spectrum Plant Total RNA Kit (Sigma-
Aldrich, St. Louis, MO). Resulting RNA was quantified 
using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 
Waltham, MA) and quality was assessed using an Expe-
rion (Bio-Rad, Hercules, CA). Libraries for 3′ RNA-seq 
were constructed by the Cornell Institute for Biotechnol-
ogy (Ithaca, NY) using the Lexogen QuantSeq 3′ mRNA-
seq Library Prep Kit (Greenland, NH) and sequencing 
was completed using Illumina (San Diego, CA) Next-
Seq500 (1 × 75 bp) technology. Sequencing reads were 
checked for quality using FastQC Version 0.11.8 [50] and 
trimmed using Trimmomatic [51] to remove the polyA 
tail. The RNA-seq data from host genotype 10X-317-029 
collected at 42 HPI in Rep 1 was overrepresented as com-
pared to the other samples sequenced on the same lane. 
Resulting reads from this sample were randomly sub-
sampled to match the mean read depth of all sequenced 
samples to 125,000 total reads. Trimmed raw reads were 
aligned to the S. purpurea 94006 v5.1 reference genome 
(6) using the STAR aligner v2.7.5a [52]. Read counts 
were generated using HTSeq v0.11.1 [53] and differential 
expression was determined using the R package DEseq2 
[54]. Total number of differentially expressed genes was 
calculated using a direct contrast of the inoculated and 
control shrub-X-replicate-X-time.

Selection of F2 genotypes for eQTL mapping
This study relied on a S. purpurea F2 population previ-
ously reported in Carlson et al., 2019 [25] that was gen-
erated by crossing female clone 94006 and male clone 
94001. Two F1 individuals from that cross ‘Fish Creek’ 
and ‘Wolcott’, selected based on growth habit, yield, and 
resistance to leaf rust, were crossed to generate the F2 
population. The F2 population is comprised of 485 indi-
viduals and is planted in randomized complete blocks 
in Geneva, NY at Cornell AgriTech. The ratings from 
2015 and 2017 [25] were used to identify 28 susceptible 
and 28 resistant F2 genotypes by sorting each year by 
percent severity and identifying genotypes with either 
consistently high or consistently low severity in both 
years. Among these 56 genotypes and the two parents 
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and two grandparents of the F2 population, the correla-
tion between the 2015 and 2017 surveys was 0.86 with a 
p-value of 8.9e-16. Two plants of each of these 60 geno-
types (28 resistant, 28 susceptible, 2 parents and 2 grand-
parents) were established in 11.4 L pots from dormant 
stem cuttings planted on June 18 and September 20, 2018 
for each of two greenhouse inoculation experiments con-
ducted in separate greenhouse rooms using the inocula-
tion and leaf disc collection procedure described above.

Differential expression analysis of S. purpurea transcripts
Analysis of differential expression was conducted to 
achieve two aims. First was to identify the differential 
expression between the resistant and susceptible geno-
types through a direct contrast by splitting the samples 
into six time point by treatment groups (0 HPI-INOC, 42 
HPI-INOC, 66 HPI-INOC, etc.). The other was to inves-
tigate the differential response to infection by contrasting 
the control and inoculated treatments within the resist-
ant and susceptible genotypes separately by splitting the 
samples into six time point by type groups (0 HPI-Resist-
ant, 0 HPI-Susceptible, 42 HPI-Resistant, etc.). After 
genes with low counts were removed each group was 
normalized independently in DESeq2 v1.26 [54]. Sample 
outliers were then identified and removed in R through 
PCA and hierarchical clustering. Differentially expressed 
genes were obtained through the ‘DESeq’ function using 
the designs, gene counts ~ TYPE and gene counts ~ 
TREATMENT to isolate the contrast of ‘susceptible’ vs 
‘resistant’ and ‘inoculated’ vs ‘control’, respectively. Sig-
nificance was determined based on DESeq2’s adjusted 
p-value, a modified Benjamini-Hochberg false discovery 
rate, of less than 0.05 and surpassing a log-fold change 
cutoff of ±1.

To isolate the 42 and 66 HPI inoculated specific DEG 
in the contrast of ‘susceptible’ vs ‘resistant’, DEG were 
removed from either 42 or 66 HPI if that same gene was 
differentially expressed either at 0 HPI or within each 
time point’s control treatment. Concomitantly, the con-
trast of treatments, ‘inoculated’ vs ‘control’, results in 
the identification of type specific and not type specific 
DEG by first removing genes that were also differen-
tially expressed at 0 HPI and then grouping the remain-
ing genes into resistant, susceptible, or not type specific 
DEG for 42 HPI and 66 HPI separately. For the purposes 
of clarity, ‘not type specific DEG’ refers to differentially 
expressed genes that were detected in both the ‘resistant’ 
and ‘susceptible’ genotypes. The resulting gene lists for 
both contrast groups were divided based on the direction 
of their LFC. Each contrast group was subjected to GO 
analysis in agriGO v2.0 [55] using a custom background. 
As the available Salix background on agriGO is based on 
the S. purpurea v1.0 reference genome rather than the 

current v5.1, a customized reference was created that uti-
lized the Arabidopsis homologs included in the v5.1 ref-
erence annotation file to translate the Salix gene ids into 
Arabidopsis gene ids. Significant terms were determined 
using an FDR of 0.05.

Network analysis of S. purpurea transcripts
Network analysis is used to identify groups of genes that 
co-express and are often involved in similar biological 
processes [56]. To focus on the transcriptome-scale dif-
ferences in response to infection, network analysis was 
only performed on the inoculated treatment. Samples 
from all time points from the inoculated treatment were 
then divided based on type, susceptible or resistant. After 
counts were filtered and normalized in DESeq2 and out-
lier samples were identified using PCA and hierarchical 
clustering and removed, network analysis was performed 
using a weighted gene co-expression network analysis 
(WGCNA) in the R package WGCNA [57]. The func-
tion ‘blockwiseModules’ was used with the following 
parameters for both networks; ‘power’ = 12, ‘network-
Type’ = ‘signed’, ‘minmodsize’ = 20, ‘deepsplit’ = 3, and 
‘mergecutheight’ = 0.25. Each module was analyzed for 
enriched GO terms using agriGO v2.0 [55] as described 
above in the differential expression of S. purpurea tran-
scripts section.

A hypergeometric test using the susceptible network 
modules as the background was used to compare gene 
placement across the two networks using a p-value of 
0.05. Modules found to be enriched for defense related 
terms or showed a significant relationship with time 
point were targeted for hub gene analysis. Selected mod-
ules were loaded into Cytoscape [34] and analyzed using 
the plug-in cytoHubba [35]. Module hub genes were 
identified based on the overlap of greater than 0.8 mod-
ule membership and greater than 1.5 standard deviations 
above the mean of log transformed maximum clique cen-
trality (MCC) from cytoHubba.

eQTL mapping of S. purpurea transcripts
Similar methods to Carlson et al., 2019 [25] were used 
to identify SNPs within the S. purpurea F2 population 
for eQTL analysis. Briefly, the TASSEL v5 GBS Dis-
covery Pipeline was used on the full 485 individual 
population for the initial variant discovery and qual-
ity filtering [58]. Reads were aligned to a modified S. 
purpurea  94006 v5.1 reference genome (6), [DOE-JGI, 
http://​phyto​zome.​jgi.​doe.​gov/] with the 15Z chromo-
some removed using the Burrows-Wheeler algorithm 
(BWA) [59]. The resulting 191,650 SNPs were filtered 
for minor allele frequency greater than 0.01 and 80% 
missing tolerance before input into LinkImputeR [60]. 
Setting SNP calls with a depth less than 5 to missing, 

http://phytozome.jgi.doe.gov/
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LinkImputeR’s estimated imputation accuracy of 97.5% 
was selected, resulting in 47,221 imputed SNPs. Deriv-
ing consensus genotypes from multiple sequencing 
runs of the parents enabled classification of marker 
types as female or male backcross and intercross mark-
ers. Expected segregation ratios based on marker 
types were tested using a Chi-square test and a Bon-
ferroni corrected p-value of 1.7e-6 resulted in 22,570 
SNP markers. The 56 selected F2 individuals were then 
isolated and filtered for minor allele frequency > 0.05, 
with a final marker count of 22,068. Final markers 
were coded as 0, 1, 2 based on the occurrence of the 
minor allele.

Sample expression count data were divided into six 
groups based on the sample’s time point and treatment 
(0 HPI-INOC, 0 HPI-CTRL, 42 HPI-INOC, 42 HPI-
CTRL, 66 HPI-INOC, and 66 HPI-CTRL). Genes with 
raw counts < 10 across all samples were removed from 
the analysis then each group was normalized sepa-
rately in DESeq2 [54] using the ‘estimateSizeFactors’ 
function and log transformed to account for outlier 
counts. eQTL detection was performed in Matrix-
EQTL [61] with the cut-off being cis- and trans- act-
ing eQTL set at 1 Mb, ‘useModel’ set to modelANOVA 
with no covariates. eQTL significance for both cis and 
trans eQTL was determine based on a false discovery 
rate of 0.05 for cis- and 0.1 for trans- as calculated by 
MatrixEQTL. The 42 HPI and 66 HPI inoculated spe-
cific eQTL were isolated by comparing the lists of sig-
nificant eQTL, removing those eQTL from 42 HPI and 
66 HPI that were present during 0 HPI and those that 
were detected at 42 HPI or 66 HPI but in the control 
treatment. eQTL hotspots were determined based on a 
1000 iteration permutation analysis where the number 
of eQTL per gene was fixed and place randomly among 
the SNPs without replacement [62]. The maximum 
number of eQTL occurring on a single SNP by chance 
was saved from each iteration to form a distribution. 
The distributions for both 42 and 66 HPI showed that 
95% of the maximum eQTL per SNP occurring by 
chance are less than a threshold of 14 eQTL. To bet-
ter describe the composition of the genes associating 
with each hotspot, GO analysis was performed using 
agriGO v2.0 [55] as described above in the differential 
expression of S. purpurea transcripts section.

Differential expression analysis of M. americana transcripts
RNA extractions, sequencing, and data analysis was 
performed as described above with the following devia-
tions. Trimmed 3′ RNA-seq reads of the inoculated 
treatment from Rep 1 and Rep 2 were aligned to the M. 
americana reference genome R15–033-03 v1.0 (https://​
mycoc​osm.​jgi.​doe.​gov/​Melam​e1/​Melam​e1.​home.​html) 

using the STAR aligner V2.7.5a [52]. A simple contrast 
was performed for each timepoint by combining  RNA-
seq  reads from both replicates of all susceptible geno-
types and contrasting that with the combined RNASeq 
reads from both replicates of all resistant genotypes. 
In silico effector prediction was determined by genera-
tion of a predicted secretome using SignalP V5.0 using 
default settings [63]. The resulting secretome was ana-
lyzed using EffectorP V2.0 [49] for fungal effector pre-
diction, run with default settings. Resulting transcripts 
were cross referenced to differential expression data.

Abbreviations
DPI: Days post inoculation; HPI: Hours post inoculation; GO: Gene ontology; 
DEG: Differentially expressed gene; WGCNA: Weight gene co-expression 
network analysis; LFC: log2-fold change; eQTL: Expression quantitative trait loci.
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differentially expressed transcripts between inoculated and control 
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5 days. Dotted lines represent approximated trends of expression over 
duration of experiment.

Additional file 2: Additional Figure 2. Module eigengene correlations 
with time point as calculated in WGCNA. Time point was coded as 0, 2, 3. 
The modules from the resistant network are on the left while the suscep-
tible network modules are on the right. Significance was determined at 
the 0.05 value. Positive correlations become deeper red while negative 
correlations become blue.

Additional file 3: Additional Figure 3. Schematic of greenhouse experi-
ment. Each leaf was paintbrush inoculated with 1 mg uredospores and 
image of heavily infected leaf was taken 12 days post inoculation after 
completion of the experiment. Imaged in bottom is Patrick McMullen.
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susceptible and resistant genotypes.
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