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Abstract 

Background:  Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly 
in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistin-
guishable types of cardiomyopathy.

Results:  Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core 
genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on 
a human metabolic network. First, according to the differentially expressed genes between different states (DCM/
ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic 
network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient dif-
ference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk 
module that was significantly related to DCM and ICM was determined according to the significance of the module 
score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 
core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions 
significantly related to cardiomyopathy and could distinguish between samples of different states.

Conclusion:  The identified core genes might serve as potential biomarkers of cardiomyopathy. This research 
will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of 
cardiomyopathy.
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Introduction
Cardiomyopathy is a disease of the heart muscle with 
major abnormalities in the structure and function 
of the heart, and cause the myocardium to become 
weak and ineffective [1]. The World Health Organi-
zation separates the various cardiomyopathies into 
several types based on the main pathophysiology and 

etiology/pathogenic factors. Dilated cardiomyopathy 
(DCM) and ischemic cardiomyopathy (ICM) are two 
major types with essentially different etiology. DCM 
could be caused by viral infections, autoimmunity, 
and genetic factors, while ICM was mainly caused by 
long-term myocardial ischemia due to atherosclerotic 
lesions. Moreover, DCM and ICM often exhibit simi-
lar clinical symptoms [2–4], making them two highly 
related pathologies that have not been fully charac-
terized. Therefore, effective differentiation between 
DCM and ICM is of great importance in preventing 
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and personalizing the treatment of cardiomyopathy in 
patients. Giraldo et al. used respiratory sinus arrhyth-
mia (RSA) index of the parasympathetic system quan-
tified by linear and non-linear analysis methods to 
discriminate between DCM and ICM with high sensi-
tivity and specificity [5]. Sweet et al. used differentially 
expressed genes (DEGs) and pathway analysis to iden-
tify DEG signatures that could correctly classify the 
phenotypes of ICM and DCM samples [6].

In addition to gene expression, abnormal metabolism 
can also lead to poor heart function, which can affect 
the functions of myocardial cell [7]. Zhao et al. evalu-
ated plasma metabolomics of patients with DCM or 
ICM through comprehensive metabolomic analysis to 
identify plasma metabolite biomarkers [8]. And some 
studies have shown that changes in myocardial metab-
olism are one of the important pathogenic factors of 
diabetic cardiomyopathy [9]. Metabolic networks can 
reflect a variety of chemical reactions catalyzed by 
gene-encoded enzymes and their interaction systems. 
Wang et  al. constructed a lipid metabolism network 
and identified lipid subnetworks and clusters that 
involved in the pathogenesis of cardiovascular diseases 
[10]. Moreover, the identification of genes related to 
diseases in networks through shortest path analysis 
has been widely used to study the mechanism of dis-
eases. Yang et  al. performed shortest path analysis to 
explore the key drug targets of LianXia NingXin for-
mulations for the treatment of coronary heart dis-
ease-related phenotypes (e.g., co-morbid diseases and 
symptoms) [11].

Therefore, in this study, a systematic multi-omics 
integration approach was proposed to identify car-
diomyopathy-related core genes based on metabolic 
networks and expression data. First, the Significant 
Analysis of Microarray (SAM) method was used to 
screen DEGs between samples of different states in the 
expression data, and three sets of initial modules con-
taining DEGs were obtained from the modules mined 
by Molecular Complexity Detection (MCODE). Two 
permutation tests were used to evaluate the signifi-
cance of the Pearson correlation coefficient difference 
score of the initial modules, and candidate modules 
were screened out. Then, according to the significance 
of the module score based on Markov random field 
(MRF), the cardiomyopathy risk module that was sig-
nificantly related to DCM and ICM was determined. 
Finally, based on the shortest path between known 
genes, 13 core genes closely related to cardiomyopathy 
were identified (Fig. 1). Our method provided valuable 
ideas for identifying potential cardiomyopathy genes 
that could effectively distinguish different types of 
cardiomyopathy.

Results
Initial and candidate modules
From the reconstructed metabolic network, modules 
with nodes ≥4 were selected. A total of 52 modules were 
identified from the reconstructed metabolic network 
using MCODE (see Materials and Methods for details). 
Of these modules, 8 modules containing DEGs of DCM 
and ICM samples (DCM_ICM was used to indicate the 
two states of DCM and ICM.) were screened as initial 
D_I modules, 21 modules containing DEGs of DCM 
and normal samples (DCM_NF was used to indicate the 
two states of DCM and normal.) were screened as initial 
DCM modules (containing seven initial D_I modules), 
and 37 modules containing DEGs of ICM and normal 
samples (ICM_NF was used to indicate the two states of 
ICM and normal.) were screened as initial ICM modules 
(containing 8 initial D_I modules and 21 initial DCM 
modules).

Two permutation tests of Pearson difference scores 
were performed on all initial modules, and finally 3 mod-
ules that were significantly different compared with ran-
dom modules of the same degree and the same scale were 
selected as candidate modules (both P values < 0.05), 
including 2 ICM modules (ICM-module1, ICM-mod-
ule2), 1 DCM module (DCM-module1) and 1 D_I mod-
ule (D_I-module1). Among them, DCM-module1 and 
D_I-module1 were the same module.

The expression values of all genes in the three candi-
date modules were used as classification features to clas-
sify samples of different states (DCM_NF, ICM_NF or 
DCM_ICM), respectively. The genes of the three mod-
ules had good classification performance for normal and 
disease samples. However, for the classification of ICM 
and DCM samples, the three modules showed different 
results. Among them, the DCM-module1/D_I-module1 
(containing 4 DCM_ICM DEGs) could effectively distin-
guish between DCM_ICM samples, while the modules 
ICM-module1 and ICM-module2 could not (Table 1).

Cardiomyopathy risk modules
The module scores based on MRF (MRFmss) for 3 can-
didate modules were calculated (see Materials and 
Methods for details) [12, 13], and compared with that 
of random modules. One cardiomyopathy risk module, 
D_I-module1, containing 205 genes, with significantly 
higher MRFms was identified (p < 0.05).

This cardiomyopathy risk module was significantly 
enriched in pathways and functions (see Materials and 
Methods for details) related to cardiomyopathy (some are 
in Fig. 2).

“Purine metabolism” and “Pyrimidine metabolism” are 
two pathways closely related to nucleotide content. Stud-
ies in human and animal models have demonstrated that 
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Fig. 1  Flow chart of this study. Step 1: mining the initial modules from the network modules mined by MCODE according to DEGs. Step 2: 
detection of candidate modules based on the significance of the Pearson correlation coefficient difference score of the initial modules. Step 3: 
identification of the cardiomyopathy risk modules significantly related to DCM and ICM according to the importance of the module score based 
on Markov random field. Step 4: identification of core genes from the cardiomyopathy risk module based on the shortest path between known 
disease-causing genes. Step 5: evaluation of core genes from three aspects: enrichment analysis, literature confirmation and classification efficiency
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many disorders of purine and pyrimidine nucleotide con-
tent in the myocardium played a role in the pathogen-
esis of muscle dysfunction in diseases such as coronary 
heart disease and left ventricular hypertrophy [14, 15]. 
Genes of the cardiomyopathy risk module were widely 
distributed in both pathways, suggesting the involvement 
of the cardiomyopathy risk module in muscle dysfunc-
tion of the myocardium diseases. For example, in the 

“Purine metabolism” pathway, the cardiomyopathy risk 
module genes mainly encode various enzymes involved 
in energy conversion in the pathway, including various 
kinases, reductases, hydrolases and synthases (Fig.  3). 
They are mainly involved in the pathway module Adenine 
ribonucleotide biosynthesis and Guanine ribonucleotide 
biosynthesis. These enzymes catalyze the hydrolysis of 
tetraphosphate to produce ATP, and the mutual conver-
sion of ATP/GTP and ADP/GDP.

Functions including “ion transport”, “anion: cation 
symporter activity”, “potassium ion antiporter activ-
ity”, “sodium ion transmembrane transporter activity” 
were related to ion transport in cells. Through a series 
of activities of diverse ion channels, the excitability of 
cardiac myocytes is caused by ionic fluxes [17, 18]. The 
“Fatty acid degradation” pathway and “fatty acid bio-
synthetic process” function were related to fatty acids. 
Fatty acids were the main energy substrates of the heart, 
provided energy for myocardial contraction, and were 

Table 1  Classification performance of candidate modules

Modules AUC for normal and 
disease samples

AUC for ICM 
and DCM 
samples

ICM-module1 0.93 0.31

ICM-module2 0.79 0.40

DCM-module1/D_I-
module1

0.99 0.71

Fig. 2  Some pathways and functions enriched by the cardiomyopathy risk module
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essential substrates for the synthesis of sphingolipids [19, 
20]. Sphingolipids regulated many cellular processes that 
occurred in primary and secondary cardiomyopathy, and 
were also involved in functional categories and pathways, 
such as “Glycosphingolipid biosynthesis”, “Sphingolipid 
metabolism” and “sphingolipid metabolic process “. And 
a large number of studies have shown that disorders of 
sphingolipid metabolism can cause changes in the struc-
ture and function of cardiomyocytes [21–23].

Cardiomyopathy‑related core genes
In the cardiomyopathy risk module, 52 candidate genes 
were located on the shortest paths between known genes. 
For each candidate gene, the number of known gene pairs 
linked by it via the shortest paths was calculated. Finally, 
13 genes linked more than 6 (the top quartile) known 
gene pairs were identified as cardiomyopathy-related 
core genes of the module (containing 2 ICM_NF DEGs, 
1 DCM_NF DEG, and 1 DCM_ICM DEG and 1 known 
pathogenic gene) (Fig. 4).

The relationship between core genes and cardiomyopa-
thy was analyzed from the following aspects.

Functional enrichment analysis
In order to understand the relationship between core 
genes and diseases, a functional enrichment analysis of 
core genes was performed. These core genes were signifi-
cantly enriched in multiple Gene Ontology (GO) func-
tions and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways associated with cardiomyopathy and 
related diseases or tissues (FDR adjusted p < 0.05) (Fig. 5), 
including some functions and pathways enriched by the 
cardiomyopathy risk module, such as “Purine metabo-
lism” pathway (Fig. 3) and other pathways and functional 
categories. In the “Purine metabolism” pathway, the 
core genes encode two kinases and one reductase. Two 
kinases are involved in the hydrolysis and synthesis of the 
energy substance ATP, while reductase is responsible for 
the de novo conversion of ribonucleoside diphosphates 
to deoxyribonucleoside diphosphates, and two kinases 
and reductase are involved in subsequent DNA synthesis.

The homeostasis of Glutathione (GSH), which could be 
affected by the “Glutathione metabolism” pathway, was 
related to the pressure-overloaded heart remodeling and 
dysfunction [24].

Five function terms were related to ion homeostasis in 
cells, such as “metal ion homeostasis”, “monovalent inor-
ganic cation homeostasis” and “monovalent inorganic 

Fig. 3  Purine metabolism pathway [16]. The red rectangles indicate the core genes in the cardiomyopathy risk module, and the blue ones indicate 
the non-core genes
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Fig. 4  Identification of core genes. a The overall reconstructed metabolic network. Genes in the red dashed circle comprised the cardiomyopathy 
risk module. Nodes in light orange are the genes on the shortest paths between known genes. The red lines are the shortest paths between known 
genes. b The picture on the left is the distribution of the number of known gene pairs linked by candidate genes via the shortest paths, and the 
red bars are the top 25%. The picture on the right is the enlarged picture of the cardiomyopathy risk module. Nodes in purple are the genes in 
the module, in light red are the candidate genes, in dark red and orange diamonds are the core genes. The dark orange ones are known genes of 
cardiomyopathy
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anion homeostasis”. Abnormal ion homeostasis is related 
to the process of cardiomyopathy and reperfusion injury 
after myocardial ischemia, and often occurs in patients 
with various heart diseases [25, 26]. Among ions, K+, 
Na+ and Ca2+ were related to core genes, since core 
genes could be enriched in K+, Na+, Ca2+-related func-
tions. For example, “potassium ion homeostasis”, “potas-
sium ion transmembrane transporter activity” and other 
functions were closely related to the steady state and 
transport of potassium ions. Adenosine triphosphate-
sensitive potassium channels (KATP) exist on the cell 
surface and mitochondrial membrane of cardiomyocytes, 
and can adapt electrical activity to metabolic challenges, 
thereby maintaining the normal biological functions of 
myocytes [27]. “calcium: cation antiporter activity “ and 
“sodium ion transmembrane transporter activity” were 
closely related to the transportation and homeostasis of 
Na+ and Ca2+. Studies have found that changes in intra-
cellular Ca2+ homeostasis and late Na+ current increased 
the possibility of early depolarization and delayed 

depolarization, which caused arrhythmia in diseased car-
diomyocytes [28].

Literature confirmation
Among the 13 core genes, 7 genes (containing one known 
disease gene) have been confirmed to be related to car-
diomyopathy or other heart diseases by literature.

TNNI3K was a confirmed pathogenic gene of DCM 
that has been implicated in various cardiac phenotypes 
and diseases [29, 30]. Na+-K+-2Cl- cotransporter 1 
(NKCC1), encoded by gene SLC12A1, and Na+-K+-2Cl- 
cotransporter 2 (NKCC2), encoded by gene SLC12A2, 
were two variants or isoforms of Na-K-2Cl-cotransporter 
(NKCC), which was one of the most important sodium 
transport mechanisms that could cause the intracellu-
lar sodium concentration to increase. The increase in 
intracellular Na+ and Ca2+ concentration transduced 
nuclear signals, and triggered cardiac remodeling and 
hypertrophy [31]. Studies have shown that SLC12A6 is 
more specifically present in cardiomyocytes, vascular 

Fig. 5  Enriched functions and pathways of core genes
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smooth muscle cells and various neurons [32, 33]. The 
genes RRM1 and RRM2 encoded two subunit proteins 
of ribonucleotide reductase (RNR), and RRM2B encoded 
the small subunit of p53-inducible RNR. The increase of 
RNR and/or dATP pools in heart cells could significantly 
alter the cycle of actin-myosin bridges, thereby enhanc-
ing the contractile function of patients with heart failure 
[34, 35].

Although 6 core genes have not been reported to be 
related to cardiomyopathy, they were enriched in the 
pathways and functions related to cardiomyopathy. The 
role of these 6 core genes in cardiomyopathy is worthy of 
further study.

Classification efficiency
To further reveal the relationship between the core genes 
and cardiomyopathy, the expression values of the core 
genes were used as the classification features to clas-
sify samples of different states (DCM_NF, ICM_NF, or 
DCM_ICM) in the cardiomyopathy expression data 
(GSE116250). The results showed that the core genes 
had good classification performance for normal and 
DCM samples (AUC =  0.996), ICM and normal sam-
ples (AUC = 0.989), and for ICM and DCM samples 
(AUC = 0.708).

In addition, two sets of random genes were selected 
for comparison to verify the classification efficiency of 
core genes. The first set of random genes was comprised 
of genes with the same number as the core genes ran-
domly selected from 39 candidate genes after removing 
the core genes. The second set contained 13 randomly 
selected genes with the same number of differentially 
and non-differentially expressed genes as the core genes. 
The expression values of genes in the random gene sets 
were used as classification features to classify samples 
of different states (DCM_NF, DCM_ICM or ICM_NF). 
The randomization was performed 100 times. The differ-
ence between the AUC value of the core genes and the 
AUC values of random gene sets were tested by Wilcoxon 
Signed Rank Test. The results demonstrated significant 
differences between the core genes and the two random 
gene sets (p  < 0.01, Fig.  6). And the classification effi-
ciency of core genes was significantly better than that of 
random genes.

To further verify the performance of the core genes in 
classifying samples of different states, two other publicly 
published independent microarray datasets GSE21610 
(8 normal samples, 42 DCM samples, and 18 ICM sam-
ples) and GSE1145 (15 DCM samples, 11 ICM samples 
and 11 NF samples) from the Gene Expression Omni-
bus (GEO) database were used. The Support vector 
machine (SVM) algorithm was applied to these datasets, 
respectively. It was demonstrated that the core genes 

could accurately classify samples of different states in 
GSE21610 (AUC > 0.70) and GSE1145 (AUC > 0.80).

The above results showed that core genes could not 
only efficiently distinguish between different samples, but 
also correctly classify samples of other expression pro-
files. These core genes were expected to become markers 
for DCM and ICM.

Discussion
Cardiomyopathy is a type of myocardial disease with 
abnormal heart structure and myocardial function 
caused by different causes. DCM and ICM are two 
common types of cardiomyopathy with similar clini-
cal manifestations, and difficult to distinguish [36, 37]. 
Here, an integrated method was proposed to iden-
tify cardiomyopathy-related core genes in a human 
metabolic network using cardiomyopathy-related 
expression data. Three groups of initial modules were 
determined from the reconstructed human meta-
bolic network. Furthermore, three candidate modules 
with significant differences by permutation tests were 
selected.

One of them was identified as a cardiomyopathy risk 
module, which was able to distinguish between DCM_
NF samples as well as DCM_ICM samples. And 13 core 
genes closely related to cardiomyopathy were identi-
fied. They could effectively distinguish between samples 
of different states (DCM_NF, ICM_NF or DCM_ICM) 
and were enriched in pathways and functions related to 
cardiomyopathy.

Generally speaking, network modules are selected with 
a relatively large number of nodes, such as module with 
at least 5 nodes [38]. To obtain more and comprehensive 
initial modules, we reduced the threshold to 4 nodes, 
which also appeared in previous studies [39]. We further 
selected the initial module with the number of nodes ≥3 
for analysis, and the cardiomyopathy risk module and 
core genes finally identified remained unchanged.

The risk module showed significant differences for 
both DCM_NF and DCM_ICM samples. Although the 
risk module was not significantly different between 
normal and ICM samples, the core genes identified 
from it could distinguish ICM samples from normal 
ones.

Genes of the other two candidate modules (ICM-
module1 and ICM-module2) were effective to separate 
ICM samples from normal samples, illustrating its sig-
nificant differences between the normal state and the 
ICM state (ICM-module1 (AUC = 0.93), ICM-module2 
(AUC = 0.79)).

The classification efficiency of the core genes was 
compared with the classification efficiency of initial 
modules to prove its effectiveness. Specifically, when 
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distinguishing ICM_NF, DCM_NF and DCM_ICM 
samples, the classification efficiency of core genes was 
compared with that of 37 ICM initial modules, 21 DCM 
initial modules and 8 D_I initial modules, respectively. 
The initial modules were compared at two levels. First, 
the expression values of all genes in each initial module 
(the cardiomyopathy risk module included) were used 
as classification features to classify samples in different 
states. Second, since the classification of more genes 

might obtain higher classification accuracy, for mod-
ules with more than 13 genes, 100 sets of genes with 
the same number of differentially and non-differen-
tially expressed genes as the core genes were randomly 
selected. The expression values were used as the clas-
sification features to classify samples in different states. 
The average of 100 random AUC values was used for 
each module. The classification efficiency for ICM_NF, 
DCM_NF and DCM_ICM samples of core genes were 

Fig. 6  AUC values of core genes and two random sets. a AUC value distribution of the first set of random genes. b AUC value distribution of the 
second set of random genes. The box plots represent the AUC values of random sets classifying DCM_NF, DCM_ICM and ICM_NF samples, and the 
green, red and blue marks are the AUC values of core genes, respectively. The purple asterisk indicates the degree of difference between the AUC 
value of the core genes and the AUC values of the random sets



Page 10 of 15Rong et al. BMC Genomics           (2022) 23:47 

significantly better than that of the initial modules of 
the two levels (Wilcoxon signed rank test, Fig. 7). Our 
identified core genes could classify samples with high 
accuracy.

WGCNA is a popular tool for network analysis and 
mining modules and hub genes based on gene co-
expression [40]. To further evaluate our approach, 
WGCNA was performed using genes from the recon-
structed metabolic network based on the GSE116250 

dataset. Sixteen co-expression modules were identi-
fied using the one-step network construction func-
tion of the WGCNA R package. Genes with |gene 
significance| > 0.2 and |module membership| > 0.8 
were selected as hub genes in each significant module. 
However, the core genes that we identified were not 
in these genes. The hub genes of these modules were 
respectively used as characteristics to classify samples 
of different states in GSE116250. The results showed 

Fig. 7  AUC values of core genes and initial modules. a AUC value distribution of the initial modules by the first level. b AUC value distribution of the 
initial modules by the second level. The box plots represent the AUC values of initial modules classifying DCM_NF, DCM_ICM and ICM_NF samples. 
The green, red and blue circles are the AUC values of core genes, while the green, red and blue triangles are the AUC values of the cardiomyopathy 
risk module, respectively. The purple asterisk indicates the degree of difference between the AUC value of the core genes and the AUC values of the 
initial modules
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that the hub genes of most modules could effectively 
distinguish normal and disease samples, and the hub 
genes of two modules could distinguish DCM and 
ICM samples. Our approach and WGCNA identified 
cardiomyopathy-related genes from different perspec-
tives. Our approach was a systematic multi-omics inte-
grated approach based on a metabolic network, while 
WGCNA conducted network analysis for co-expres-
sion between genes.

The limitation of our research was that although 
Recon 3 contains relatively complete metabolic reac-
tion information, the reconstructed metabolic net-
work was not large enough. Therefore, some known 
genes and DEGs were not in the network. A more 
comprehensive network might help to improve 
results, obtain more candidate modules, and identify 
more cardiomyopathy risk modules and core genes 
related to diseases.

Conclusions
In summary, a comprehensive method based on a human 
metabolic network using cardiomyopathy expression 
data was proposed to identify cardiomyopathy-related 
core genes. A total of 13 core genes were identified from 
the cardiomyopathy risk module based on the short-
est paths between known genes. These core genes could 
distinguish both between normal and disease samples 
and between DCM and ICM samples. This research will 
contribute to identifying potential biomarkers of car-
diomyopathy and to distinguishing different types of 
cardiomyopathy.

Materials and methods
Data
Screening of DEGs
The expression profile by high throughput sequenc-
ing GSE116250 was downloaded from the GEO (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), which contained 14 normal 
samples, 13 ICM samples, and 37 DCM samples [41]. All 
expressed data used in this study were processed using the 
following process. (1) The probes or genes with more than 
50% missing values were deleted, and the remaining miss-
ing values were filled with the k-Nearest Neighbor method 
using the knnImputation function in R package “DMwR”. 
Specifically, for each missing value, its k nearest expression 
values were searched based on the Euclidean Distance, and 
the weighted average of these values was used to fill in the 
missing value. (2) Probes corresponding to multiple genes 
were deleted. (3) For multiple probes corresponding to the 
same gene, the average expression value of these probes 
was used as the expression value of the gene.

The SAM algorithm was used to find the DEGs between 
ICM and normal samples, between DCM and normal 

samples, and between ICM and DCM samples, through 
the R package “samr”. Finally, 1802 DEGs between DCM 
and normal (indicated as DCM_NF in this paper) samples 
(DCM_NF DEGs), 3253 DEGs between ICM and normal 
(indicated as ICM_NF) samples (ICM_NF DEGs), and 
358 DEGs between DCM and ICM (indicated as DCM_
ICM) samples (DCM_ICM DEGs) with |log2(FC)| > 1 and 
FDR adjusted p-value < 0.05 were obtained.

Metabolic network reconstruction
On the basis of metabolic responses extracted from 
Recon 3 of the Virtual Metabolic Human Database 
(https://​www.​vmh.​life) [42], a metabolic network 
composed of protein-coding genes (nodes) and their 
interactions (edges) was reconstructed. Recon 3 was 
created by expanding Recon 2 through the addition 
of new publicly available metabolomics data. The 
metabolic network was reconstructed by the follow-
ing process. The two enzymes were thought to inter-
act if the product of the reaction catalyzed by one 
enzyme was the substrate of the reaction catalyzed 
by the other enzyme. The genes encoding the pro-
teins that make up the two enzymes were connected 
in the reconstructed network. Ubiquitous metabo-
lites such as H2O, CO2 and ADP were excluded to 
avoid bias due to their extreme connections. The 
reconstructed metabolic network contained 3105 
nodes (containing 257 ICM_NF DEGs, 141 DCM_NF 
DEGs, and 34 DCM_ICM DEGs) and 85,880 edges.

Mining the initial modules
Subsequently, the metabolic network was visualized with 
the help of Cytoscape software (version 3.7.0). In addi-
tion, the MCODE (version 1.6.1) plug-in in Cytoscape 
software was used to explore important modules in the 
metabolic network [43]. The advanced options were set 
to degree cutoff = 2, K-Core = 3, and node score cut-
off = 0.2. The modules containing DEGs were screened as 
initial modules.

Detection of candidate modules
Candidate modules with significant differences were 
detected from initial modules using two steps.

W was evaluated by the difference between the aver-
age of absolute values of Pearson correlation coefficients 
H and H′ for samples of different states (DCM_NF, ICM_
NF, or DCM_ICM).

where H and H′ were calculated according to expres-
sion values for all gene pairs.

W (M) =
∣

∣H −H ′∣
∣

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.vmh.life
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C2
g  is the number of all gene pairs. n and m are the num-

ber of samples of different states (DCM_NF, ICM_NF, 
or DCM_ICM), and Xj, Yj and X ′

j ,Y
′
j  are the expression 

values of the j-th gene pair in two different states, Xji,X
′
ji 

and Yji,Y ′
ji are the expression values of the j-th gene pair 

in the i-th sample, and Xj ,X
′
j and Y j ,Y

′
j are their average 

expression value, respectively.
Second, permutation tests were performed on the 

DCM, ICM and D_I initial modules to screen the mod-
ules with significant differences. The null hypothesis was 
that the initial modules had no difference between dif-
ferent states (DCM_NF, ICM_NF, or DCM_ICM). From 
the reconstructed metabolic network, 1000 degree-con-
served random modules (the same degree of nodes as the 
initial module) and 1000 size-conserved random modules 
(the same number of nodes as the initial module) were 
constructed for each initial module. The Pearson differ-
ence scores of every random module (degree-conserved 
and size-conserved) were calculated and compared with 
the score of the corresponding initial module, respec-
tively. For each way of randomization, the p values of ini-
tial modules were defined as follows.

where t is the number of random modules whose Pearson 
difference score is less than that of the initial module.

For initial modules with p value < 0.05, the null hypoth-
esis should be rejected, so they were significantly dif-
ferent between different states. The initial modules that 
were significant in both cases (degree-conserved and 
size-conserved) were retained as candidate modules 
(both p values < 0.05).

The performance of candidate modules in classify-
ing samples of different states can further reveal their 
relationship with cardiomyopathy. A SVM classifier 
was constructed to classify samples of different states 
(DCM_NF, ICM_NF, DCM_ICM) with the expression 
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values of all genes in each module as features. The 
kernel function of SVM was set to “radial”. The per-
formance was evaluated using leave-one-out cross vali-
dation (LOOCV). LOOCV draws one sample at a time 
as the test set, and the rest as the training set. Then 
the receiver operating characteristic (ROC) curve was 
drawn, and the AUC was calculated to measure the clas-
sification performance according to the classification 
results of the test sets.

Identification of cardiomyopathy risk modules
Markov random field (MRF) refers to the random field 
with Markov characteristics, which is often used to build 
mathematical models to identify protein interaction sub-
networks [12, 13]. In our study, an MRF model was used 
to evaluate the expression difference considering both 
DEGs and non-DEGs in a candidate module by module 
score based on MRF (MRFms).

For a candidate module M with g genes, it was assumed 
that the expression difference E = (E1, …, Eg) between 
samples of different states formed an MRF. According 
to the properties of Markov random fields, the expres-
sion difference of gene g depends on the difference value 
of its one-step neighbor genes. Gibbs distribution was 
employed to specify the joint probability of E:

where K is a constant that guarantees the probability sum 
to be 1, T is a temperature parameter controlling the dis-
tribution sharpness, and

Based on our previous study [44] and the calculation 
process in [45], the MRFms for module M incorporating 
Mutual Information (MI) was defined as
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where b is the number of edges, G1 and G2 are the set of 
DEGs and non-DEGs in the module; Eu, Ev and Ez are the 
expression differences of genes u, v and z between differ-
ent states (DCM_NF, ICM_NF, or DCM_ICM), and dv 
and dz are the degrees of genes v and z in the network, 
respectively. MI(v, z) is the mutual information of genes 
v and z.

Then the same permutation test as in the previous step 
was used to screen out cardiomyopathy risk modules. 
Finally, the modules that were significant in both cases 
(degree-conserved and size-conserved random modules) 
were identified as cardiomyopathy risk modules (both p 
values < 0.05).

Identification of core genes
According to the connection between genes and 
known genes in the network, core genes were fur-
ther screened in the cardiomyopathy risk modules. 
From the Online Mendelian Inheritance in Man data-
base [46], 43 known genes of cardiomyopathy were 
extracted, and 7 of them (PPCS, RAF1, TNNI3K, 
ABCC9, EYA4, SDHA, and TTN) were in the meta-
bolic network. Then, the shortest paths between 
known gene pairs were searched, and genes in car-
diomyopathy risk modules that appeared on these 
shortest paths were selected as candidate genes. The 
number of known gene pairs linked by gene x via these 
shortest paths B(x) was counted as follows.

where G (s, t) is the length of the shortest path between 
two nodes s and t. s and t are known genes for cardiomy-
opathy in the metabolic network. σst(x) is a variable that 
indicates whether any shortest path between nodes s and 
t passes through node x. If so, it is 1, otherwise it is 0.

Genes linked more known gene pairs (top upper quar-
tile) via shortest paths were identified as core genes.

where D is the set of B(x) for all x, rankx is the rank of B(x) 
when ranking all B(x)s in set D in descending order, n is 
the number of candidate genes.
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{

1

0

if G(s, t) = G(s, x)+ G(x, t)

otherwise

C =
{

x
∣

∣rankx ∈ [1, ⌊0.25n⌋], rankx = rank(B(x), in D)
}

Evaluation of core genes
In order to reflect the association of core genes with car-
diomyopathy, they were analyzed from three aspects: 
literature verification, enrichment analysis and classi-
fication performance. Literature verification was con-
ducted by searching literature showing the relationship 
between core genes and cardiomyopathy in the PubMed 
database (https://​www.​ncbi.​nlm.​nih.​gov/​pubmed). Enri-
chr was used for GO functional annotation and KEGG 
pathway enrichment of core genes [47]. The PubMed 
database was also used to validate the association of sig-
nificantly enriched functional classes and pathways (FDR 
adjusted p < 0.05) with the disease. The expression values 
of the core genes were further used as features to clas-
sify samples of different states (DCM_NF, ICM_NF, or 
DCM_ICM) in the expression profile and independ-
ent microarray datasets. The classification performance 
of the core genes and of random gene sets was com-
pared to further evaluate the classification performance 
of the core genes. Random gene sets were composed of 
randomly selected differentially and non-differentially 
expressed genes from the cardiomyopathy risk modules 
with the same number as the core genes.
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