
Beier and Thomson BMCGenomics (2022) 23:265
https://doi.org/10.1186/s12864-022-08303-3

SOFTWARE Open Access

Panakeia - a universal tool for bacterial
pangenome analysis
Sina Beier* and Nicholas R Thomson

Abstract

Background: Development of new pan-genome analysis tools is important, as the pangenome of a microbial
species has become an important method to define the diversity of a selected taxon, most commonly a species, in the
last years. This enables comparison of strains from different ecological niches and can be used to define the functional
potential in a bacterial population. It gives us a much better view of microbial genomics than can be gained from
singular genomes which after all are just single representatives of a much more varied population.

Results: We present Panakeia, a tool which strives to be easy to use and providing a detailed view of the pangenome
structure which can efficiently be utilised for discovery, or further in-depth analysis, of features of interest. It analyses
synteny and multiple structural patterns of the pangenome, giving insights into the biological diversity and evolution
of the studied taxon. Panakeia hence provides both broad and detailed information on the structure of a pangenome,
for diverse and highly clonal populations of bacteria.

Conclusions: Previously published pangenome tools often reduce the information to a presence/absence matrix of
unconnected genes or generate massive hard to interpret output graphs. However, Panakeia includes synteny and
structural information and presents it in a way that can readily be used for further analysis. Panakeia can be
downloaded at https://github.com/BioSina/Panakeia together with a detailed User Guide.

Keywords: Bacteria, Whole genome sequencing, Pangenome

Background
Pangenome analysis is increasingly popular, especially in
microbiology, where the concept of species can be blurry
at best [1, 2] and isolated single genomes are of limited
value for understanding evolution and population diver-
sity of microbes. With this interest in microbial popula-
tions comes the need to understand the complete genetic
makeup from the individual isolates to the whole genus
and more. The accumulated genome of these groups of
samples is called a pangenome [3].
Several new tools have emerged in the last years to pro-

vide automated analysis pipelines. Each of them has a
different focus into which functions of the pangenome are
to be studied. Many investigate the size and members of

*Correspondence: sb59@sanger.ac.uk
Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome
Campus, Sulston Building, CB10 1RQ Hinxton, UK

common for the taxon compared to rarely found genes,
generally called the core and accessory pangenome. In
the last years, including analysis of syntenic structures in
the pangenome has risen in importance, as these struc-
tures often include interesting functional operons, or
provide important contextual information e.g. evidence
of having been horizontally acquired. However, in large
pangenomes, there can be many such loci or structures,
and this makes it hard to determine which are essen-
tial and relevant for further investigation. Often, this
information is presented in huge pangenome graph struc-
tures. These get increasingly complicated with growing
number of input genomes and the inherent diversity in
these genomes. These complexities can make it time-
consuming and tedious for the user to interpret the results
from pangenome analysis.
Here we describe Panakeia, an analysis pipeline for

prokaryotic pangenomes which includes a graphic repre-
© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-022-08303-3&domain=pdf
http://orcid.org/0000-0002-8230-4256
https://github.com/BioSina/Panakeia
mailto: sb59@sanger.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Beier and Thomson BMCGenomics (2022) 23:265 Page 2 of 8

sentation of the pangenomewith a special focus on ana-
lyzing the synteny and specific genomic patterns found in
the dataset. Hence, Panakeia enables a detailed look into
the structure of a pangenome, compared to the overview
look of core and accessory genes that pangenome analysis
tools generally provide. The syntenic structures Panakeia
identifies can be filtered and divided into groups which
hint at their function and origin using the provided post-
processing scripts. The graph structure also inherently
offers multiple ways to detect interesting structural pat-
terns.
Panakeia is designed to be used together with the Pan-

tagruel [4] pipeline for the reconstruction of the evo-
lutionary history of all genes in the dataset. Pantagruel
uses phylogenetic algorithms to determine the evolution-
ary history of genes and gene families. It can differentiate
between evolutionary events and horizontal gene transfer
and indicate if a gene transfer event has occurred between
different lineages of the same species.
Together, the pangenome structure, including the syn-

teny and patterns identifying small variants as well as large
structural variants between the genomes determined by
Panakeia and the genomic history of the genes determined
by Pantagruel gives a detailed view of the evolutionary
history and genomic plasticity of a set of closely related
prokaryotic genomes.

Implementation
Panakeia is written in Python 3, utilising the NetworkX [5]
package for graph generation and analysis. It is split into a
preprocessing script for clustering, the main pipeline and
multiple post-processing scripts. We will now provide an
overview on the implementation, a detailed user guide can
be found on the Panakeia GitHub pages.

Preprocessing
Input genomic DNA sequences for Panakeia should be
annotated in GFF3 format, which is a standard output for-
mat for many prokaryotic annotation tools like Prokka
[12] or PGAP [6]. For the following clustering step, the
predicted protein sequences have to be available, either
through the output of the annotation or by extracting
them from the annotated genome using other tools. If
annotation of the genomes is not feasible, Panakeia can
be run without functional annotation of the genomes but
predicted protein sequences have to be provided. They
can be determined using fast protein prediction methods
like Prodigal [7].
To analyse the pangenome, the proteins have to be clus-

tered using the provided script Clustering.py, which takes
a single fastA file with all predicted protein sequences
from the genomes and the number of analysed strains (full
genomes, not including plasimds or additional chromo-
somes as a separate count) as input. All proteins from

the annotated genomes are clustered using cd-hit [8] in
an iterative process, going from 90% sequence similarity
required to cluster proteins over 80% similarity and 75%
down to 70%. Clusters which include at least the number
of input genomes are kept in each step, while proteins in
smaller clusters are re-clustered with the next lower sim-
ilarity threshold until the threshold of 70% sequence sim-
ilarity is reached. At this point, all remaining clusters are
kept. One random sequence is chosen as a representative
for each cluster.

Pan-genome analysis
The main analysis step is done by the Panakeia.py
script. Panakeia reads in the genome annotations for each
input genome in GFF3 format, generating so-called strain
graphs, which are graphs using protein clusters as nodes
and connecting local neighbours with edges. Local neigh-
bors are defined as protein clusters from genes which are
direct successors or predecessors of each other on the
annotated sequence. Another type of edge is added for
paralogs, which are detected by reading in the clusters
generated by the previous step and defining each pair of
proteins which are from the same genome and classified
into the same cluster as paralogs.
A strain graph is generated for each input genome (each

separate GFF3 file), which means they will include both
the chromosomal and any plasmid sequence found in a
genome. We define these input genomes as strains, as
generally in bacterial pangenome analysis they would be
strains of the analysed species.
The clusters are also used as nodes for a pangenome

graph, which is similar to the strain graphs but has
whole clusters as nodes (annotated by the features of
the clusters representative sequence). Edges are added
to the pangenome graph if two clusters include neigh-
bouring proteins in at least one of the input genomes.
Thus the edges determine the synteny information for
the pangenome graph. Edge weight is determined by the
number of genomes in which the connected nodes are
neighbouring each other. Pangenome nodes also include
information on the maximum number of paralogs pre-
dicted proteins from the cluster can have in one single
genome.
These paralogous clusters are then subdivided into sub-

clusters by determining the minimal number of unrelated
neighbourhoods the cluster is part of in all genomes. Each
neighbourhood generates a subcluster, with the original
cluster nodes being removed from the graph. Subclus-
ter nodes share the same representative, but the features
determining in which strains they occur and if they belong
to the pangenome core or accessory proteome are updated
for each subcluster.
All protein clusters from the dataset will be part of

the pangenome graph, but the addition of edges can be

Beier and Thomson BMCGenomics (2022) 23:265 Page 3 of 8

influenced by setting a parameter to require a minimum
weight for the edge to be added. This can help to remove
clutter generated by assembly errors in singular input
genomes and is especially helpful when analysing large
datasets.

Associating protein clusters with chromosomal
information
If finished or nearly finished genomes which are assem-
bled in the correct number of expected contigs (chro-
mosomes or plasmids) are available, the pangenome
graph can be annotated with basic structural infor-
mation using the ChromosomizeAll.py and Chromo-
somizePangenome.py scripts. We will refer to these fin-
ished genomes as template genomes. Clusters which have
a member found in one of template genomes are assigned
to a chromosome, undetermined (if they were present on
either chromosome/plasmid) and unknown (if the clus-
ter was not present in any of the complete assemblies).
Chromosomal information is added to the protein clusters
in the pangenome graph and all proteins (determined by
their cluster membership) in the strain graphs using the
information from the template genomes. This process will
further be called ’chromosomizing’ the genome.

Determining structural patterns in the pangenome
Panakeia can detect different types of patterns in the
pangenome graph using the Patterns.py script, which
potentially correspond with specific biological features.
The detected patterns are

• orphans
• uniques
• variants
• insertions
• indels

The implied meaning of these patterns is further
described in the results.
Patterns are detected from the pangenome graph by

utilizing graph algorithms. The detected patterns are
returned as text-based files - either lists or tables, depend-
ing on the type of pattern - and as separate graph files
which includes only the occurrences of each pattern. This
makes it possible to either look at them separately, or over-
lay the pattern information onto the full pangenome graph
by using the HighlightSubgraph.py script which uses one
of the pattern graphs to highlight the pangenome graph.

Highlighting external information
If phylogenetic information or other information cluster-
ing or grouping the input genomes - for example lineages
defined by Pantagruel or groups defined through meta-
data features - are available to the user, groups of genomes
can be highlighted onto the pangenome graph by using the

HighlightStrains.py script, which creates features in the
pangenome graph to highlight protein clusters and local
neighborhood relations found in a strain through visu-
alisation. This will highlight protein clusters and neigh-
borhood relations occurring in a list of strains. Protein
clusters and edges already included in the pangenome
graph will be marked in orange. Protein clusters and edges
which did not reach the threshold for minimal weight in
the pangenome graph will be added and highlighted in
yellow. This enables the user to depict the part of the
pangenome and functional potential covered by a defined
group of genomes and also extract a group-specific
sub-pangenome more easily using network visualisation
tools.

Inclusion of pantagruel output
Panakeia is designed to work closely together with the
Pantagruel [4] pipeline for reconstruction of gene histo-
ries in bacterial pangenome datasets. Pantagruel output
includes information on phylogenetic clades for the input
genomes and genes specifically present in these clades
or specifically absent compared to neighbouring clades.
This presence and absence information informs about
evolutionary changes of gene uptake or loss in defined
phylogenetic clades which might be related to the fit-
ness in a specific environmental niche or the virulence of
pathogenic genomes. The HighlightClades.py script uses
the Pantagruel output files, specifically the species tree
clade definition file and a version of a clade-specific gene
set file including either the specifically present or absent
genes, to highlight all protein clusters including proteins
from the genomes in the clade and mark either the specif-
ically present or absent protein clusters. This highlighting
connects the synteny information to the evolutionary his-
tory of these groups of genes.

Results
Running pankeia
To prepare for running Panakeia, the user will need the
protein sequences extracted from annotation or protein
prediction for all the input genomes in a singlemulti-fastA
file, as well as the matching GFF3 files with protein anno-
tations for each separate genome. To produce the protein
clusters, the protein fastA will be used as input for clus-
tering the protein sequences with the provided clustering
script. This script returns a file containing all cluster
information and another file with all the representative
sequences for each cluster, including all the functional
annotations, if they have been provided in the input GFFs.
The main Panakeia pipeline then requires selection of an
output directory for all results, an input directory which
has to include all GFF3 files from the input genomes, the
clustering output file and the file with the representative
sequences as they are provided by Clustering.py.

Beier and Thomson BMCGenomics (2022) 23:265 Page 4 of 8

Additionally, parameters can be provided defining the
percentages required to identify a protein as belong-
ing to the different partitions which compromise the
pangenome: hard core, soft core and shell. Hard core
represents protein clusters which strongly belong to the
backbone of the investigated taxon and should not be
missing from any genomes . Soft core protein clusters
occur in most input genomes , but are not essential to
the taxon, so might be missing occasionally. Shell pro-
tein clusters occur in groups of genomes, and potentially
include the structure which differentiate between lineages
or functional groups of organisms. Finally, the left over
protein clusters belong to the cloud, which includes only
proteins which occur rarely or even in singular genomes.
The cloud often includes erroneous protein predictions
caused by assembly errors, but also new horizontal gene
transfers.
The default values for these parameters are set as 0.99

(meaning a protein has to occur in 99% of the genomes
to be counted, acoounting for some proteins missing due
to sequencing and assembly errors) for hard core, 0.95 to
count it into soft core and 0.15 to count it to the shell.
Everything occurring in less than 15% of the genomes will,
in this case, be counted as belonging to the cloud. It is also
possible to set a parameter defining the minimal number
of occurrences in the pangenome for an edge (local neigh-
bourhood connection between to proteins) to be drawn.
This defaults to drawing all edges. For large numbers of
input genomes it can be helpful to set this parameter to
remove edges which only occur in single genomes or very
small numbers of genomes. This automatically reduces
the prevalence of assembly errors and generates aq more
simplified version of the pangenome graph.

Panakeia output
Genome graphs
Panakeia generates a so-called strain graph for each
input genome, which is provided in the GraphML format
that can be loaded into many commonly available graph
visualisation tools, including Cytoscape [9]. The strain
graphs can then be chromosomised of finished or high-
quality reference genomes are available amongst the input
genomes to help define the different chromosomes and/or
plasmids. An example for a chromosomised version of a
Vibrio cholerae genome from strain M66 (chromosome 1:
NC_012578, chromosome 2: NC_012580) is provided in
Figs. 1 and 2.
Strain graphs help to assess the assembly of an iso-

late, as assembly errors caused by repetitive sequences
often show up as loops of paralogous proteins in the
synteny of the strain graph. Assembly errors caused by
single paralogs or small mobile elements are easily found
in chromosomised strain graphs as they have a change
of chromosome/plasmid assignment around a single or a

Fig. 1 Chromosomised view of a strain graph for a V. cholerae strain
M66 genome. Vibrio species have two chromosomes, which are
clearly shown as the two large circles. Proteins found only on
chromosome 1 in the are shown as blue nodes, proteins uniquely
found on chromosome 2 are shown as red nodes, proteins , where
the chromosome cannot be decided as they occur on both
chromosomes in the template genomes, are shown as pink nodes in
the smallest circle and proteins which cannot be assigned a
chromosome as they do not occur in the template genomes would
be shown as grey nodes. The protein nodes are connected to their
local neighbours on the contigs though black edges. Contigs from the
input genome are hence denoted by nodes connected through black
edges and it the chosen attribute based visualisation from Cytoscape
[9] clearly shows the two chromosomes as circles and a separate
small circle including only the proteins which cannot be placed

group of proteins which occur on both chromosomes, as
shown in Fig. 3.
Strain graphs also serve as input for further processing

like HighlightStrains.py, which can be used to highlight
one or more strains as an overlay over the complete
pangenome, and scripts specific to include output of the
Pantagruel [4] pipeline into the pangenome graph.

Beier and Thomson BMCGenomics (2022) 23:265 Page 5 of 8

Fig. 2 Chromosomised view of a strain graph for a V. cholerae strain
M66 genome. Vibrio species have two chromosomes, which are
clearly shown as the two large circles. Proteins found only on
chromosome 1 in the are shown as blue nodes, proteins uniquely
found on chromosome 2 are shown as red nodes, proteins , where
the chromosome cannot be decided as they occur on both
chromosomes in the template genomes, are shown as pink nodes in
the smallest circle and proteins which cannot be assigned a
chromosome as they do not occur in the template genomes would
be shown as grey nodes. The protein nodes are connected to their
local neighbours on the contigs though black edges and paralogous
proteins are connected to each other with grey edges. Contigs from
the input genome are hence denoted by nodes connected through
black edges and it the chosen attribute based visualisation from
Cytoscape [9] clearly shows the two chromosomes as circles and a
separate small circle including only the proteins which cannot be
placed. In addition here a region including many paralogous proteins
connected by grey edges in chromosome 2 can be seen on the lower
left part of chromosome 2. This denotes the known integron island of
V. cholerae, which introduces a high structural variability between
strains and includes multiple paralogous proteins which in this view
create the light grey edges to connect paralogs

Fig. 3 Zooming in on a chromosomized strain graph of a V. cholerae
strain with two chromosomes shows a misassembly in the genome.
Blue nodes represent proteins belonging to chromosome 1 and red
nodes represent proteins belonging to chromosome two. The pink
node represents a protein marked as undecided, because it has been
found on either of the chromosomes in the template genome. Wide
black edges mark local neighbourhood relation, the thin grey edge
marks paralogous relation of two proteins. The undecided protein
clusters are annotated as IS200/IS605 family transposases. The same
transposase occuring multiple times in one genome might have lead
to the misassembly because it creates a repeat region

Pangenome graph and analysis
The full pangenome graph is the most important output
of the Panakeia pipeline, it enables all further analyses
steps and visualisation of the data. This graph includes
all protein clusters and all local edges for neighborhood
connections that occur in more genomes than the given
minimal support threshold. The nodes hold information
like the strains they occur in if they are hard core, soft core,
accessory or cloud, the representative protein of the clus-
ter, the maximal number of paralogs in a genome, number
of proteins in the cluster and a weighting based on the
average number of proteins in this cluster per genome. If
available, it also includes the functional annotation of the
cluster, and if the pangenome has been chromosomised
previously, it includes the chromosomal prediction. An
example of a chromosomised pangenome graph is shown
in Fig. 4.

Pattern extraction
After the pangenome graph is generated and annotated,
biologically relevant patterns can be detected using the
Pattern.py script, as described earlier in Implementation.
Orphans are protein clusters which do not have a com-

mon placement in the genomes. They are either caused by
contigs from contamination of the genomic sample with
external DNA, assembly problems around this specific
gene or highly variable locations in different genomes. The
latter can hint at the proteins belonging to small mobile

Beier and Thomson BMCGenomics (2022) 23:265 Page 6 of 8

Fig. 4 Chromosomised view of a pangenome graph for 42 finished V.
cholerae as found on RefSeq. Nodes represent protein clusters, edges
represent local neighborhood relations of proteins in the clusters. As
the species has two chromosomes, protein clusters from
chromosome 1 are colored blue, and protein clusters from
chromosome 2 are colored red, protein clusters, where the
chromosome cannot be decided as they occur on both
chromosomes in the template genomes, are coloured pink and
protein clusters which cannot be assigned a chromosome as they do
not occur in the templates are colored grey. The size of the nodes is
defined by how many strains the respective protein cluster includes,
meaning core clusters are larger and protein clusters from the shell
and cloud are smaller. We would expect two large circles from the
two chromosomes, but they are connected through protein clusters
including proteins on either chromosome. Loops represent structural
rearrangements and inDel regions in parts of the pangenome. The
smaller connected components unconnected to the main
chromosomal components represent either rare insertions -
potentially horizontal gene transfer - or variants, sequences created
by contamination of some of the input genomes or assembly and
annotation artefacts. The graph was generated by only allowing
edges with a minimal support of 2 to be added, to single out these
potentially erroneous protein clusters

elements. The functional annotation can help differentiate
between these cases. Orphans are detected by selecting
nodes in the graph without any connection to other nodes,
but present in multiple genomes.
‘Uniques’ are protein clusters which only occur in a sin-

gle genome. They are either caused by contamination or
annotation errors or are truly novel, perhaps as a result
of recent horizontal gene transfer into that genome. This
is when combining information from Pantagruel can be
especially useful because it can be used to further investi-
gate their evolutionary history.
‘Variants’ are protein clusters which have multiple

amino acid variants occuring in the same genomic neigh-
borhood. This only occurs if the sequence variation is
bigger than the cutoff used for clustering. They can be

variants of the same functional gene with small changes in
the amino acid sequence, but also include truncated pro-
teins or pseudogenes which have lost their function in a
part of the genomes.
To detect variants, small bubbles of multiple nodes are

detected, which have a connection to nodes outside the
bubble only on one or two of the nodes. Commonly these
represent the existence of multiple variants of the same
gene, with less than 70% aminoacid sequence similarity.
‘Insertions’ stand for rare short insertions into one or a

few genomes. Much like the Uniques, they can be caused
by contamination but also can hint at horizontal gene
transfer or incorporation of a plasmid or other mobile
genetic element. Insertions are small bubbles in the graph
formed by insertion of one or more protein clusters which
only involve clusters assigned to the shell or cloud of the
pangenome.
‘InDels’ are common insertions or rare deletions (rela-

tive to the number of input genomes) that are found in the
pangenome. These are potentially structural variants and
hint at gene loss in a few of the genomes or at large-scale
homologous recombination events, which can be typically
seen around capsule or O-antigen gene clusters.
InDels are cycles in the graph which involve more than

four nodes and are not restricted by how common any of
the clusters occur in comparison to the insertions.
The Pattern.py script can also generate a tabular repre-

sentation of the presence/absence matrix for all protein
clusters and genomes in the dataset. Patterns extracted
from the pangenome are saved either in tabular or text
form, depending on the pattern. They are also saved as a
graph only containing the occurrences of the pattern for
visualization. An example of an extracted InDel graph is
shown in Fig. 5. The matching text output includes a tab-
delimited list of clusters for each InDel, displayed in one
InDel per line. Text output for variants is similar, with a
list of the varying different protein clusters in the same
structural location per line.
Text output for insertion sequences is in tabular form,

including the node degree (number of attached edges) and
node weight for each potential insertion sequence.

Comparison to other pangenome tools
Panakeia uses a simple approach to clustering proteins
compared to other pangenome tools and focuses on using
the synteny and paralogy information from the input
genomes to increase the available information content and
accuracy of the resulting pangenome graph. Synteny infor-
mation is also used by over novel tools like Panaroo [10]
and PPanGGOLiN [11], which do cluster genes instead
of proteins. In general, pangenome tools often specialise
by either in showing an overview of the full functional
diversity of a studied taxon or by correcting small errors
caused by technical or algorithmic restrictions and giving

Beier and Thomson BMCGenomics (2022) 23:265 Page 7 of 8

Fig. 5 This Pangenome Subgraph is the result of pattern detection for
InDels on a set of 318 genomes. Shown are only the protein clusters
and edges belonging to any of the InDels detected by Patterns.py.
The core (hard and soft) protein clusters are marked blue, the
non-core (shell and cloud))protein clusters in red. InDels often
belong to the shell (marking an insertion into a few strains). Very rare
deletions are not detected by this analysis, as they would still be part
of the core of the pangenome. InDels are often “attached” to the core
through one or two core protein clusters which mark the location of
the inDel. If they are attached to the hard core this way, inDels are
either inherited in most genomes or represent a mobile element
specific to a single insertion position

information on a long list of small detailed structures.
Both approaches output can be cumbersome and need
prior knowledge to interpret and utilise the information
appropriately.
Panakeia incorporates no default correction steps other

than splitting paralogous clusters and enabling the user to
set a cutoff for minimum support of edges, but it can give
specific insights by using the various patterns described
in Implementation together with the functional annota-
tion. This makes it possible to move from a broad view
of the available diversity to details about interesting struc-
tures and patterns which define the difference between
groups of genomes and can lead to helpful insights about
the evolution and adaptation of these organisms.
To explain the differences of Panakeia to other

pangenome tools, here we will compare it to two relatively
current developments in the field and define the different
use cases for each of the tools.
PPanGGOLiN [11] is named after the Partitioned

PanGenomeGraphOf LinkedNeighbors it uses to analyse
the pangenome. It focuses on partitioning the homolo-
gous gene clusters it uses into a persistent (core), cloud
and one or more shell partitions. Panakeia in comparison

divides the core into hard and soft core to be able to
track novel gene loss which has only occurred in a small
subset of the taxons phylogeny through using the pat-
tern detection to detect InDels in the backbone of the
pangenome. Panakeia does not further divide the shell -
which is usually the largest group of protein clusters for
large and diverse datasets - because these clusters are the
most important to be able to detect the patterns associ-
ated with features of a group of genomes. Dividing the
shell into further groups would potentially restrict the size
of a group of genomes which include one of these patterns
for them to be found. Gautreau et al. [11] mention the
possibility of predicting genomic islands in the shell and
cloud as a future option of PPaNGOLiN, Panakeia already
includes the functionality through the pattern search.
Panaroo [10] focuses on correcting the inclusion of

genes into the pangenome, filtering out potential contami-
nation and genes classified as being based onmisassembly
or annotation errors. This leads to very clean pangenome
graphs even for large input datasets but could result in
the loss of new horizontal gene transfer events or changes
in the structure caused by the movement of mobile ele-
ments. Hence this approach might not be appropriate for
taxa with known or predicted high diversity, high genome
plasticity or even just for datasets where more fragmented
assemblies have to be included. By using the parameter
to set a minimum weight for edges to be included in the
pangenome graph, Panakeia can be set up to filter out
many similar errors easily, as they are generally creating
rare or even unique edges. The potential errors will show
up as singletons in the pangenome graph and can then be
detected by the pattern search. Many visualisation tools
will also allow you to detect the singletons as nodes of
degree 0 and remove them from the graph for a cleaner
visualisation, making it unnecessary to already include
this detection when building the pangenome graph.

Discussion
Panakeia is designed to combine pan-genome analy-
sis with genomic information from isolate genomes to
improve the information collected both about the stud-
ied population and the genome plasticity and structure
of single members in it. Additionally, it can be linked
to phylogenetic and evolutionary information provided
by Pantagruel. This combination will help to improve
our understanding of how microbial genomes function,
adapt and evolve. Automatically extracting and highlight-
ing interesting patterns enables researchers to focus on
potentially interesting features of the genomes without the
need of painstakingly finding them in long lists, tables and
huge graphs.
Based on Python 3 with minimal extra packages and

standardised input and output file formats, the pipeline is
widely applicable and easy to install, maintain and use.

Beier and Thomson BMCGenomics (2022) 23:265 Page 8 of 8

The pipeline is not optimised for speed, but aimed
at reducing the manual work necessary to find patterns
of interest in large pangenome datasets, which in turn
reduces the time needed to extract useful information
from these datasets. The information about the patterns
can be exported both in text-based files which are easy to
use in further analysis and as GraphML files for visualisa-
tion andmanual curation of the results. Hence, Panakeia is
a tool which is usable inmany settings and for people from
different backgrounds and with different requirements for
their work.

Conclusions
With Panakeia, we provide a novel tool for pangenome
analysis and visualisation. Available tools are often lack-
ing either in the type of analysis by providing only basic
statistics, lacking proper visualisation and interpretabil-
ity of their results or providing little documentation and
hence being not user-friendly. Panakeia overcomes these
hurdles and is available as an open-source, free to use
software without the need for powerful computational
infrastructure or specialist bioinformatics knowledge.

Availability and requirements
Project name: Panakeia
Projecthomepage: https://github.com/BioSina/Panakeia
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.0 or higher
License: GPL 3.0
Open source, free for non-academic use

Acknowledgements
The authors would like to Florent Lassale for many discussions on pangenome
analysis and Pantagruel. They also would like to thank team 216 from the
Parasites and Microbes program for ample feedback on methodology and
results. . . .

Authors’ contributions
SB derived the methodology, wrote the code and wrote the article. NRT
derived the project and reviewed the article. The authors read and approved
the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
Code, Cytoscape layout files and example datasets are available on the
Panakeia GitHub page (https://github.com/BioSina/Panakeia).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 2 March 2021 Accepted: 11 January 2022

References
1. Bobay L-M, Ochman H. Biological Species Are Universal across Life’s

Domains. Genome Biol Evol. 2017;9(3):491–501.
2. Vos M. A species concept for bacteria based on adaptive divergence.

Trends Microbiol. 2011;19(1):1–7.
3. Medini D, et al. The microbial pangenome. Curr Opin Genet Dev.

2005;15(6):589–94.
4. Lassalle F, et al. Automated Reconstruction of All Gene Histories in Large

Bacterial Pangenome Datasets and Search for Co-Evolved Gene Modules
with Pantagruel visualization. bioRxiv. 2019. https://doi.org/10.1101/
586495.

5. Hagberg A, et al. Exploring Network Structure, Dynamics, and Function
using NetworkX. Proc SciPy. 2008. pages 11–15. https://www.osti.gov/
biblio/960616-exploring-network-structure-dynamics-function-using-
networkx.

6. Tatusova T, et al. NCBI prokaryotic genome annotation pipeline. Nucleic
Acids Res. 2016;44(14):6614-24.

7. Hyatt D, et al. Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinformatics. 2010;11(1):119.

8. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):
1658–59.

9. Smoot ME, et al. Cytoscape 2.8: new features for data integration and
network visualization. Bioinformatics. 2011;27:431–32.

10. Tonkin-Hill G, et al. Producing Polished Prokaryotic Pangenomes with the
Panaroo Pipeline. BioRxiv. 2020. https://doi.org/10.1101/2020.01.28.
922989.

11. Gautreau G, et al. PPanGGOLiN: Depicting microbial diversity via a
Partitioned Pangenome Graph. PLoS Comput Biol. 2020;16(3):e1007732.

12. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;14:2068–69.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/BioSina/Panakeia
https://github.com/BioSina/Panakeia
https://doi.org/10.1101/586495
https://doi.org/10.1101/586495
https://www.osti.gov/biblio/960616-exploring-network-structure-dynamics-function-using-networkx
https://www.osti.gov/biblio/960616-exploring-network-structure-dynamics-function-using-networkx
https://www.osti.gov/biblio/960616-exploring-network-structure-dynamics-function-using-networkx
https://doi.org/10.1101/2020.01.28.922989
https://doi.org/10.1101/2020.01.28.922989

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Preprocessing
	Pan-genome analysis
	Associating protein clusters with chromosomal information
	Determining structural patterns in the pangenome
	Highlighting external information
	Inclusion of pantagruel output

	Results
	Running pankeia
	Panakeia output
	Genome graphs
	Pangenome graph and analysis
	Pattern extraction

	Comparison to other pangenome tools

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

