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Abstract 

Background:  Soybean is a major legume crop with high nutritional and environmental values suitable for sustain‑
able agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are 
important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs 
in the context of plant physiology, especially in response to salinity stress, are poorly understood.

Results:  Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and 
obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thor‑
oughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching 
(miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m 
target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-
dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean 
in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA 
Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salin‑
ity stress.

Conclusions:  This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm 
switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on 
molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop 
improvement.
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Background
Soybean is an economically and environmentally impor-
tant crop, providing a major source of dietary protein and 
oil for human food and animal feed. Cultivated soybean 
was domesticated from its wild relatives approximately 
5000 years ago in China before being introduced to other 
parts of Asia 2000 years ago [1, 2]. While Asian countries 
such as China are major consumers of soybean, it has 
now become an important cash crop in North and South 
America for export. Unfortunately, soybean is generally 
sensitive to saline soil, (often a result of long-term culti-
vation and over-fertilization of the land), resulting in the 
reduction of its yield [3]. Earlier studies on salt tolerance 
of soybean have mainly focused on identifying the pro-
tein-coding genes and related mechanisms involved [4].

Besides protein-coding genes, noncoding RNAs (ncR-
NAs) are equally important regulators of gene expres-
sions in plants, ranging from moderating development 
to coping with abiotic and biotic stresses. One type of 
ncRNAs, microRNAs (miRNAs) are typically 21-23 
nucleotides long and can bind to the 3′ untranslated 
regions (3’UTRs) of messenger RNAs (mRNAs), result-
ing in the downregulation of their target genes. Soybean 
mutants lacking the miRNA biogenesis component, 
Dicer-like 1, have reduced seed size and defective seed-
ling development [5]. Many other miRNAs were also 
found to be associated with the development of soybean 
seeds [6–8], roots [9], and flowers [10]. For instance, the 
overexpression of miR156b negatively regulated squa-
mosa promoter-binding protein-like genes (GmSPLs) 
and postponed flowering time [11, 12]. In addition to 
the developmental roles, miRNAs are also associated 
with the responses toward abiotic stresses in soybean [3, 
13–17], such as the involvements of gma-miR169c and 
gma-miR394a in drought tolerance and salt sensitivity 
[18–20], and miR399a and miR172c in root development 
under salinity stress [21, 22].

Despite a better understanding of the different roles 
of miRNAs in plants including soybean, several aspects 
remain poorly known, one of which is the phenomenon 
of miRNA arm-switching ([23, 24]; Fig.  1). In the bio-
genesis of miRNA, the dominant strand could change 
depending on cellular contents. Since the complemen-
tary strands of mature miRNAs will target different sets 
of mRNAs, alternative strand selection has been impli-
cated in various biological mechanisms in animals (e.g. 
[26, 28, 29]). In plants, there are only a handful of studies 
related to miRNA arm-switching. For instance, miR393 

and miR399 could undergo arm-switching in Arabidop-
sis under pathogen infection and phosphate depriva-
tion [30, 31]. The analyses of 29 rice small RNA libraries 
also revealed miRNA arm-switching in different tissues 
and under abiotic stresses [32]. Nevertheless, whether 
miRNA arm-switching could potentially contribute to 
soybean abiotic stress responses remains unexplored.

Another aspect that requires further investigation is 
the interactions between miRNAs and other ncRNAs, 
such as long noncoding RNAs (lncRNAs). Various roles 
of lncRNAs in gene regulation have already been dem-
onstrated in plants, including transcriptional regulation 
[33–36] and alternative splicing [37]. LncRNAs could 
also augment the repertoires of RNA molecules [27]. 
For instance, the lncRNA IPS1 could interact with the 
miRNA miR399 to play a role in phosphate homeostasis 
by regulating its target gene PHO2 in Arabidopsis [38, 39] 
and Medicago [40]; and the lncRNA osa-eTM160 could 
interact with osa-miRNA160 to regulate rice develop-
ment [41]. In soybean, there has only been a genome-
wide prediction of lncRNAs and miRNAs [42] but no 
systematic study on their interactions has been carried 
out yet. Therefore, the interactions between miRNAs and 
lncRNAs in relation to physiological responses toward 
abiotic stresses in soybean have remained elusive.

Here, we generated miRNA sequencing data from soy-
bean leaf and root tissues from two soybean accessions 
(a cultivated Gylcine max C08 and a wild Glycine soja 
W05 accession as representatives) treated with NaCl at 
six time points with three biological replicates, in order 
to shed light on (i) differential miRNA expression, (ii) 
miRNA arm-switching, (iii) interactions between miR-
NAs and lncRNAs; and (iv) conserved and accession-spe-
cific responses between cultivated and wild accessions in 
response to salinity stress in soybean.

Results
Differential miRNA expression in soybean under salinity 
stress
The setting of the experiment is described in materials 
and methods and a total of 72 small RNA datasets were 
generated for analysis (Fig. 2). Details of the datasets are 
listed in Supplementary Table 2. The small RNA sequenc-
ing data generated above were then used to identify 
miRNA candidates responsive to salinity stress. By com-
paring samples across different treatments, 35 upregula-
tion and 77 downregulation events were found in the leaf 
and root between the different time points (Fig. 3).

Keywords:  microRNA (miRNA), Long noncoding RNA (lncRNA), Soybean, microRNA arm switching, miRNA:lncRNA 
interactions, Salt stress
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Among the upregulated miRNA candidates (Fig.  3A), 
certain members within the same miRNA family sub-
functionalized and were differentially expressed at dif-
ferent salinity conditions, including miR166 and miR390. 
In the case of the miR166 family, the expression of 
miR166m was found to be upregulated in the root of 
both W05 and C08 from 0 to 1 h upon salinity treatment, 
while the expression of miR166i-5p was upregulated in 
the leaf of both W05 and C08 from 4 h to 24 h. Similar 
sub-functionalization of expression patterns was also 
observed in the downregulated miRNAs, for instance, the 
miR156 family (Fig. 3B).

In addition, divergent expression trends of miRNAs 
upon salinity stress were also revealed within or between 
the tissues of the cultivated and wild soybean, includ-
ing miR156b, miR156f, miR160a, miR166i, miR390a, 
miR390e, miR390f, miR390g, miR394a, miR4413a, 
miR4416c, and miR5225 (Fig. 3). For example, the expres-
sion of miR156b was upregulated in the root of C08 from 

4 h to 24 h, while its expression was downregulated in the 
leaf of W05 from 4 h to 24 h.

On the other hand, some other miRNAs demonstrated 
consistent expression responses under salinity stress in 
the same tissue of both accessions, including miR156r, 
miR166i, miR3522, miR394a, miR397a, miR397b, 
miR5225, miR5671a, miR5761a, miR5761b, miR5770a, 
and miR5786 (Fig. 3). For example, miR156r was down-
regulated from 4 h to 24 h in the root of both C08 and 
W05. These miRNAs could play potentially important 
roles in the response to salinity stress and therefore 
deserve further investigations (Fig. 3).

MiRNA arm expression and switching of dominance
In addition to the conventional comparisons of dif-
ferential expressions in miRNA family members upon 
salinity stress, we also investigated the expression pat-
terns between the two arms (5p and 3p) generated from 
the same miRNA locus. Conserved expression patterns 

Fig. 1  Schematic diagram showing the biosynthesis of microRNAs (miRNAs) and long noncoding RNA (lncRNAs) (modified from [25–27]). miRISC: 
miRNA-induced silencing complex; miR*ISC: miRNA*-induced silencing complex. E1, E2: exon 1, exon 2; 1) intronic long noncoding RNA, 2) 
intergenic long noncoding RNA, 3) exonic long noncoding RNA, 4) antisense long noncoding RNA
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between miRNA arms were observed in both soybean 
accessions, an example of which is miR169l, where both 
the 5p and 3p arms had increased expression under 
salinity treatment between 4 to 24 h in the root samples 
(Fig. 3A).

However, divergent expression patterns between the 
two miRNA arms were also observed in the different 
tissues of the cultivated and wild soybean. For instance, 
decreased expression of the 3p arm was revealed in 
miR408a in the leaf tissues of W05 between 4 to 24 h, 
while downregulation of the 5p arm was observed 
between 4 to 24 h in the root tissues of C08 (Fig.  3B). 
Another example is miR408c which represents the 
same expression pattern as miR408a (Fig. 3B). Next, we 
explored whether miRNA arm-switching has occurred, 
using the stringent criteria as described in Materi-
als and Methods, and found that miR166m underwent 
arm-switching in both soybean accessions (Fig.  4). Spe-
cifically, in all three biological replicates of the C08 root 
samples challenged with NaCl for 48 h, 5p arm domi-
nance was recorded for miR166m (Fig.  4A; Supplemen-
tary Fig.  1), and yet at the same time point in the C08 
leaf tissue, all three biological replicates exhibited 3p 
arm dominance for the same miRNA (Fig.  4B; Supple-
mentary Fig.  1). The same pattern was also observed in 
W05 at 4 h upon salinity treatment, where miR166m 
exhibited different arm dominance in the root versus the 
leaf (Fig. 4C & D; Supplementary Fig. 1). In silico predic-
tion of target genes of miR166m-5p and miR166m-3p in 
C08 and W05 were carried out and summarised in Sup-
plementary Table  5. Conserved targets of the two arms 
were identified, such as the chloroplastic beta-amylase 1 
targeted by miR166m-5p and calcium-dependent protein 
kinase 1 targeted by miR166m-3p. Predicted target genes 

regulated by miR-166 m and were previously reported 
relating to salinity stress were further selected for vali-
dation by dual luciferase reporter assay (Supplementary 
Fig. 3), suggesting arm-switching of miR166m play roles 
in soybean in response to salinity stress. In any case, this 
is the first time a robust and confident case of miRNA 
arm-switching was demonstrated in both cultivated and 
wild soybean accessions.

MiRNA and lncRNA interactions in soybean under salinity 
conditions
The potential interaction between miRNAs and lncR-
NAs was then investigated by combining the data gener-
ated in this study with our previous studies on soybean 
transcriptome reprograming in response to salinity 
stress [43–45]; Supplementary Table  4). Two criteria 
were used for predicting interactive pairs of miRNA 
and lncRNA, including: (1) sequence complementarity 
between the miRNA and the lncRNA, and (2) opposite 
trends in the expression patterns between the miRNA 
and the lncRNA upon salinity stress (Fig. 5A & B). Pre-
dicted miRNA:lncRNA pairs meeting these two criteria 
could suggest their functional relevance in salinity stress 
responses, and a total of four possible miRNA:lncRNA 
pairs were identified, with miR166i and miR394a each 
targeting two lncRNAs (Fig. 5C).

Specifically, in C08, miR166i-5p decreased in expres-
sion in leaf between 4 and 24 h upon salt treatment, while 
its predicted target lncRNAs, Gmax_MSTRG.11852.1 
and Gmax_MSTRG.35921.1, increased in expres-
sion levels (Fig.  5C). On the other hand, in the root, 
upon salinity treatment between 2 and 4 h, miR166i-5p 
increased in expression level while the expressions of 
Gmax_MSTRG.11852.1 and Gmax_MSTRG.35921.1 

Fig. 2  Schematic diagram showing the experimental setup



Page 5 of 13Li et al. BMC Genomics           (2022) 23:65 	

decreased (Fig. 5C). Using the LAMP assay followed by 
RT-PCR, the interactions between miR166i and lncRNA 
Gmax_MSTRG.35921.1 was validated (Fig.  5D). This 
miRNA:lncRNA pair showed tissue-specific variations 
in their antagonistic expression patterns during soybean 
salinity stress.

On the other hand, time-specific variations in expres-
sion patterns were observed for miR394a and its pre-
dicted target lncRNAs in the root samples of C08, 
where different antagonistic expression patterns were 
observed between miR394a and its two predicted targets, 
Gmax_MSTRG.12568.1 and Gmax_MSTRG.18616.1, at 

different time points after salt treatment (Fig. 5C). How-
ever, only the interaction between miR394a and Gmax_
MSTRG.18616.1 could be validated by the LAMP assay 
and RT-PCR (Fig.  5D). Furthermore, utilising the dual 
luciferase reporter assay, we validated the potential inter-
actions of these two microRNAs with lncRNAs and genes 
related to salinity stress, suggesting the potential regula-
tion of these two miRNAs under salinity stress (Supple-
mentary Table 6 and Supplementary Fig. 3).

Fig. 3  Differential expression of soybean microRNAs (miRNAs) under salinity stress. A Up-regulated miRNAs. B Down-regulated miRNAs
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Discussion
Previous studies have explored and established the 
potential roles of soybean miRNAs under salt treatment, 
ranging from elucidating individual miRNA functions 
[19, 21] to the genome-wide profiling of miRNAs via 
transcriptome sequencing [13, 48, 49]. This study further 
advances the knowledge of miRNAs in several aspects.

In terms of miRNA sequencing data, previous stud-
ies have usually focused on a single tissue/time point/
accession. For instance, information was provided on a 
salt-sensitive soybean inbred line “HJ-1” based on a sin-
gle tissue type at a single time point, i.e. root at 48 h [13]; 
effects of salt treatment on the leaf and root samples of 
“William 82” at various early time points (0, 1, 3, 6, 9 and 
12 h; [48]); and longer-term effects on the root tissues of 

“William 82” at 15d after salt treatment [49]. On the other 
hand, the data generated in this study covers two tissue 
types (leaf and root) at a large range of time points (0, 1, 
2, 4, 24 and 48 h) from two accessions (G. soja “W05” and 
G. max “C08”), providing an unprecedented opportunity 
to understand the various dynamic contributions of miR-
NAs to soybean physiology in coping with salinity.

In addition to providing a list of differentially expressed 
miRNAs, this study also uncovered new aspects of 
miRNA responses to abiotic stresses in plants. Similar 
to other studies, we found that in this study, members of 
the same miRNA family exhibited different expression 
patterns upon salinity challenge, but because we could 
compare the data between two accessions in the same 
tissues and time points, we were then able to reveal the 

Fig. 4  MicroRNA (miRNA) arm-switching of miR166m. A, B Root (A) and leaf (B) samples of G. max (C08) at 48 h post-salinity treatment. C, D Root 
(C) and leaf (D) samples of G. soja (W05) at 4 h post-salinity treatment. Red and blue represent the 5p and 3p arms of miR166m, respectively



Page 7 of 13Li et al. BMC Genomics           (2022) 23:65 	

conserved and divergent trends of expression patterns of 
miRNAs, which in turn allowed us to narrow down those 
miRNAs which are potentially being negatively selected 
in the salinity responses in soybean, which can then lead 
us to their target genes that could be the important play-
ers in these responses.

This study has also shed new light on how the differ-
ent arms of the miRNA could contribute to plant physi-
ology. Here we have identified conserved and divergent 
expression patterns between the two arms across the two 

accessions. Specifically, the two arms of miR169l exhib-
ited the same expression profiles/response upon salinity 
challenge. This could potentially be used as another strat-
egy to identify miRNAs which could play important roles 
in soybean physiology, by screening for those miRNAs 
with similar expression profiles under abiotic stresses.

Furthermore, in animal models, miRNA arm-switch-
ing is now well-known as a mechanism for controlling 
various biological processes, but there are still only lim-
ited studies on Arabidopsis and rice to understand how 

Fig. 5  MiRNA:lncRNA interactions in response to salt stress. A Schematic diagram showing miRNA:lncRNA interactions (modified from [46, 47]). B 
Numbers of predicted interacting miRNAs and lncRNAs with antagonistic expression patterns. C Four predicted cases of miRNA:lncRNA interactions. 
D LAMP assay and RT-PCR validation of miRNA:lncRNA interactions. Arrows indicate the expected sizes of the target lncRNAs
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such miRNA arm selection could be a potential stress 
response strategy in plants [30–32]. This study also pro-
vided the first documented case of a miRNA (miR166m) 
undergoing arm-switching in different tissues in soybean, 
in both G. max and G. soja, when under salinity stress. 
Last but not least, we have also revealed for the first time 
miRNA and lncRNA interactions in soybean under salin-
ity stress (Fig. 6). Previous studies in other plant species 
have revealed potential miRNA:lncRNA interactions 
under different conditions, such as phosphate starvation, 
pathogen infection, and heat stress [47, 50, 51]. Two pairs 
of miRNA:lncRNA interacting partners (miR166i-5p 
and lncRNAs Gmax_MSTRG.35921.1; and miR394a-3p 
and lncRNA Gmax_MSTRG.18616.1) could be iden-
tified and validated in soybean under salinity stress. 
Intriguingly, the interactions between miR166i-5p and 
its lncRNA interacting partner showed tissue-specific 
expression patterns, whereas that between miR394a and 
its lncRNA partner exhibited time-dependent patterns 
after salt treatment. It has previously been proposed that 

down-regulated miRNAs may target genes involved in 
stress responses, while upregulated miRNAs probably 
target genes involved in development [52]. Validation of 
the predicted targets for these selected miRNAs indicates 
the potential regulation of these miRNAs in response 
to salinity stress given these targets such as SOS2-like 
protein kinase [53], calcium-dependent protein kinase 
1 [54], nudix hydrolase 2 [55] were previously shown to 
be related to salinity stress. Nonetheless, whether and 
how these different kinds of noncoding RNAs interaction 
under salinity stress spatially/temporally, and whether 
these interactions could contribute to the improvement 
on salinity tolerance of soybean, remain to be tested.

Conclusions
This study profiled the time-series differential expres-
sion patterns of a group of miRNAs in the root and leaf 
of two soybean accessions under salinity stress. We also 
discovered the first evidence of miRNA arm-switching 

Fig. 6  Schematic diagram showing the interactions of miRNA:lncRNA:protein coding genes identified in this study
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in soybean, indicating that different tissues may have 
different miRNA arm preference that contributes to 
different biological functions. Two validated pairs of 
miRNA:lncRNA interacting partners involved in the 
response to salinity treatment in soybean were also iden-
tified, setting up the foundation for further investigations 
into the roles of different types of non-coding RNAs in 
plant physiology.

Methods
Soybean treatments and sample collection
Cultivated (C08) and wild (W05) soybean plants were 
grown and harvested as described in one of our previous 
publications [43]. Salt treatment was carried out by trans-
ferring to half-strength Hoagland solution supplemented 
with 0.9% (w/v; ~ 150 mM) NaCl when the primary leaves 
were fully opened. Three independent sets of primary 
leaf and root samples of each cultivar and treatment were 
harvested at 0, 1, 2, 4, 24, and 48 h post-treatment. A total 
of 72 samples were generated.

Small RNA sequencing
MicroRNA (miRNA) was isolated using mirVana™ 
miRNA Isolation Kit (Thermo Scientific) with Acid-
Phenol:Chloroform (Thermo Scientific), following the 
manufacturer’s protocol. After the quality of miRNA 
was examined via bio-analysis, small RNA library con-
struction and deep sequencing were performed at BGI 
(Shenzhen, Guangdong, China). Briefly, after PAGE puri-
fication, small RNA molecules between 16 and 30 bases 
were collected and ligated with a pair of Solexa adaptors 
to their 5′ and 3′ ends respectively. The small RNAs were 
then amplified using the adaptor primers for 17 cycles. 
Amplicons of around 90 bp (small RNA + adaptors) were 
isolated from the agarose gel and were used directly 
for cluster generation and sequencing analyses using 
Illumina Hiseq 2000 according to the manufacturer’s 
instructions.

MiRNA arm‑switching detection and differential miRNA 
expression
FastQC was run as quality control [56] for the 72 small 
RNA datasets. Adaptor sequences were trimmed from 
small RNA sequencing reads, and reads with the Phred 
quality score less than 20 were removed. The expres-
sion levels of the 5p and 3p arms of soybean miRNAs 
from miRBase (Release 22.1) were calculated based on 
the number of sequencing reads mapped to the respec-
tive arm region in the miRNA hairpin using bowtie/
miRDeep2 [57, 58]. The miRNAs having either arm with 
absolute counts > 50 were included in the arm-switching 
analysis. The formula, ω = 5p/(5p + 3p), where 5p and 
3p refer to the number of predicted 5p arm and 3p arm, 

respectively, was adopted to calculate the arm selection 
value, ω, which ranged from 0 to 1. Smaller ω values indi-
cate higher tendencies of 3p preference and larger values 
indicate higher tendencies of 5p preference. We adopted 
ω < 0.3 as the indicator of 3p dominance and ω > 0.7 as 
the indicator of 5p dominance. The shift of arm domi-
nance is defined as arm switching [24]. The expression 
raw read table, calculated as previously described, was 
submitted to Degust [59] for the comparative analyses 
of differential miRNA gene expression using the edgeR 
method [60]. (Degust link: https://​degust.​erc.​monash.​
edu/​degust/​compa​re.​html?​code=​70875​6e3e3​e0ad7​1f681​
86a9e​83f19​c2#/.)

Interaction prediction between miRNAs and long 
noncoding RNAs (lncRNAs)
The soybean lncRNA annotation was retrieved from a 
previously published soybean lncRNA catalog [44]. The 
published time-series transcriptome data upon salt treat-
ment [43, 45] were processed as described [44]. Briefly, 
adapter and quality trimming were performed using 
Trimmomatic 0.36 [61]. Then, the clean reads of C08 and 
W05 were mapped to the reference genomes of Williams 
82 (G. max) [62] and W05 (G. soja) [45], respectively, 
using TopHat v2.1.1 [63]. With the read mapping results, 
Cufflinks [64, 65] was used to perform annotation-free 
transcriptome assembly. The assembled transcripts were 
merged using the Cufflinks script, “cuffmerge”, to pro-
duce unified transcript sets separately in both genomes. 
These transcripts were then compared against the pro-
tein-coding transcripts, as well as small non-coding 
transcripts as predicted by RNAmmer v1.2 [66], tRNAs-
can-SE v2.0 [67] and Infernal v1.1.2 [68] with Rfam v13.0 
database [69], and searched against the nonredundant 
protein database from NCBI using BLASTx [70] to iden-
tify potential lncRNAs. Trinity [71] was used for de novo 
transcriptome assembly with the clean reads, separately 
for the C08 and W05 data. All Trinity-assembled tran-
scripts were aligned to the two reference genomes using 
GMAP v2018-03-25 [72]. The above-mentioned poten-
tial lncRNAs were used for downstream analyses only 
when they were supported by both the Trinity-assembled 
transcripts and the lncRNA catalog. The differential gene 
expression analysis was performed using the Cufflinks 
script, “cuffdiff”, with the criteria set at |log2FC| > 1 and 
q-value < 0.05. Target prediction between miRNA and 
lncRNA was performed by RNAhybrid [73], based on the 
seed region pair-matching with default parameters, and 
by LncMirNet [74] based on deep-learning of ribonucleic 
acid sequences, respectively. For the comparison across 
the time-series of salinity treatment, parameters were 
set to screen for differentially expressed miRNAs and 
lncRNAs to investigate potential interactions between 

https://degust.erc.monash.edu/degust/compare.html?code=708756e3e3e0ad71f68186a9e83f19c2#/
https://degust.erc.monash.edu/degust/compare.html?code=708756e3e3e0ad71f68186a9e83f19c2#/
https://degust.erc.monash.edu/degust/compare.html?code=708756e3e3e0ad71f68186a9e83f19c2#/
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them. For lncRNAs, |log2FC| ≥ 1 and q-value ≤0.05 were 
used as screening criteria for differential expression. For 
miRNAs, counts per million (CPM) ≥ 50 in at least one 
sample, |log2FC| ≥ 1, and false discovery rate (FDR) cut-
off ≤0.05 are the criteria used for differential expression 
screening.

Target gene prediction of miRNAs
Target predictions between miRNAs and the 5′ untrans-
lated regions (UTR), coding sequence (CDS) and 3’UTR 
of protein-coding genes were performed by psRNA-
Target [75]. The functional term annotations were per-
formed using eggNOG [76] with default parameters 
and taxon restricted to Fabids (Taxon ID:91835). Genes 
were assigned with Gene Ontology (GO), EuKaryotic 
Orthologous Groups (KOG), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and KEGG Orthology 
(KO) terms. Functional enrich of mirna target gene was 
tested using function ‘compareCluster()’ in R package 
‘clusterProfiler’ v.3.16.1 [77] under the environment of R 
4.0.4 [78]. Significantly enriched terms were determined 
with pvalueCutoff = 0.05, pAdjustMethod = “BH”, and 
qvalueCutoff = 0.2. Data was visualised using R packages 
‘ggplot2’ [79].

Labeled miRNA pull‑down (LAMP) assay
The predicted interactions between miRNAs and lncR-
NAs were validated by biotin-labeled miRNA pull-down 
(LAMP) assay [80] using Dynabeads®M-280 Streptavidin 
(Invitrogen™) and biotin-labeled gma-miR166i-5p and 
gma-miR394a-3p (Integrated DNA Technologies [IDT]), 
followed by RT-PCR. The primers of four target lncR-
NAs for PCR are listed in Supplementary Table 1. RNA 
from the leaf of C08 under salt treatment for 24 h was 
the starting material and the RNA pulled-down products 
were reverse-transcribed using the iScript cDNA Synthe-
sis Kit (BIO-RAD) following the manufacturer’s protocol 
to obtain the cDNAs. Those originating from the four 
target lncRNAs were amplified by PCR and separated on 
agarose gel. The target bands were excised and purified 
by QIAquick gel extraction kit (Qiagen) following manu-
facturer’s protocol and sent for Sanger sequencing for 
confirmation.

Dual luciferase reporter (DLR) assay
Genomic DNA and cDNA were used to amplify micro-
RNA hairpins with flanking sequences, target genes 
and lncRNAs. Primers information were listed in Sup-
plementary Table 1. Sequences used in DLR assay were 
listed in Supplementary Table  7. MicroRNAs were 

cloned into pAC5.1 vector, while the target genes and 
lncRNAs were cloned into psicheck-2 vector. Dual 
luciferase reporter assay was conducted in Drosophila 
S2 cells as previously described [81] with following 
modifications: Drosophila S2 cells were cultured in 
Shields and Sang M3 Insect Medium (Sigma) supple-
mented with 10% (v/v) heat-inactivated fetal bovine 
serum (Gibco, Life Technologies) and 1: 100 penicillin-
streptomycin (Gibco, Life Technologies). Measurement 
was performed at 36-48 h post-transfection by Tecan 
Spark 10 M Microplate Reader (Eastwin International 
Trading Ltd) with two technical replicates four biologi-
cal replicates.
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