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Abstract 

Background:  DNA methylation is thought to influence the expression of genes, especially in response to chang‑
ing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial 
or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even 
require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic 
makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering 
essential developmental processes. Different crop species may show opposing reactions towards the same abiotic 
stress, or, vice versa, identical species may respond differently depending on the specific kind of stress.

Results:  In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and 
gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced 
reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent 
CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong 
upregulation of several genes mediating active DNA demethylation.

Conclusion:  Integration of methylomic and transcriptomic data revealed that, rather than methylation having 
directly influenced expression, epigenetic modifications correlated with changes in expression of known players 
involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA 
demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the 
cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations 
necessary for adapting to upcoming environmental changes.

Keywords:  Beta vulgaris subsp. vulgaris, Abiotic stress, Cold response, WGBS, RNA-seq, DNA methylation, Epigenetics, 
Omics

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sugar beet is the main source of sugar production in 
Europe. Its fleshy taproot provides around 15% of the 
world’s annual production of sugar, solely competing with 
sugar cane in industrial sucrose extraction worldwide [1]. 
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Conventionally, sugar beets are sown in spring and har-
vested before winter, still in the vegetative stage. In con-
trast, sowing sugar beet in autumn and harvesting in the 
following year could increase - due to the development 
in the winter and the acceleration of growth in the spring 
- the sugar content by up to 26% [2]. Therefore, one of 
the major goals in sugar beet breeding is the production 
of winter beets with the challenge to ensure the viability 
over the winter season, since particularly  seasonal envi-
ronmental stresses such as frost  limit possible periods 
for their cultivation  and thereby also restrict potential 
enhancement of yield. Biennial sugar beets grow vegeta-
tively in the first season and after extended exposure to 
cold during the winter season, they switch to generative 
reproduction and acquire floral competence, as a result 
of vernalization and the subsequent shift towards long-
day conditions in spring  [3, 4]. The shoot outgrowth or 
stem elongation, so-called bolting, and the following 
flower development drastically reduce the sugar yield and 
the size of the beet.

Plants, as sessile organisms, are known to use several 
strategies to cope with changing environmental condi-
tions through significant alterations in gene expression, 
or epigenetic processes to ensure phenotypic plastic-
ity. One epigenetic key mechanism is DNA methylation, 
which forms 5-methylcytosine nucleotides (5-mC) by 
covalently linking methyl-group(s) to specific cytosines 
at carbon position 5. Cytosine methylation in plants 
is facilitated by different enzymes acting on cytosines 
dependent on their 3′ nucleotide environment, with dis-
tinct methyltransferases being able to modify cytosines 
in CpG, CHG, or CHH context, where H represents A, 
T, or C (Fig. 1b). Sites in CpG and CHG context are con-
sidered “symmetric”, as the opposite strand inevitably 
carries an identical motif including a potential methyla-
tion target, which is represented by the guanine-pairing 
cytosine of the opposite strand [5]. Cytosines in CHH 
context, or methylation thereof, accordingly is “asym-
metric” by nature. Apart from acting specifically towards 
different cytosine environments, the particular set of 

enzymes modulating DNA methylation is also depend-
ent on whether methylation is being established de novo, 
or whether an existing methylation mark is being main-
tained [6]. De novo methylation is established through 
the RNA-directed DNA methylation (RdDM) pathway 
and affects cytosines in all contexts (CG, CHG, CHH). 
However, newly established modifications at symmetric 
sites would not be carried over to the daughter strand 
during DNA replication without an additional mainte-
nance system. A set of distinct methyltransferases, coun-
teract the passive loss of methylation in a context-specific 
manner, whereby METHYLTRANSFERASE 1 (MET1) 
maintains CG methylation [7, 8], whereas CHROMO-
METHYLTRANSFERASE 3 (CMT3) or CMT2 main-
tain methylation of cytosines in CHG context [9–12]. 
CMT3 acts in presence of specific histone modifica-
tions (H3K9me2), placed by SUPPRESSOR OF VARIE-
GATION 3–9 HOMOLOGUE PROTEIN 4 (SUVH4), 
SUVH5, and SUVH6, which in turn are recruited to 
(CHG-) methylated DNA, thereby forming a reinforcing 
loop between CHG methylation and H3K9 methylation 
[13]. CHH methylation is mediated chromatin-specifi-
cally - either by DRM2-dependent RdDM (euchromatin), 
or - in H1-containing heterochromatin where RdDM is 
blocked - by CMT2 [11, 14, 15]. Cytosine methylation 
can also be actively removed via excision of the methyl-
ated nucleotide, followed by repair of the cleavage site 
(base excision repair pathway, BER). Excision of a meth-
ylated nucleotide can be facilitated by bifunctional 5-mC 
DNA glycosylases, such as REPRESSOR OF SILENCING 
1 (ROS1), TRANSCRIPTIONAL ACTIVATOR DEME-
TER (DME), or DEMETER-LIKE PROTEINs (DML2 and 
DML3). Following further modification of the cleavage 
site, the gap is (filled and) repaired via DNA polymerase 
and ligase enzymes, e.g. LIG1 in Arabidopsis [16–21].

RNA sequencing has already been used in numerous 
studies to investigate altered gene expression under envi-
ronmental stress in plants [23].  In addition, epigenetics 
relating to adaptive changes in plants gain more and more 
importance. Especially, the application of whole-genome 

Fig. 1  The workflow and terminology used to analyze and describe cold-dependent differential methylation in sugar beet. a Leaf material of 
two sugar beet accessions grown under control conditions or exposed to cold with three replicates per genotype and growth condition was 
collected. Sample material was split for extraction of RNA, or DNA, and subsequent RNA- (RNA-seq), or whole-genome bisulfite sequencing (WGBS), 
respectively. Raw reads were trimmed and the cleaned reads were mapped to the reference genome (Refbeet-1.2.2; [22]). For transcriptome 
analysis, mapped reads were quantified on gene level and the extracted data used to identify genes, differentially expressed (DEGs) between 
control and cold conditions. For methylome analysis, the number of methylated and unmethylated reads was extracted for each cytosine covered 
by at least 8 reads in each sample. From this data, methylation levels were calculated [methylated reads / (methylated + unmethylated reads)] and 
further analyzed in order to identify cold-dependent differential methylation affecting single cytosines (DMCs), or occurring along longer stretches 
of DNA (differentially methylated regions = DMRs) comprising at least three cytosines assigned to the same sequence context. To integrate 
transcriptomic and methylomic data, DEGs were functionally classified to identify cold-regulated, putative facilitators of DNA methylation, or DNA 
demethylation. Further, correlations between gene expression and methylation levels, or of changes in expression and changes of methylation 
were analyzed. b Schematic representation of context-specificity of DNA methyltransferases and demethylases. c Schematic representation of terms 
used to describe hypo (blue), or hyper (red) methylation, and differential methylation of individual positions (DMC) or differentially methylated 
regions (DMRs)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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bisulfite sequencing (WGBS) brings expansion of knowl-
edge about the epigenetic mechanisms controlling the 
development and adaptation of many plants. The treat-
ment with bisulfite converts unmethylated cytosines into 
uracil while methylated cytosines stay unaffected, which 
allows the detection of each cytosine’s methylation sta-
tus. Genome-wide cytosine methylation analysis in A. 
thaliana already revealed methylation patterns in genes 
and repetitive areas [24, 25]. In crops, this technique has 
also been used to identify epigenetic mechanisms that 
have a significant impact on stress responses or develop-
mental processes [26–30]. Many other publications also 
have demonstrated the importance of DNA methylation 
in different plants concerning responses to abiotic stress, 
including salt, drought, cold, heat, and heavy metal expo-
sure [31–40]. Hébrard et al. [41] already reported geno-
type-dependent DNA methylation and their association 
to the expression of genes participating in bolting toler-
ance in sugar beet by comparing bolting-sensitive and 
bolting-tolerant genotypes. Further, Zakrzewski et  al. 
[42, 43] published insights into the epigenome of sugar 
beet leaves and callus, focusing on methylation altera-
tions at satellite DNAs and transposable elements. To 
improve our current understanding of cold-adaptation 
mechanisms in sugar beets, we investigated DNA methy-
lomes of two B. vulgaris genotypes under normal condi-
tions and after exposure to cold, focusing on conserved 
epigenetic alterations and their association to genome-
wide gene expression. Our work provides insights into 
genome-wide, genotype-independent transcriptomic 
and epigenomic responses of Beta vulgaris to cold expo-
sure and links the expression of putative methylation- 
or demethylation-related genes to alterations in DNA 
methylation.

Results
Experimental setup and workflow
As depicted in the overview of our workflow (Fig. 1), we 
used plants from two different sugar beet accessions that 
were either grown under control conditions for 15 weeks 
(from now on, corresponding samples are grouped under 
the label CONTROL), or for 12 weeks followed by a 
three-week incremental cold treatment ending at a mini-
mum temperature of 0 °C (referred to as COLD). Leaf 
material was collected from six samples (2 genotypes × 3 
biological replicates each) per condition (see Methods). 
From this material, DNA and RNA was extracted to sub-
sequently analyze both the methylomic and transcrip-
tomic cold responses (Fig. 1a).

Cold treatment reduces DNA methylation levels
The 12 DNA samples were subjected to directional 
WGBS (PE150 + 150) using the Illumina NovaSeq 6000 

platform (Novogene, Beijing, China). After adapter 
and quality trimming (Q20), an average of 90 million 
paired-end reads (150 + 150) (~ 27 Gb) per sample were 
obtained, representing 36-fold coverage of the sugar 
beet reference genome [22]. Mapping and deduplica-
tion revealed average proportions of uniquely mapped 
and multi-mapped reads of 60 and 12%, respectively (see 
Fig. 1a and Methods).

After methylation extraction, the proportions of meth-
ylated cytosines in each context (CpG, CHG, and CHH) 
were analyzed per chromosome and in the genome as 
a whole (Fig.  2a). For beets grown under control con-
ditions, the highest methylation levels were detected 
for cytosines in CpG context (mCpG: 66.8%), followed 
by mCHG (41.7%) and mCHH (9.4%). Cold treatment 
slightly decreased global methylation levels of cytosines 
in all sequence contexts, with methylation levels reduced 
by 2.8% (mCpG: 64%), 1.2% (mCHG: 40.5%), or 1.3% 
(mCHH: 8.7%) in the cold treated group, although dif-
ferences were not statistically significant in any case 
(two-tailed Welch’s test; Fig.  2a). A trend towards cold-
dependent demethylation was also detected on gene-
feature-level. To describe these methylation patterns in 
the different parts of a gene, we averaged the methyla-
tion proportions for each possible context (among all 6 
samples in the corresponding group) in the following 
regions of all annotated genes of the reference genome 
[22, 44]: an upstream region spanning 2.5 kb in 5′ direc-
tion of the transcription start site (TSS); 5′-untrans-
lated region (UTR); coding sequence (CDS), intron and 
3’UTR. As shown in the right panel of Fig.  2, methyla-
tion levels generally reached maxima upstream of genes 
and within introns. In detail, mCHG and mCHH levels 
peaked extragenically, i.e. in upstream regions, while 
maximum mCpG was detected along introns. Overall, 
CDSs and 5’UTRs showed comparatively low methyla-
tion levels in all contexts, with mCHG and mCHH reach-
ing a minimum in CDSs, and lowest mCpG detected for 
5’UTRs. Although COLD showed slightly lower average 
methylation than CONTROL in almost all gene-related 
features (i.e. in all categories including 5′ flanks) and 
for all contexts analyzed, these differences were mostly 
rather subtle, while statistically significant differences 
were detected only between 5′- or 3′- UTR mCHH levels 
of COLD vs CONTROL (two-tailed Welch’s test, p < .05).

Exposure to cold alters methylation of individual cytosines 
in all sequence contexts
To explore significant alterations of DNA methylation 
in response to cold treatment at individual positions, we 
analyzed methylation for each cytosine (depth 8 in each 
replicate) of all chromosome-assigned scaffolds consti-
tuting the B. vulgaris genome using methylKit [45]. A 
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cytosine site with a q-value (SLIM adjusted p-value) of < 
.05 was defined as differentially methylated (DMC = dif-
ferentially methylated cytosine), with positions being 
labeled “hypermethylated” (e.g. dmCpGhyper) when meth-
ylation rates were significantly higher, or “hypomethyl-
ated” (e.g. dmCpGhypo) when methylation rates were 
significantly lower in cold-treated samples compared 
to the controls (Fig.  1c). We identified 5319 DMCs dis-
tributed over the nine chromosomes (Fig.  3a), with the 
highest DMC-density on chromosome 6 (19.7 DMCs 
per Mbp), and the lowest on chromosome 1 (7.5 DMCs 
per Mbp; Fig.  3c). 3840 (72.2%), 1041 (19.6%) and 438 
(8.2%) DMCs could be assigned to CpG, CHG, and CHH, 
respectively, with slightly higher numbers of dmCpGhypo 

and dmCHHhypo compared to corresponding hypermeth-
ylated Cs (Fig.  3a). Of all detected DMCs, 2873 (54.0%) 
were either located directly within, or occurred within 
2.5 kb 5′ of TSSs, with dmCpG accounting for more than 
80% of all DMCs overlapping a gene or its upstream 
flank, approximately reflecting the proportion of DMCs 
in CpG context to non-CpG-DMCs.

Overall, most DMCs overlapped introns, CDSs, or 
occurred within 2.5 kb upstream of TSSs - together 
accounting for more than 90% of all gene-associated or 
5′-proximal DMCs (Fig.  3b), except for dmCHHhypo, 
which showed a preference for upstream regions and 
3’UTRs. Additionally, dmCHGhyper and dmCHHhyper 
showed particularly strong associations with introns. 

Fig. 2  Methylation levels in the genome and in gene components under control conditions or after exposure to cold. Global methylation levels 
of individual chromosomes, the entire genome (panels on the left), or within gene components (panels on the right). Different colors indicate 
methylation levels of cytosines in different sequence contexts (CpG, CHG, CHH), with lighter shades representing methylation levels of CONTROL 
and saturated shades representing those of COLD, respectively. Asterisks indicate significant differences (p-value ≤ .05; two-tailed Welch’s 
test) between methylation levels of CONTROL and COLD. (See also: Additional File 1, Supplementary Fig. S1 for feature methylation levels per 
chromosome, and Additional File 1, Supplementary Fig. S2 for methylation levels of transposable elements)
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Note, that while this was beyond the scope of our study, 
we additional provide corresponding data summarizing 
overlaps of DMCs (and DMRs, see next chapter) with 
transposable elements (TE) in Additional File 1, Sup-
plementary Fig. S2 and S3. In plants, methyltransferases 
and demethylases favor specific sequences for local (de)
methylation [46]. To evaluate possible sequence pref-
erences, we scanned the sequence composition within 
25 bp-flanking-regions (25 bp up- and downstream of 
each DMC, i.e. 51 bp in total) of all cold-dependent 
DMCs, separately for hyper- and hypomethylation in 
CpG, CHG, or CHH context, respectively (see Addi-
tional file 1, Supplementary Fig. S4). In flanking regions 
of dmCHG and dmCpG, we observed mainly A/T rich 
sequences, with a slightly higher frequency of Gs 5′ prox-
imal to dmCHG (position − 4 relative to DMC position). 
In contrast to dmCpG and dmCHG, Gs and Cs occurred 
more frequently in the neighborhood of dmCHH. Within 
trinucleotide-environments of hypermethylated DMCs, 
H positions directly next to differentially methylated 
cytosines were almost exclusively occupied by T or A. 
Some of the cytosines which had instead lost methylation 
in response to cold treatment preceded another (not nec-
essarily differentially methylated) cytosine. These results 
are comparable to identified sequence preferences for 
methylation in A. thaliana [24, 25].

Differentially methylated regions in CHH context 
preferentially become hypomethylated in response to cold
Differentially methylated regions (DMRs) are stretches 
of DNA including multiple cytosines with collectively 
altered methylation levels between samples. We used 
HOME (Histogram of methylation), a machine learning-
based tool, to identify DMRs while taking into account 
the sequencing depth and spatial correlation of cytosines 
[47]. We decided to filter all detected differentially meth-
ylated regions for a minimum methylation difference of 
10% (spanning the whole DMR) between CONTROL 
and COLD. This left a total of 3557 DMRs (Fig. 3d), with 
2760 DMRs (77.6%) in CpG, 700 (19.7%) in CHG, and 97 
(2.7%) in CHH context. 699 DMRs (19.7%) - all of which 
were assigned to either CpG or CHG - contained at least 
one DMC (in corresponding C context). We investigated 
the presence of DMRs within gene features, and – again 
similar to DMCs - the number of DMRs in CpG context 
was highest in CDSs and introns and lowest in 5’UTRs 
(Fig.  3e). DMRs in CHG context were similarly distrib-
uted over gene features, but peaked within introns, both 
contrasting CHH DMRs, which predominantly over-
lapped upstream regions but – apart from some introns 
- were basically absent from other gene features. Com-
parable to DMCs, most of the DMRs were located on 

chromosome 6, while chromosome 1 showed the fewest 
DMRs (Fig. 3f ).

CHG and CHH methylation is associated with low gene 
expression
For RNA-seq, RNA extracted from all six CONTROL 
and all six COLD samples was used to construct poly-
A selected libraries and sequenced using the Illumina 
Inc. HiSeq 2000 system (GATC GmbH, Konstanz, Ger-
many). After adapter and quality trimming (Q20), an 
average of 88 million paired-end (151 + 151) reads (~ 13 
Gb) per sample were obtained. The average proportions 
of uniquely mapped and multi-mapped reads were 91.06 
and 5.81%, respectively (see Fig. 1a and Methods).

Integration of gene expression and DNA methylation 
additionally requires consideration of sequence contexts 
of cytosines while discriminating between different types 
of genomic features affected by methylation. We used 
MethGet to assess associations between expression and 
methylation for each replicate, individually [48]. Gene 
expression data was normalized for transcript length to 
allow for the comparison of gene expression within sam-
ples. Each gene was assigned to one of six groups, based 
on its relative expression level. Subsequently, the meth-
ylation level along all genes within the same group, as 
well as of their flanking regions (spanning about half the 
length of a given gene 5′ of the TSS, and half the gene-
length 3′ of the TTS [transcription termination site]) 
was evaluated. As shown in Fig.  4 (also see Additional 
File 1, Supplementary Fig. S5), the highest methylation 
levels were reached in flanking regions, particularly in 
those upstream the TSS, and this tendency was inde-
pendent of the extent of expression, sequence context, 
or treatment. Generally, methylation of cytosines in 
CpG context showed a marked drop in a narrow region 
around the TSS, as well the TTS with methylation levels 
within genes reaching those observed further upstream 
of the gene. In CHG and CHH context, the methylation 
level also decreased when approaching TSS or TTS, but 
remained comparably low within genes. Interestingly, 
expression levels were not necessarily associated with 
the total gene methylation level of cytosines in CpG, but 
rather with the amplitude of the drop in methylation near 
the TSS, with highly expressed genes showing the steep-
est decline, i.e. the lowest methylation levels around the 
TSS and lowly expressed genes showing the lowest devia-
tion from upstream- and within-gene regions and thus 
the highest methylation level in proximity to their TSS. In 
addition, expression of the corresponding genes seemed 
to be negatively correlated with the methylation levels 
of CHG and CHH along the entire length of the gene. 
There, high expression was accompanied by low meth-
ylation levels throughout, whereas methylation of lowly 
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Fig. 4  Methylation profiles along lowly or highly expressed genes. Profile plots depict data corresponding to methylation and expression in 
one (representative) sample of CONTROL (profiles on the left), or of COLD (profiles on the right). Genes were ranked and assigned to one of six 
categories (color-coded) based on their expression level (FPKM; i.e. after normalizing for gene lengths) in a given sample. All genes were split into 30 
windows (TSS to TTS, including introns) and window-averages of all genes within the same category (i.e. with similar expression levels) are plotted 
as an individual line profile, overall depicting the distribution of methylation for groups of lowly, intermediate (orange to green) or highly expressed 
genes. Gene flanks extend another 15 windows (half the gene length) 5′ of the TSS (upstream) or 3′ of the TTS (downstream), respectively. The 
inset in the lower panel (between CHH profiles of CONTROL and COLD) compares peak levels of mCHH (5′ region of genes), to illustrate decreased 
mCHH levels of the COLD sample throughout different expression categories
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expressed genes was higher, approximating upstream 
and downstream methylation levels. In general, methyla-
tion profiles were almost identical between CONTROL 
and COLD. However, closer inspection revealed small 
but noticeable differences between 5′ mCHH peak levels 
of CONTROL and COLD samples (indicated in Fig.  4, 
CHH panel), with gene groups of COLD samples reach-
ing slightly lower maximum methylation levels than gene 
groups with comparable expression levels of CONTROL 
samples. But because gene groups are reconstituted for 
each sample individually and thus their composition 
partially differs between samples, an effect of 5′ mCHH 
levels on gene expression cannot be inferred from this 
observation.

Cold triggers genotype‑independent changes in gene 
expression
Analysis of differential expression [49] contrasting CON-
TROL vs. COLD yielded in total 2549 DEGs (Addi-
tional File 2), most of them localized on chromosome 6, 
fewest on chromosome 8 (Fig.  5). Of them, 1244 were 
up-regulated, while 1305 were down-regulated in COLD 
(Wald-test; padj ≤.05; |log2FC| ≥ 1).

Differential methylation does not globally correlate 
with gene expression
We identified 209 differentially expressed genes (from 
a total of 2549 DEGs; ≙ 8.2%) that were either directly 
overlapped by one or more DMCs, or had at least one 
DMC co-localizing with their 2.5 kb upstream regions. 
Comparing the proportion of DMC-associated genes 
among the DEGs (8.2%) with the fraction of DMC-asso-
ciated genes (again with gene-ranges extended to com-
prise an additional 2.5 kb 5′ of TSSs) among all annotated 
genes (6.6%, corresponding to a total of 1712 DMC-asso-
ciated genes), association with differential methylation 
was significantly enriched among our set of DEGs [χ2(1, 
n = 26,004) = 4.9091, p < .05]. However, combinations of 
hyper- or hypomethylation and up- or downregulation of 
expression did not reflect an apparent tendency (Fig. 6a): 
from the total of 1244 transcriptionally upregulated 

genes, 66 were overlapped by at least one hypermethyl-
ated DMC, while similarly, 62 were overlapped by at least 
one hypomethylated DMC. Analogously, of the total of 
1305 genes that were significantly downregulated by cold, 
46 DEGs colocalized with hyper-, and 43 DEGs colocal-
ized with hypomethylated DMCs, respectively. DMCs 
preferentially occupied CDSs, introns, and 3’UTRs of 
DEGs, independent of the sequence context of the DMC. 
For genes showing unaltered expression following cold 
exposure, this pattern shifted from 3’UTRs towards 
upstream regions (Fig. 6a).

Similarly, 260 DEGs coincided with at least one of the 
total of 3557 regions (DMRs) where methylation lev-
els differed by at least 10% between CONTROL and 
COLD. The relative distribution of these DMRs within 
the affected DEGs was similar to those observed for 
DMCs, i.e. DMRs preferentially occurred within CDSs, 
introns, and 3’UTRs of DEGs (Fig. 6b). Of all genes, 2287 
(≙ 8.8%) showed association with a DMR, and comparing 
the absolute numbers, DEGs were again enriched with 
DMRs [χ2(1, n = 26,004) = 28.9613, p  < .01]. This could 
lead to the conclusion that the methylation status of our 
set of DEGs dynamically changed not only at single posi-
tions (DMCs) but also in extended areas of methylation 
alterations over multiple cytosines (DMRs) as a response 
to cold treatment.

Altered expression of genes involved in DNA (de)
methylation correlates with observed methylation changes
Vice versa, we systematically screened our set of DEGs 
for known players involved in DNA (de)methylation 
and mapped the matching DEGs to general pathways 
known to affect DNA methylation. We found numerous 
genes whose homologs have been described to contrib-
ute to either a) de novo methylation via RdDM, b) chro-
momethyltransferase-mediated maintenance (or - for 
CHH - de novo establishment) of DNA methylation or c) 
active DNA demethylation (see Additional File 2 and sec-
tion Functional classification and phylogenetic analysis in 
Methods for details on the classification, annotation and 
pathway assignments of DEGs) and whose expression 

Fig. 5  Differential gene expression in Beta vulgaris in response to cold exposure. Scatterplot depicting changes in expression (Log2FoldChange) 
and chromosomal positions for all differentially expressed genes (DEG; padj ≤ .05, Log2FoldChange ≥1 or ≤ − 1) between CONTROL and COLD. 
Genes, whose expression was significantly upregulated in cold-treated sugar beets compared to the control, are depicted in orange. Those whose 
expression was significantly downregulated, are depicted in blue. Dot size indicates significance (padj), with larger dots representing higher 
significance (i.e. lower padj). Labels indicate DEGs related to DNA methylation or demethylation. Densities (grey) correspond to those of all DEGs, 
or of all predicted genes [44, 50] in 0.5 Mbp windows. Sequence components constituting (pseudo-) chromosomes of the reference sequence 
(RefBeet-1.2.fna.gz, [22] downloaded from ‘The Beta vulgaris Resource’, [50]) are shown as blocks, with white blocks representing localized scaffolds 
(known position and orientation within chromosome) and grey boxes representing unlocalized scaffolds (assigned to a chromosome but precise 
position and/or orientation unknown), the latter being shaded in light grey over the whole plotting area. Asterisks highlight (de)methylation 
related DEGs overlapping with hyper- (red) or hypomethylated (cyan) DMRs (filled) or DMCs (hollow) – all overlapping DMRs or DMCs could be 
assigned to cytosines in CpG context. Lower panels show average methylation levels of CONTROL or COLD at 1000 randomly selected cytosines per 
chromosome and context

(See figure on next page.)
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was significantly altered in response to cold (see Fig.  7 
a-c for expression levels of these genes in CONTROL or 
COLD, respectively; and see Fig. 8 for a schematic model 
depicting pathways, in which the highlighted DEGs are 
predicted to interact with additional [non-deregulated] 
genes to eventually drive alterations of DNA methylation 
in response to cold). Cold treatment significantly reduced 
expression levels of subunits of DNA-directed RNA 
polymerase IV (NRPD1; Bv5_101150_qmjs) and DNA-
directed RNA polymerase V (NRPE5A; Bv3_062710_
wdck), possibly resulting in reduced production of 
siRNAs and scaffold RNAs for RdDM. In line with this, 
chromatin remodeler SNF2 DOMAIN-CONTAINING 
PROTEIN CLASSY 1 (CLSY1; Bv2_044610_uypz), an 
interactor of Pol IV, as well as several RNA-depend-
ent RNA polymerases (RDR1, RDR3, RDR6, corre-
sponding to Bv2_040860_udas, Bv8_197280_tuhe, and 
Bv2_030230_aisi, respectively), which are thought to 
produce dsRNA from mainly Pol IV-derived templates, 
were significantly downregulated, as was the expres-
sion of DRB4 (Bv5_109930_mrpd), which is thought to 
assist the processing of dsRNA fragments to siRNA via 
DCL4 [51, 52]. Furthermore, cold significantly decreased 
the expression of IDN2 (INVOLVED IN DE NOVO 2; 
Bv2_024880_hakm) - an interactor of DRM2 required 
for RdDM - as well as of a homolog of DNA (cytosine-
5)-methyltransferase CMT2 (Bv3_050080_yren, also 
see Fig. 7d and f ), which mediates de novo methylation 
preferentially at cytosines in CHH context [15, 53]. How-
ever, phylogenetic analysis suggests that another gene, 
whose expression was not cold-dependent nor consistent 
between genotypes (Fig.  7d, f ), but which showed par-
tially high expression (comparable to Bv3_050080_yren), 
might act as the actual functional homolog of CMT2 at 
least in one of the genotypes, or act redundantly to the 
DEG candidate, Bv3_050080_yren. Finally, cold-depend-
ent transcriptional downregulation was also observed for 
an S-adenosylmethionine synthase (SAM2; Bv4_079640_
yozf), whose product acts as a major methyl-donor 
in DNA methylation. Together, these transcriptional 
changes overall indicate a reduction in RdDM derived 
de novo methylation and decreased CMT2-based CHH 
methylation maintenance. In addition, we detected sev-
eral transcriptional changes that might indicate enhance-
ment of active DNA demethylation upon cold treatment: 
the cold-triggered increase of NPX1 (Bv5_110670_yfki) 
expression, together with enhanced expression of the 

SWR1-components PIE1 (Bv3_065010_faku) and SWC4 
(Bv5_122550_anjp) could promote the recruitment of 
ROS1 via deposition of H2A.Z. Furthermore, the expres-
sion of ROS1 (Bv7_160320_kstp) itself was upregulated 
upon cold treatment. Phylogenetic analyses and the 
almost complete lack of expression of other sugar beet 
homologs from the same gene family (Fig. 7e and g) con-
tributed to the functional classification of this gene as 
the main ROS1-homolog. (Note, that a DNA LIGASE 
1-LIKE homolog, Bv_001710_ogue, was additionally 
upregulated more than four-fold. However, for concise-
ness, we excluded this gene from global analyses due to 
its location on a sequence component not assigned to any 
chromosome.) Expression of a homolog of the putative 
DNA glycosylase At3g47830 | DEMETER-like protein 2 
(DML2; Bv5_116310_qfjg) was significantly lowered by 
cold (Fig. 7).

Discussion
Limitations
The empirical results reported here should be consid-
ered in the light of some limitations. A large proportion 
of the genome of Beta vulgaris (42.3% of the Refbeet 
assembly, [22]) consists of repetitive sequences, render-
ing it a challenging target particularly during read map-
ping. Furthermore, the same reference was used to map 
reads to - irrespective of the treatment. This means that 
potential genomic rearrangements (e.g. transpositions) 
that had occurred as a response to the applied stress, 
are inevitably missed during the analysis. This is mainly 
relevant for analyses of WGBS data, which (as opposed 
to RNA-seq) theoretically covers the entire genome. 
Retrotransposons are the most abundant type of repeti-
tive elements identified in Refbeet1.2.2 [22], and activa-
tion as well as transposition, in fact, has been reported 
to be triggered by abiotic stresses, including cold [54, 55]. 
Although this was beyond the scope of our study, and 
has been examined in detail in earlier studies [42, 43], 
we detected significant decrease of mCHH along several 
retrotransposon subtypes (mainly DNA and LTR, Addi-
tional File 1 Supplementary Fig. S2 and S3), which could 
potentially be linked to transcriptional activation of 
transposons or nearby genes. The fact that we used Ref-
beet1.2.2 as reference, which is based on an independent 
sugar beet accession (KWS2320, [22]), further compli-
cates proper alignment of reads, as well as interpreta-
tion of WGBS data. Galewski and McGrath [56] recently 

(See figure on next page.)
Fig. 6  Association between changes in expression and changes in methylation. a & b Plots depicting correlations between changes in methylation 
(methylation difference) and changes in expression (Log2FoldChange), for (a) DMCs or (b) DMRs overlapping an annotated gene. Panels on the 
left show association of DMCs/DMRs with DEGs, panels on the right correspond to DMC−/DMR-overlaps with genes, whose expression was not 
significantly altered by cold. Different colors indicate differential methylation in the three sequence contexts, with CpG in green, CHG in turquoise 
and CHH in purple
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examined lineage-specific variation (LSV), comparing 
closely related Beta vulgaris crop-types and different 
Beta vulgaris accessions of the same subspecies between 
or within groups. With about 0.23%, the described LSV 
between accessions of the same subspecies (sugar beet) 
was low compared to the high variation between crop 
types (99.37%) - as was the variation observed within 
other crop type lineages (approximately 0.40%). A com-
paratively large fraction of variation distinguishing differ-
ent sugar beet accessions, however, was concentrated on 
chromosome 6, which could be due to drift or divergent 
selection on this chromosome. It is conceivable that the 
ability to change methylation status at this chromosome 
in response to the environment could contribute to a fine-
tuned regulation of breeding-relevant genes. And this 
would be consistent with the observed high DMC den-
sity on chromosome 6 (Fig. 3c) following cold exposure. 
However, genetic variation (distinguishing the accessions 
used in this study from the reference) can affect the out-
come of WGBS analysis, for one, because  it negatively 
impacts mapping efficiency, and secondly, because meth-
ylation is eventually determined based on comparison 
of the read to the reference. This means that a C (refer-
ence genome) to T mutation present in both accessions, 
is eventually scored as a non-methylated cytosine (which 
are converted to T during bisulfite treatment). In turn, 
for positions representing a T to C mutation, where the 
C could be methylated or non-methylated in the analyzed 
accessions, no methylation information will be extracted, 
resulting in loss of information for such positions. In the 
present study we mainly focused on the investigation 
of genotype-independent adaptation of Beta vulgaris 
subsp. vulgaris to cold exposure. By eventually compar-
ing control grown plants with cold treated plants of the 
same accession(s), genotype-dependent responses and 
variation should be cancelled out, at least partially. While 
this comes with a price, as the combination of two acces-
sions eventually dilutes effects that are pronounced only 
in one of the genotypes, it should also decrease artifacts 
arising from variation between our accessions and the 
reference, for example during the examination of differ-
ential methylation between COLD and CONTROL. Yet, 
we did detect several low-difference DMCs (Fig. 3c) and 
found that the majority of them occurred highly concen-
trated within rather narrow sequence segments. Upon 

further inspection, we could assign most of these regions 
to areas, where coverage was highly above average. The 
seemingly high coverage, in turn, could be attributed to 
comparatively large numbers of falsely mapped reads 
in those regions, which represented highly repetitive 
sequences. More precisely, low-difference-high-cover-
age “DMC” clusters occurred almost exclusively within 
sequences annotated as or predicted to code for rRNAs 
(see also Additional File 1, Supplementary Fig. S2 and 
S3).

Characteristics of cytosine‑methylation in sugar beet
In this work, we have analyzed and compared the methyl-
ome (WGBS) and transcriptome (RNA-seq) of sugar beet 
under control conditions or after exposure to cold. Under 
control conditions, cytosine methylation proportions 
were 66.8% (mCpG), 41.7% (mCHG), and 9.4% (mCHH) 
for total sequenced CpG, CHG, and CHH, respectively 
(Fig. 2). This deviates from the results obtained by Nie-
derhuth et al. [57], who reported methylation rates for B. 
vulgaris of as high as 92.5% (mCpG), 81.2% (mCHG), and 
18.7% (mCHH). It might be noteworthy that the authors 
highlighted that, particularly the percentage of mCHH in 
their study, was “unusually high” and define B. vulgaris 
as a “notable outlier”. The lower methylation rates for the 
three analyzed contexts (mCpG, mCHH and mCHG) in 
our analysis, in contrast, are in more concordance with 
the values of other angiosperm species included in Nie-
derhuth et  al. [57] and with the methylation propor-
tion for B. vulgaris detected by Zakrzewski et  al. [43]. 
Although data was obtained from leaf material in both 
studies, factors such as plant age or growth conditions 
(neither are documented for the comparative analy-
sis of Niederhuth et  al. [57]), the use of different acces-
sions or the fact that sequencing data was generated and 
processed using different methods and computational 
tools, might to some extent account for the differences in 
observations of methylation levels.

Beta vulgaris fine‑tunes global methylation levels 
in response to cold
After cold treatment, methylation proportions dropped 
to 64.0% (mCpG), 40.5% (mCHG) and 8.7% (mCHH) 
which, in all cases, represented a decrease in total 
methylation, although none of them was statistically 

Fig. 7  Expression of DNA methylation or demethylation-related DEGs between CONTROL and COLD. a-c Normalized counts of differentially 
expressed genes putatively involved in precursor synthesis (SAM2) or RdDM (a), maintenance or de novo CHH methylation (b), or active 
demethylation (c). Boxes in light grey represent values for all samples in CONTROL, dark grey represents values for all samples in the COLD-treated 
group. d-e Phylogenetic analysis of chromomethyltransferases (d) or bifunctional nucleases (e) of Beta vulgaris and Arabidopsis thaliana. f-g 
Heatmaps depicting transcript levels (DESeq2 normalized counts) of CMT-related (f) or DME/ROS-related (g) genes in all samples of CONTROL 
and COLD with high values in orange and low values in blue (white represents the median of normalized counts for genes depicted in the same 
heatmap). Bold geneIDs indicate differential expression between CONTROL and COLD (adjusted p-value ≤ .05, |Log2FoldChange| ≥ 1])

(See figure on next page.)
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significant (two-tailed Welch’s test). Previous studies have 
also detected low to medium but consistent variations in 
methylation proportions due to abiotic stresses. How-
ever, the intensity and direction of the change of hypo- or 
hypermethylation depends on the species, type of treat-
ment and genotype pre-adaptation [58]. In upland cotton 
(Gossypium hirsutum), for example, Lu et  al. [37] found 
a decrease of 2% in mCpG and mCHG, and an increase 
of 4% in mCHH, after drought stress. Gayacharan and 
Joel [59] observed that, after drought treatment, drought 
sensitive rice genotypes were generally hypermethylated, 
whereas the drought tolerant ones were hypomethylated. 
Salinity stress caused DNA demethylation in Setaria 
italica [28], but increased methylation in Medicago trun-
catula [60]. Cold stress was found to trigger DNA dem-
ethylation in roots of maize seedlings [61]. Also tartary 
buckwheat (Fagopyrum tataricum) tended to decrease 
DNA methylation following cold shock (at 0 °C for sev-
eral hours) or repeated short term (< 1 day) exposure to 
cold. However, mCHH was actually slightly denser in 
repeatedly cold-exposed plants compared to seedlings 
cultivated under control conditions [62]. In contrast, 
cucumber (Cucumis sativus) radicles increased DNA 
methylation in response to cold treatment, which was 
paralleled by reduced growth rates [63]. In rubber trees 
(Hevea brasiliensis), and fruits of sweet oranges (Citrus 
sinensis), or of tomato (Solanum lycopersicum), cold was 
shown to alter expression of specific genes involved in 
cold-response, volatile-, or pigment-synthesis through 
altered DNA methylation of corresponding promoters 
[40, 64, 65]. Finally, in some woody perennials like poplar, 
cold triggers DNA demethylation prior to bud break [66].

Large amplitudes in methylation profiles distinguish 
highly from lowly expressed genes
mCG, mCHG and mCHH patterning has been linked to 
gene expression, but methylation levels can widely vary 
between species. In rice, mCpG is lowest at the flanks 
of the TSS (approximately 100 bp upstream and 500 bp 
downstream of TSS) and the TTS (approximately 500 bp 
upstream and 100 bp downstream of TTS), mCHG and 
mCHH are basically absent from genes [67]. Cassava, 
soybean and A. thaliana have similar methylation pat-
terns, with almost exclusive methylation of cytosines in 

CpG context, which become very low around the TSSs 
and TTSs [24, 38, 68]. Further, mCpG at the TSS and 
TTS tends to inversely correlate with expression levels of 
the corresponding gene [67, 69]. Independent of the cyto-
sine context, we observed the lowest methylation levels 
in close proximity to the TSS and TTS regions of genes 
and much higher levels of methylation in the 2 kb up- 
and downstream region of TSS and TTS, and - at least 
for mCpG - an intragenic increase in methylation. These 
profiles match those detected by Zakrzewski et  al. [43], 
who reported very similar methylation patterns based on 
WGBS data from sugar beet leaf material.

We detected a genome-wide hypomethylation in 
response to cold treatment. This trend was quite evenly 
distributed over the whole genome of B. vulgaris with 
significant alterations especially in CHH context (and to 
some extent CHG) after cold treatment in almost all gene 
regions analyzed (Fig. 2; Additional File 1, Supplementary 
Fig. S1). Although we observed methylation in CHG and 
CHH context in all genes to be associated with a lower 
level of expression, our set of differentially expressed 
genes showed no obvious pattern of up- or downregu-
lated expression and in- or decreased methylation in any 
sequence contexts (Fig.  4 and Fig.  6). This means that 
while absolute methylation levels in CHG and CHH con-
text do, in fact, inversely correlate with gene expression 
(Fig.  4), changes in methylation (i.e., DMCs or DMRs) 
are not necessarily associated with a significant change in 
expression (Fig. 6).

On the other hand, we identified many homologs of 
known players in our set of DEGs, whose functions were 
already attributed to de novo- or maintenance of DNA 
methylation or active DNA demethylation in A. thali-
ana (also see “Functional classification and phylogenetic 
analysis” in “Methods” and Additional File 2) and which 
might explain the observed changes in methylation on a 
transcriptional basis.

Differential expression of chromatin modifiers and DNA 
(de)methylaters correlates with changes in global 
methylation
Cold limits precursor synthesis for DNA methylation
S-adenosylmethionine acts as co-substrate and methyl-
donor for several biochemical reactions, including 

(See figure on next page.)
Fig. 8  Cold reduces DNA methylation via upregulation of genes within the ROS1-pathway. Model depicting the observed transcriptional 
effect of cold treatment on expression of sugar beet homologs of DNA methylation- or demethylation-related genes a) mediating synthesis of 
s-adenosylmethionine or acting within b) the RdDM, c) methylation maintenance, or d) DNA demethylation pathways. The schematic illustration 
depicts differentially expressed sugar beet homologs of Arabidopsis genes, known to participate in the corresponding pathways as colored 
objects (blue to orange). (Homologs of ) Additional genes contributing to each pathway, which were not differentially expressed in sugar beets in 
response to cold or for which no sugar beet homolog was identified, are shown as black-and-white structures to provide an overall representation 
of the entity of known players mediating the depicted mechanisms. Labels (corresponding to the gene name of each Arabidopsis homolog) and 
corresponding sugar beet accessions are provided for all DEGs in Additional File 2. For detailed functional description of the depicted genes and 
pathways, see main text
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histone- and DNA methylation (Fig.  8a). SAM (S-aden-
osylmethionine synthetase) catalyzes the final step in the 
synthesis of the molecule. Altered expression of SAMs 
not only affects expression of genes related to abiotic 
stress [70–73], but also modifies the methylation status 
of DNA. In detail, missense mutation of SAM3/MAT4 
in Arabidopsis was shown to result in decreased CHG 
and CHH DNA methylation [74]. While cold decreased 
transcription of a SAM homolog in sugar beet leaves, 
its product is involved in such a multitude of processes, 
that it is difficult to predict hypomethylation based on 
decreased expression of SAM2 alone.

Cold alters RNA‑directed DNA methylation
However, apart from precursor synthesis, cold treatment 
had significant impact on expression of some enzymes 
considered as core components of DNA methylation-, as 
well as demethylation-pathways.

In plants, de novo DNA methylation of cytosine 
residues in all contexts is established through RdDM 
(Fig.  8b). Canonical RdDM is initiated through the 
activity of DNA-directed RNA-polymerase IV [75–78], 
which generates short, non-coding, single-stranded tran-
scripts at sites enriched for particular histone modifica-
tions (H3K9me2). The histone marks are recognized by 
SHH1, which - in the presence of CLSY1 [79, 80] - trig-
gers binding of Pol IV [81–83]. Prior to acting as actual 
guide for DNA methylation, Pol IV transcripts are pro-
cessed by a series of further enzymes: RNA-DEPEND-
ENT RNA POLYMERASE 2 (RDR2) complements Pol 
IV transcripts into dsRNA [84–86], which can be cleaved 
into siRNAs by DICER-LIKE PROTEINs [87, 88], before 
being loaded to ARGONAUTEs (mainly AGO4 and 6 
[89, 90]). At the target site, nascent transcripts produced 
by another core RdDM-polymerase, Pol V, can pair with 
appropriate AGO-coupled siRNAs [91]. This finally 
recruits DOMAINS REARRANGED METHYLASE 2 
(DRM2), an interactor of AGO4, to methylate cytosines 
at the target site [92–94].

Although we observed significantly altered expres-
sion of core RdDM components, we do not believe that 
the substantial global reduction of methylation levels 
after cold treatment can be attributed to reduction of de 
novo methylation by RdDM: As shown in Figs. 7 and 8, 
cold significantly reduced expression levels of the largest 
subunit of Pol IV (NRPD1), as well as another polymer-
ase-subunit specific to Pol V (NRPE5A), which together 
might decrease production of siRNAs and scaffold RNAs 
for RdDM [95–97]. In addition, expression of CLSY1 was 
significantly decreased in cold-treated sugar beets, as 
was the expression of three RDRs (RDR1, 3, 6; Fig. 8b) of 
which at least two participate in non-canonical RdDM 
at stages of alternative siRNA production in Arabidopsis 

[98]. Furthermore, cold decreased expression of DRB4, 
which is thought to assist processing of dsRNA frag-
ments to siRNA via DCL4 [51, 52], as well as of IDN2 
(INVOLVED IN DE NOVO 2), which binds dsRNA, 
associates with DRM2 and is required for recruitment of 
SWI/SNF chromatin remodelling complex components 
to RdDM target sites [99, 100]. It is thought to normally 
promote DRM2-mediated DNA methylation at some tar-
get loci [101, 102].

However, expression of the DRM2-homolog, DRM3, 
was significantly upregulated by cold. But while DRM3 
is thought to regulate DRM2-mediated DNA methyla-
tion and to be required for normal maintenance of non-
CpG methylation, DRM3 itself lacks a conserved site 
required for methyltransferase activity and compared 
to drm2 mutants, Arabidopsis plants lacking functional 
DRM3, only show moderate losses of DNA methyla-
tion [103–105]. Additionally, some of the most crucial 
(canonical) RdDM components, e.g. RDR2, DCLs, AGO4 
or AGO6 and, most importantly, the major RdDM DNA 
methyltransferase, DRM2, remained stably transcribed in 
cold-treated plants (Fig. 8b). And while AGO2 and Pol II 
– both of which were upregulated in cold-treated sam-
ples (Fig. 8b) - can be involved in providing siRNAs that 
eventually guide DNA methylation via DRM2 through 
non-canonical, partially Pol IV-independent mechanisms 
of RdDM [98], the protein products of both genes mainly 
mediate other regulatory mechanisms not necessarily 
affecting DNA methylation.

Depending on the target and scaffold RNAs involved, 
RdDM can facilitate methylation of several consecutive 
cytosines and thus, presence of hypermethylated DMRs 
could hint towards increased RdDM at these positions. 
In our data, there was a higher number of individual 
CpG sites showing significant hypomethylation, than 
there were hypermethylated CpG positions (Fig.  3a). In 
contrast, among longer stretches of DNA that showed 
considerable (> 10%) cold-dependent changes in CpG 
methylation (i.e. DMRs in CpG context), the majority had 
actually gained CpG-methylation upon cold exposure 
(i.e. more hyper- than hypo-methylated CpG-DMRs; see 
Fig. 3d). DRM2 is able to methylate cytosines independ-
ent of their sequence context [92, 106]. Therefore, DMRs 
in a particular sequence context which have gained meth-
ylation through RdDM (i.e. through DRM2), are expected 
to show overlap - at least to some extent - with hyper-
methylated DMRs in other sequence contexts. However, 
although there were about 100 CpG-DMRs that coin-
cided with CHG-DMRs and showed matching trends in 
their methylation change (both overlapping DMRs either 
gained methylation, or both exhibited loss of methylation, 
but not a combination of both), about half of them were 
hypomethylated DMRs. The remainder, i.e. overlapping 
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hypermethylated CpG/CHG DMRs might indeed repre-
sent regions with locally enhanced RdDM activity.

Overall, while the altered expression of several RdDM- 
related enzymes might indicate a change in RdDM, our 
observations do not support the conclusion that loss of 
RdDM is the major determinant of the global reduction 
in methylation after cold treatment.

Downregulation of CMT2 suggests hypomethylation in CHH
Generally, when or if mCpG, mCHG and/or mCHH are 
established, these methylation marks must be actively 
maintained in order to retain correct DNA methylation 
patterning (Fig. 8c). Otherwise, methylation information 
gets lost on the daughter-strand during DNA replica-
tion (because there is no cytosine in the complementary 
sequence of CHH, mCHH is, per se established de novo). 
In contrast to DRM2-mediated methylation, the meth-
yltransferases involved in these pathways act sequence 
specific: DNA METHYLTRANSFERASE 1 (MET1) com-
plements missing methylation in the complementary 
strand of hemimethylated mCpG sites [7, 8], whereas 
non-CpG methylation(−maintenance) relies on the 
CHROMOMETHYLTRANSFERASES CMT3 (mCHG 
and to lesser extent mCHH) and CMT2 (mCHH and 
mCHG [107]). Chromomethyltransferases preferentially 
act on chromatin carrying H3K9me2. Histone methyla-
tion, in turn, is established by certain H3 lysine-9-specific 
methyltransferases of the Suvar3–9 subfamily (SUVH4 
and its homologs SUVH5 and SUVH6) which are able 
to bind methylated DNA and preferentially act on his-
tones in proximity of existing mCHG and mCHH [9, 15, 
108–111].

Our RNA-seq data indicated contrasting transcrip-
tional regulation of SUVH6 - which was upregulated - and 
CMT2 - of which one homolog (Bv3_050080_yren) was 
drastically downregulated in leaves of cold treated sugar 
beets (Fig. 8c). Under the assumption that sequence- or 
modification-specificities are conserved in sugar beet, 
an increase of SUVH6 should promote H3K9me2 at 
sites with pre-methylated CHG and CHH [110, 112]. 
H3K9me2, in turn, recruits CMT3 resulting primar-
ily in mCHG maintenance. In the absence of CMT2, 
(possibly increased) H3K9me2 (placed by SUVH6) thus 
should favor mCHG through CMT3, whereas mCHH is 
expected to decrease. This is in line with the high ratio 
of dmCHHhypo:dmCHHhyper and accordingly fits with a 
slightly higher number of hyper- compared to hypometh-
ylated DMCs in CHG context. However, on a global scale, 
hypomethylation was observed in all cytosine contexts - 
including CpG, which indicates that reduction of meth-
ylation is not, or at least not exclusively due to reduced 
CMT-activity. Moreover, as shown in Fig. 7f, at least one 
of the two genotypes (GT1) we included in our analysis 

expressed relatively high levels of another close CMT2 
homolog, possibly substituting for the downregulation of 
Bv3_050080_yren in this genotype.

A considerable fraction of mCHH has been proposed 
to be dependent on CMT-, instead of RdDM-based 
DNA methylation. This mainly affects heterochroma-
tin, where RdDM is blocked, whereas methylation via 
CMT2 can persist [11]. Accordingly, in case of severely 
reduced CMT2-activity, there should be an accumulation 
of dmCHHhypo particularly in heterochromatic regions, 
which tend to be rich in TEs, but are usually character-
ized by a low density of protein coding genes. However, 
cold-dependent dmCHH was rather evenly distributed 
over chromosomes.

Considering the relatively high expression of another, 
possibly redundant CMT2-homolog in one of the geno-
types in our study, the even distribution of differential 
CHH methylation across chromosomes, and rather ubiq-
uitous hypomethylation (not only in CHH), we see no 
clear evidence for a major contribution of CMT2 to the 
observed effects of cold on methylation.

A ROS1‑homolog might drive active DNA methylation 
in response to cold
In addition to passive loss of DNA methylation, plants 
utilize a complex enzyme machinery to actively erase 
DNA methylation at specific positions (Fig. 8d). Removal 
of cytosine-methylation in plants comprises excision 
of the entire methylated cytosine - as opposed to mere 
cleavage of the methyl-group - followed by repair of the 
cleavage site via insertion and ligation of an unmethylated 
cytosine [16–19]. Removal of the methylated cytosine in 
Arabidopsis is mediated by RELEASE OF SILENCING 1 
(ROS1), DEMETER (DME) and DEMETER-LIKE 2 and 
3 (DML2 and DML3), which are able to demethylate 
DNA irrespective of the sequence context of the modi-
fied cytosine [18, 113]. Following further modification of 
the cleavage site, the gap is (filled and) repaired via DNA 
polymerase and ligase enzymes, e.g. LIG1 in Arabidopsis 
[21]. Again, linking histone- to DNA modification, DME 
requires histone linker H1 and the histone remodeling 
complex FACT to demethylate DNA in heterochroma-
tin during reproduction [114–116]. Similarly, the dem-
ethylase ROS1 is recruited to chromatin containing the 
histone variant H2A.Z. H2A.Z, in turn, is incorporated 
into histone octamers by the SWR1 complex, which is 
recruited to histone acetylation marks (via SWR1-associ-
ated MBD9 and NPX1) formerly added to the chromatin 
by the INCREASED DNA METHYLATION (IDM) com-
plex [20, 117–119].

We found numerous sugar beet homologs putatively 
mediating DNA demethylation in the described path-
ways. Their transcriptional changes upon cold treatment 
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collectively support that the overall loss of DNA meth-
ylation upon cold exposure was predominantly caused 
by an increase of active DNA demethylation (Fig.  8d): 
Cold triggered significant upregulation of NPX1 expres-
sion, and also significantly enhanced expression of two 
SWR1 components, i.e. PIE1 and SWC4, which overall 
might promote demethylation by ROS1 via deposition 
of H2A.Z. Finally, expression of ROS1 itself was signifi-
cantly upregulated upon cold treatment.

Expression of a homolog of the putative DNA glycosy-
lase At3g47830 | DEMETER-like protein 2 (DML2) was 
significantly lowered by cold. However, while disruption 
of the corresponding gene in Arabidopsis resulted in 
reduced methylation at sites that were heavily methylated 
in the wild-type, cytosine residues that were unmethyl-
ated or weakly methylated in WT, in fact, showed an 
increase in DNA methylation [120].

In several plant species, ROS1 expression decreases 
when RdDM is inhibited, for example through knock-
out of a core RdDM-component [121, 122]. In contrast, 
despite simultaneous downregulation of several RdDM-
genes including NRDP1, cold exposure resulted in upreg-
ulated ROS1 expression in sugar beets. This suggests that, 
either - instead of being linked to a general decrease of de 
novo methylation, the observed transcriptional repres-
sion of these RdDM components might rather reflect 
altered RdDM (for example via shift of targeted loci); or 
the regulatory mechanism that represses ROS1 in parallel 
to RdDM in other plants, is not conserved in sugar beets.

In fact, a short helitron TE in the ROS1 promoter of 
Arabidopsis, the so-called methylstat or MEMS (meth-
ylation monitoring sequence), which acts as a sensor for 
DNA methylation and (in this rather rare example) acti-
vates AtROS1 expression upon becoming methylated 
[121, 122], appears to be absent from the promoter of 
the sugar beet homolog. Besides, methylation of the cold 
induced ROS1 homolog of sugar beet (or of its upstream 
region comprising the promoter) was not significantly 
altered by cold.

Whereas upstream regions were overlapped by about 
equally many hyper- and hypomethylated DMRs in CpG 
context, about three quarters of all DMRs in CHH con-
text coinciding with upstream regions were hypomethyl-
ated (Fig. 3e). Hypomethylation was also clearly favored 
regarding DMCs occurring within 5′ flanks, − particu-
larly regarding non-CpG positions, with about twice as 
many upstream DMCs in CHG, and more than six times 
as many cytosines in CHH context showing a significant 
reduction instead of an increase of methylation. The fact 
that we observed this particular association of hypo-
methylated DMCs with upstream regions, despite having 
a genome-wide larger number of hypermethylated DMCs 
in CHG, seems to imply that non-CpG hypomethylation 

is in some way specifically targeted towards those areas. 
As recently shown, ROS1 demethylates preferentially 
promoters of otherwise repressed genes [123]. As we 
detected a significantly upregulated expression of ROS1 
due to cold in our set of DEGs, we consider demethyla-
tion by ROS1 as a possible explanation for the observed 
association of hypomethylated (non-CpG) DMCs with 
5′ regulatory regions. However, of the 33 genes carry-
ing a hypomethylated DMC in non-CpG context in their 
upstream flanks, only one is also differentially expressed. 
This gene is a homolog of the flowering pathway gene 
BBX32 from Arabidopsis, which in turn was shown to 
interact with CONSTANS-LIKE 3 (COL3) to target the 
promoter of FT [124], overall regulating the onset of 
flowering.

In contrast to RdDM-based methylation, CMTs show 
some specificity towards particular cytosine environ-
ments, i.e. they prefer to act on a cytosine directly pre-
ceding A and T rather than C [107]. Positions that were 
differentially methylated in response to cold treatment in 
our experiment revealed that hypermethylated CHG or 
CHH DMCs were almost completely devoid of another 
cytosine, particularly at the H directly following the cyto-
sine that becomes (hyper)methylated (Additional File 
1, Supplementary Fig. S4). In contrast, hypomethylated 
CHGs and CHHs were more tolerant towards additional 
cytosine residues. Based on Arabidopsis data, ROS1 has 
been proposed to counteract mainly RdDM to prevent 
spread of (TE-)methylation to genes [19, 125]. Under 
the assumption that hypomethylation is not primarily 
based on loss of RdDM, the increased frequency of CCG 
or CCH among hypo- compared to hypermethylated 
DMCs, fits with increased ROS1 activity counteracting 
methylation established through RdDM.

In summary, the transcriptional changes in sugar beet 
leaves in response to cold suggest an overall decrease 
of DNA methylation, mainly linked to enhanced active 
removal of methylated residues (mainly via ROS1).

Conclusion
A plant’s ability to adapt gene expression to changes 
in the environment can be crucial to its survival and/
or development and it is thought to be fine-tuned by 
DNA methylation. Our study provided insights into 
conserved methylomic and transcriptomic responses 
of sugar beets to cold exposure. We propose that 
cold-dependent reduction of DNA methylation was 
mainly due to active removal of methylation marks 
through collectively upregulated expression of sugar 
beet homologs within the ROS1 pathway. Mechanisti-
cally, these effects seem to be common among differ-
ent plants including sugar beet, tea [126], tomato [65], 
and poplar [66]. Strikingly, while an overall reduced 
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DNA methylation can theoretically be facilitated either 
via increase of demethylation, or through passive loss, 
cold appears to predominantly trigger upregulation of 
an active DNA demethylation pathway in all of these 
species.

Methods
Plant material and growth conditions
The sequencing data presented in this study was obtained 
from two hybrid sugar beet genotypes [4]. Seed mate-
rial of Beta vulgaris ssp. vulgaris GT1 (KWS-accession: 
1NB0218) and GT2 (KWS-accession: 1NB0133) used 
in this study were provided by, and cultivation and col-
lection of material was performed at KWS SAAT SE & 
Co. KGaA (Einbeck, Germany). Plants were germinated 
and grown on standard soil substrate ED73 (Einheitserd-
werke Patzer, Germany) mixed with sand (10% v/v) under 
short day conditions (10 h light/14 h dark), at 60% relative 
humidity and 110 μmol m− 2 s− 1 light intensity (fluores-
cent tube light). GT1 and GT2 beets were either grown 
under control conditions (20 °C during the day, 16 °C at 
night) for 15 weeks, or - after initial cultivation under 
control conditions for 12 weeks – were transferred to 
12 °C for 7 days (acclimation phase), followed by 13 days 
at 4 °C and finally 24 h at 0 °C (cold treatment). Leaf mate-
rial was collected from three biological replicates per 
genotype and condition, transferred to liquid nitrogen 
and stored at − 80 °C until further processing for methyl-
omic and transcriptomic analysis.

Sample preparation, sequencing and data availability
Sample extraction (total genomic DNA from leaves), 
library preparation and whole genome bisulfite sequenc-
ing (Illumina NovaSeq 6000 platform) was provided 
as a custom service (Novogene, Beijing, China). For 
WGBS, the PBAT (post-bisulfite adapter tagging, [127]) 
protocol for paired-end sequencing (PE150) was used. 
Total RNA for RNA-seq was extracted from leaf mate-
rial as described in Martins Rodrigues et  al. [4]. Poly-A 
selection, library preparation and stranded, paired-end 
sequencing (151 + 151; Illumina HiSeq 2000) was pro-
vided as a custom service (GATC GmbH, Konstanz, 
Germany). Raw sequencing data (RNA-seq and Whole 
Genome Bisulfite Sequencing) have been deposited to 
NCBI’s Sequence Read Archive under BioProject ID 
PRJNA74855, accessible via https://​www.​ncbi.​nlm.​nih.​
gov/​sra/​PRJNA​748559 (also see paragraph Availability of 
Data and Materials in section Declarations). All software 
and parameters described in the following sections are 
additionally summarized in Additional File 3.

Pre‑processing and mapping
Raw sequence reads from both sequencing methods 
were inspected using fastQC [128] and multiQC [129]. 
Reads were then filtered for N-reads, common contami-
nants, and known adapter sequences from both ends 
of the reads using BBDuk (version 38.69, [130]); with 
k-mer length between 11 and 23). Reads were addition-
ally filtered based on read quality (Q20) and length (min-
len = 35 bp). WGBS reads had an additional step after 
adapter trimming in which the first 18 nucleotides of 
each read were removed (ftl = 18) using BBDuk (v38.69, 
[130]) as recommended by the company, to avoid bias 
due to the sequencing technique. Trimming success 
was confirmed based on quality reports generated for 
trimmed data using fastQC and multiQC again. Adapter- 
and quality-trimmed RNA-seq reads were mapped 
to RefBeet1.2.2 (RefBeet-1.2.fna.gz, [22]; downloaded 
from [50]), using STAR (v2.5.0a, [131]). Cleaned WGBS 
reads were mapped to the same reference genome using 
BISMARK (v22.3, [132]). Duplicated reads within the 
WGBS data were removed by BISMARK’s deduplication 
function.

Methylation extraction and detection of DMCs and DMRs
The methylation status together with its positional cov-
erage was evaluated based on BISMARK’s mapping 
alignments and methylation extractor function output 
(genome-wide cytosine report) for cytosines with a mini-
mum read coverage of eight per position in each sample. 
Corresponding bam-files generated by BISMARK were 
used as input for detection of DMCs using the methylKit 
package (v1.19.0, [45]) within Bioconductor (v3.14, [133]) 
in R (v4.1.2 “Bird Hippie”, [134]), which was used to 
detect differentially methylated cytosines (comparisons 
of COLD vs CONTROL, for each cytosine context sepa-
rately). A cytosine site with a (by default SLIM adjusted) 
q-value < .05 was defined as differentially methylated. 
Coverage-filtered BISMARK methylation extraction out-
puts were used for the detection of DMRs via HOME, 
a histogram-based machine learning approach (v1.0.0, 
[47]).

Analysis of differential gene expression
Mapped transcriptomic reads were quantified on gene-
level for all predicted protein coding genes (BeetSet-2.
unfiltered_genes.1408.gff3, [44, 50]) using featureCounts 
v1.5.0. provided with the Subread package [135]. The out-
put was used to analyze differential expression between 
CONTROL and COLD using DESeq2 (v1.39.0, [49]) 
with a reduced design formula, correcting for genotype 
specific differences in the transcriptomic cold response. 
Genes with an absolute Log2FoldChange ≥ 1 and an 

https://www.ncbi.nlm.nih.gov/sra/PRJNA748559
https://www.ncbi.nlm.nih.gov/sra/PRJNA748559
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adjusted p-value (Bonferroni correction) of ≤ .05 were 
defined as differentially expressed (see Additional File 
3 for main code snippets and non-default parameter 
settings).

Pseudochromosome construction and visualization
For plots showing distribution of detected cold-respon-
sive elements - i.e. of differentially expressed genes 
(DEGs), differentially methylated cytosines (DMCs), or 
differentially methylated regions (DMRs) - along chro-
mosomes, all localized scaffolds (designated BvchrX.
scaYYY), followed by all unplaced scaffolds (BvchrX_
un.scaYYY, where X denotes the corresponding chro-
mosome and YYY indicates the [incremental] number 
of the scaffold) assigned to the same chromosome were 
strung together with 10 kb pseudogaps inserted between 
individual sequence components (i.e. scaffolds). Based 
on the (cumulative) lengths of (preceding) scaffolds and 
pseudogaps, a position-adjustment table was generated, 
carrying - for each scaffold - a constant, from which rela-
tive positions of a given feature with respect to the cor-
responding (pseudo-)chromosome was calculated (based 
on the feature’s coordinates as given in the original anno-
tation file, i.e. relative to its scaffold) directly prior to 
visualizing the data. If not otherwise specified, plots were 
generated using ggplot2 [136] in R [134] and finalized 
using Inkscape (v1.0.2–2, [137]).

Functional classification and phylogenetic analysis
A fasta file containing protein sequences for all annotated 
BeetSet-2 genes [44] was obtained from ‘The Beta vul-
garis Resource’ [50]. The file was checked for consistency 
(valid format, valid character usage etc.) using the Mer-
cator4 Fasta Validator and sequences were assigned to 
MapMan bins using Mercator4 v3.0, both available from 
the ‘PlaBi dataBase’ [138]. Data for all 285 gene products 
assigned to MapMan category 12 (“Chromatin organi-
zation”) was extracted. Genes not assigned to any chro-
mosome were discarded, leaving 267 genes. Of those, 38 
were differentially expressed in response to cold. Follow-
ing closer inspection of the DEGs assigned to MapMan 
category “Chromatin organization”, literature search on 
those genes (with a focus on those with predicted effects 
on cytosine modification) revealed 11 additional DEGs 
with homologs related to DNA methylation or demeth-
ylation. For the complete list of genes (MapMan-based as 
well as manually assigned) see Additional file 3.

Phylogenetic analysis was done based on amino acid 
sequences of DME/ROS- and chromomethyltrans-
ferase homologs from Arabidopsis thaliana and Beta 
vulgaris, as compiled in PLAZA HOM04D001046, or 
HOM04D001291, respectively [139]. Additionally, the 
peptide sequence of another putative nuclease that we 

found among our DEGs, and which in NCBI annotation 
data was described as “DEMETER-LIKE 2”, was included 
with the DME/ROS-set. Analyses were done based on 
these sequences for each set, independently, using default 
parameters of PhyML+SMS/OneClick-workflow avail-
able via NGphy​logeny [140, 141], and subsequent visuali-
zation in iToL [142].
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