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Abstract 

Background:  Paris polyphylla is a herb widely used in traditional Chinese medicine to treat various diseases. Stem rot 
diseases seriously affected the yield of P. polyphylla in subtropical areas of China. Therefore, cost-effective, chemical-
free, eco-friendly strategies to control stem rot on P. polyphylla are valuable and urgently needed.

Results:  In this paper, we reported the biocontrol efficiency of Paenibacillus peoriae HJ-2 and its complete genome 
sequence. Strain HJ-2 could serve as a potential biocontrol agent against stem rot on P. polyphylla in the greenhouse 
and field. The genome of HJ-2 consists of a single 6,001,192 bp chromosome with an average GC content of 45% and 
5,237 predicted protein coding genes, 39 rRNAs and 108 tRNAs. The phylogenetic tree indicated that HJ-2 is most 
closely related to P. peoriae IBSD35. Functional analysis of genome revealed numerous genes/gene clusters involved in 
plant colonization, biofilm formation, plant growth promotion, antibiotic and resistance inducers synthesis. Moreover, 
metabolic pathways that potentially contribute to biocontrol mechanisms were identified.

Conclusions:  This study revealed that P. peoriae HJ-2 could serve as a potential BCA against stem rot on P. polyphylla. 
Based on genome analysis, the genome of HJ-2 contains more than 70 genes and 12 putative gene clusters related 
to secondary metabolites, which have previously been described as being involved in chemotaxis motility, biofilm 
formation, growth promotion, antifungal activity and resistance inducers biosynthesis. Compared with other strains, 
variation in the genes/gene clusters may lead to different antimicrobial spectra and biocontrol efficacies.

Keywords:  Paenibacillus peoriae, Paris polyphylla, Stem rot, Genome analysis, Biocontrol mechanism

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Paris polyphylla var.  chinensis  (Franch.) Hara.  is a herb 
widely used in traditional Chinese medicine (TCM) to 
treat various diseases (e.g., hemostasis, abscess, snake 
bite, abnormal uterine bleeding, tumors and analgesia) 
[1–4]. Large scale application of Paris in TCM helps eco-
nomic value of herb increase in a dramatic way in China 
and other Asian countries. Yet, with the rapidly rising in 

demand, wild individuals of these plants have been over-
exploited for the last several decades. Many Paris (e.g., 
Paris polyphylla, Paris fargesii and Paris mairei) have 
been listed as endangered species in China from Interna-
tional Union for Conservation of Nature (IUCN). Artifi-
cial cultivation is an effective means to meet the growing 
demand for Chinese herbal medicine. The cultivated 
area of P. polyphylla in Yunnan had exceeded 1333 hm2 
at the end of 2014. However, severity soilborne diseases 
(e.g., Stem rot, Anthracnose and Gray mold) seriously 
affected the yield of P. polyphylla [5–8]. Stem rot on P. 
polyphylla, caused by two species of Fusarium, Fusarium 
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concentricum and Fusarium oxysporum is prevalent  in 
subtropical areas of China where plants grow under rain-
fed conditions [7, 8]. Plants with stem rot disease devel-
oped stem cracking, shriveling, yellowing, stunting, and 
finally wilting, and symptoms of plant death may even-
tually appear within a few weeks [9, 10]. Stem rot on P. 
polyphylla ultimately limited the growth of roots as pri-
mary medicinal parts and amount of seeds. The eco-
nomic control approaches of stem rot on P. polyphylla are 
challenging due to the long-term survival of mycelia in 
soil, weather conditions and the evolution of new races. 
Current management options for this disease are mainly 
dependent on the use of chemical management measures 
[11]. Extensive applications of commercially fungicides 
contribute to resistance in fungal pathogens. Moreover, 
chemical pesticides and fungicides are forbidden to use 
in the planting process of Chinese herb in light of health 
issues. Therefore, cost-effective, chemical-free, eco-
friendly strategies to control stem rot on P. polyphylla are 
valuable and urgently needed.

Biocontrol has been considered a viable alternative 
method due to the advantages of environmental friend-
liness, safety and the lack of the induction of pesticide 
resistance [12]. The microorganisms, most of which are 
Bacillus, Pseudomonas and Paenibacillus spp., have been 
successfully applied for suppressing soil-borne patho-
gens [13–16]. Researches on the biocontrol of stem rot 
are still in progress and revealing new strategies. Plant 
growth-promoting rhizobacteria (PGPR) produces phy-
tohormones such as cytokinins, gibberellins, indole-
3-acetic acid (IAA), and protects plants against pathogens 
through antibiotic biosynthesis. Meanwhile, PGPR exhib-
its the abilities of nitrogen fixation, phosphate solubiliza-
tion, siderophore production [17, 18]. In addition to these 
effects, many PGPRs increase plant resistance to patho-
gen via the elicitation of induced systemic resistance 
(ISR), which is triggered by a range of secondary metabo-
lites referred to as ‘elicitors’ [19, 20]. Different signaling 
pathways, such as the jasmonic acid (JA) and ethylene 
(ET) pathways, are activated to induce plant resistance 
[21–23]. Although a large number of microbe species 
that could serve as biocontrol agents (BCAs) to manage 
plant pathogens have been discovered, researches on the 
biocontrol of stem rot on Paris are scarce.

In this study, we identified an efficient biocontrol 
strain,  Paenibacillus peoriae HJ-2, which was isolated 
from the rhizosphere of P. polyphylla. The results of 
greenhouse and field experiments indicated that  P. peo-
riae HJ-2 could serve as a potential BCA against stem rot 
on P. polyphylla. Whole-genome sequencing of PGPRs 
facilitates studies of gene mutation and molecular evo-
lution mechanisms. Chen (2007) revealed the resistance 
mechanisms of Bacillus amyloliquefaciens FZB42 toward 

phytopathogen via producing antifungal components by 
genome analysis [24]. According to gene function anno-
tation, signaling pathways of volatile compounds emit-
ted from B. amyloliquefaciens FZB42 were described in 
detail. Andrés-Barrao (2017) analyzed Enterobacter sp. 
SA187 genome and revealed its plant growth promotion 
mechanisms for Arabidopsis thaliana under salt stress 
[25]. The genome of Paenibacillus polymyxa HY96-2 
was sequenced, and the variation in secondary metabo-
lites genes or gene clusters could result in different anti-
microbial activities and biocontrol efficacies between 
HY96-2 and other p. polymyxa strains [26]. Further-
more, although P. peoriae is a potential BCA, there are 
few studies about biocontrol mechanism of P. peoriae 
using genome analysis or other molecular methods so far. 
Moreover, the differences in the biocontrol mechanisms 
could be revealed on the basis of comparison of genes/
gene clusters. To understand the molecular mechanism 
involved in plant–microbe interactions, we provide 
a high quality genome assembly and annotation of P. 
peoriaeHJ-2.

Thus, the aims of this study were to (1) identify the 
antagonistic activity of P. peoriae HJ-2 against Fusarium 
spp. in  vivo, (2) evaluate plant growth promotion and 
biocontrol efficiency of P. peoriae HJ-2 in the green-
house and field, and (3) compare the genes/gene clusters 
involved in biofilm formation, antibiotic and resistance 
inducers synthesis with other P. peoriae strains.

Results
Genomic characterisation of strain HJ‑2
The complete genome of HJ-2 consists of a single circular 
chromosome of 6,001,192  bp with an average GC con-
tent of 45% (Fig. 1). Genomic DNA sequencing generated 
180,325 reads and contained 1,291,048,950  bp, and the 
sequencing coverage reached 215 × . In total, 5439 genes 
were identified, including 5237 coding sequences genes 
(CDSs), 39 rRNA and 108 tRNA genes. The general fea-
tures are shown in Table 1. Ten putative GIs were found 
in HJ-2 using the GI prediction methods, and the size of 
GIs ranged from 9.8 to 35 kb. CRISPRs contain multiple 
short and repeated sequences, and the length of which 
is generally 21 to 47 bp. Nine CRISPRs were involved in 
HJ-2, and length of repeated sequences ranged from 9 to 
18 bp.

According to GO annotation, a total of 2562 genes 
were classified into 27 functional groups, and the genes 
involved in biological process were most abundantly 
(Suppl. Fig.    1). Among biological process group, the 
number of genes related to the metabolic process was 
highest, with 35.5% respectively. On the basis of COG 
database, a total of 3608 genes were assigned to 24 
COG categories (Fig.  2). Carbohydrate transport and 
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metabolism category represented the largest group 
(492 genes, 9.37% of all CDSs), followed by transcrip-
tion, whereas only a small number genes were assigned 

to extracellular structures category. According to KEGG 
annotation, 2423 genes (46.27% of all CDSs) were 
assigned to 35 KEGG pathways, and the largest num-
ber of identified genes were classified into metabolism 
pathways. Among these pathways, the most represented 
pathways included carbohydrate metabolism(289 genes, 
5.52% of all CDSs), followed by amino acid metabolism 
and energy metabolism pathways (Suppl. Fig. 2).

Identification of strain HJ‑2
HJ-2 was isolated from the rhizosphere of P. polyphylla, 
and cultured at 30  °C in Luria–Bertani broth. The 16S 
rDNA gene amplified from the genomic DNA of HJ-2 
(approximately 1.4  kb) was sequenced (GenBank acces-
sion no. MK911741), and the BLAST search revealed 
that the sequence shared 99.72% identity to Paenibacillus 
spp.(e.g., Paenibacillus peoriae HS311, Paenibacillus pol-
myxa ATCC15970 and Paenibacillus polmyxa YC0573).

Fig. 1  Genome map of P. peoriae HJ-2. The bacterial chromosome is 6.0 Mb in size. The distribution of the circle from the outside indicates the 
genome size, forward CDS, reverse CDS, repeat sequence, tRNA(black), rRNA(blue), GC ratio(red and green indicate regions where the GC ratio is 
higher than average and lower than average, respectively), and CG skew positive (red) and negative (green)

Table 1  General features of the genome of P. peoriae HJ-2

Feature Value

Genome size (bp) 6,001,192

GC content (%) 45

Gene density 906.5genes/Mb

Genomic Islands 10

CDS 5237

Genes assigned to COG 3608(66.33%)

Genes assigned to KEGG 2423(46.27%)

rRNA 39

tRNA 108

CRISPR 9
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Average nucleotide identity (ANI) is one of the 
most powerful approaches for evolutionary distance 
assessment between bacterial species based on digital 
whole genome comparison. Based on ANI values, the 
genome sequence of HJ-2 displayed highest similar-
ity with the species of P. peoriae with the ANI values 
over 96%, whereas the ANI values between HJ-2 and 
other strains were lower, and ranged between 64 and 
90% (Suppl. Fig.  3). By applying whole-genome analy-
sis, the phylogenetic tree construction based on the 
single-copy genes  from the 79 Paenibacillus genomes 
available in the Genbank database demonstrated that 
HJ-2 appeared to belong to P. peoriae, with the closest 
relative to P. peoriaeIBSD35 (Fig. 3). We also performed 
a pangenome analysis to compare HJ-2 with other nine 
strains (P. peoriae HS311, IBSD35, FSLR7-0321, ZF390; 
P. polymyxa SQR21, SC2, HY96-2, DSM365, A18). 
As shown in Fig.  4, 3,481 orthologous protein coding 
genes are conserved and constitute the core genome. 
In addition, the number of gene families unique to 
strain ZF390 was 791, which was the highest among all 
of the analyzed strains. The annotation revealed that 
these specific genes encoded a large number of tran-
scriptional regulators, helicase domain proteins, hypo-
thetical proteins, aminotransferases, transposases, drug 
resistance transporters, chloramphenicol resistance 
proteins, etc. Nucleic acid co-linearity results showed 

that strain HJ-2 has high co-linearity with P. peoriae 
HS311 (Suppl. Fig. 4).

Biocontrol potential of strain HJ‑2
As shown in Fig.  5A,  the strain HJ-2 presented antago-
nistic activity against five Fusarium spp.  in vitro. HJ-2 
exerted maximum antifungal activity against F. tricinc-
tum and F. concentricum. The antifungal activity of HJ-2 
against F. solani and F. graminearum s.str. were low-
est (Suppl. Table  2). In addition, HJ-2 could inhibit the 
spores germination of F. concentricum (Fig. 5B). Based on 
the above results, we infer that HJ-2 has the potential to 
suppress stem rot on P. polyphylla. To verify this hypoth-
esis, we conducted greenhouse and field experiments, 
and the results indicated that  HJ-2 could significantly 
control stem rot on P. polyphylla in both the greenhouse 
and the field. The symptoms of stem rot on P. polyphylla 
in the HJ-2 treatment were significantly weaker in com-
pared with the control treatment (Fig.  5C and D). The 
incidence rate of stem rot on P. polyphylla with the HJ-2 
treatment was 35.3% in greenhouse and 11% in the field, 
which was significantly lower than that (89.2%, 52%) with 
the control treatment (Table 2).

In addition, the plant growth promotion capability of 
HJ-2 was evaluated in the greenhouse and field experi-
ments. As shown in Table  2, the growth parameters 
(the length, fresh and dry weight of stem and root) of P. 

Fig. 2  Distribution of genes across COG functional categories in the chromosome of P. peoriae HJ-2
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Fig. 3  Phylogenetic tree for P. peoriae HJ-2 and the genus Paenibacillus based on homologous genes. Coloured blocks represent gene clusters for 
biosynthesis of fusaricidin, tridecaptin, polymyxin, pelgipeptin and surfactin detected in genus Paenibacillus, whilst white space represents gene 
clusters absence. Number in the branches represent bootstrap values. Scale bar represents sequence divergence
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polyphylla with the  HJ-2 treatment were significantly 
higher than those of the control treatment. In the field 
experiment, HJ-2 exhibited a significant effect on plant 
growth-promoting in compared with the control treat-
ment (Suppl. Fig.  5). The results of IAA production, 
nitrogen fixation, and phosphate solubilization assays 
indicated that the strain HJ-2 possessed most common 
PGP characteristics (Suppl. Fig. 6).

Colonization and biofilm formation of strain HJ‑2
As shown in Fig.  6A, arrangements of flagella in HJ-2 
is peritrichous, and multiple flagella arise from along 
the cell body. On the basis of previous researches, core 
genes involved in the assembly of flagellum, such as flg-
BCDEGKL, fliAEGHJLMPRSW, flhABFG, motA and 
motB were detected in genome of HJ-2 (Suppl. Table 3) 
[27]. Flagellin containing N-terminally conserved flg22 
was also found in the P. peoriae HJ-2 (Fig. 6B). As shown 
in Fig. 7, bacterial cells attaching on the surface of roots 
could be observed after 16  days of inoculation. The 
number (3.16 ± 0.15 × 107  CFU/g) of strain HJ-2 sta-
bly colonizing in the rhizosphere of Paris was superior 
to those in the other HJ-2-inoculated plants (pepper: 
2.93 ± 0.2 × 103  CFU/g; tomato: 6.3 ± 0.28 × 103  CFU/g; 
tobacco: 2.5 ± 0.5 × 104  CFU/g, respectively) after 

inoculation for fifty days. During the colonization pro-
cess, the population of the strain declined dramatically 
during the next eight days after inoculation, and then 
began to increase until finally stable colonization.

The core genes involved in biofilm formation path-
ways were selected from KEGG database for comparison 
between the strain HJ-2, ZF390 and HS311 using BLAST. 
As shown in Table 3, key genes involved in biofilm forma-
tion were found in genome of HJ-2, ZF390 and HS311, 
and the sequence identity exceeded 97%. The sequence 
identity between HJ-2 and HS311 exhibited higher than 
that between strain HJ-2 and ZF390.

Genes /gene clusters for antibiotic synthesis and induction 
of plant resistance
On the basis of antiSMASH database, twelve clusters 
related to secondary metabolite synthesis were identi-
fied in HJ-2. Among these gene clusters, three clusters 
were specific and existed only in HJ-2, while nine clus-
ters existed in more than one strain (Suppl. Table  4). 
Six clusters involved in antifungal and antibacterial 
peptides (fusaricidin; polymyxin, tridecaptin, pelgipep-
tin, paenilan and paeninodin) biosynthesis were found 
in genome of strain HJ-2 (Table  4). However, no gene 
clusters encoding the biosynthesis of pelgipeptin or 

Fig. 4  Flower plot representing the total (outermost layer), unique (second layer) (strain specific), and core proteins (center of the plot) in P. peoriae 
and other five P. polymyxa strains
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Fig. 5  Strain HJ-2 could serve as a potential biocontrol agent against stem rot on P. polyphylla (A), antagonistic activity of strain HJ-2 against plant 
pathogens in vitro (B), effect of HJ-2 on spore germinations of F concentricum (C), biological control effect of HJ-2 against stem rot on P. polyphylla in 
the greenhouse (D), biological control effect of HJ-2 against stem rot on P. polyphylla in the field

Table 2  Evaluation of P. peoriae HJ-2 on biocontrol efficacy and the plant growth parameters of P. polyphylla in greenhouse and field 
experiments

The data are means ± SDs. The different lowercase letters in the same column indicate significant different at the P < 0.05 level, using LSD test

Parameter P. polyphylla

Greenhouse experiment Field experiment

Control Treatment Control Treatment

Disease incidence (%) 89.2 ± 0.3a 35.3 ± 0.4c 52.0 ± 0.2b 11.0 ± 0.15d

Control efficacy (%) 53.9 ± 1.3 41.0 ± 0.6

Stem Length(cm) 5.6 ± 0.2c 8.8 ± 0.3b 7.6 ± 0.4bc 11.2 ± 0.6a

Fresh weight(g) 12.3 ± 0.7c 15.8 ± 0.4bc 18.3 ± 0.5b 25.3 ± 0.7a

Dry weight(g) 2.1 ± 0.1c 2.7 ± 0.2c 4.3 ± 0.1b 7.1 ± 0.3a

Root Length(cm) 1.5 ± 0.1c 2.1 ± 0.2b 2.3 ± 0.2b 3.5 ± 0.3a

Fresh weight(g) 4.5 ± 0.2c 6.7 ± 0.3bc 7.3 ± 0.2b 9.2 ± 0.4a

Dry weight(g) 0.6 ± 0.1c 1.2 ± 0.1b 1.6 ± 0.2ab 2.7 ± 0.2a
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paenilan were detected in HS311, and the gene clusters 
encoding the biosynthesis of polymyxin or pelgipeptin 
were not detected in ZF390. According to the compari-
son of gene clusters involved in biosynthesis of fusarici-
din and tridecaptin, the result shown that the two gene 
clusters sequences in strains HS311 and ZF390 exhib-
ited very high similarities with those in strain HJ-2, 
with the similarity of 99.3%, 93.2% and 98.4%, 95.5%, 
respectively.

Based on numerous reported examples of elicitor, the 
genes coding for resistance inducers were selected for 
comparison between the strainHJ-2, ZF390 and HS311 
using BLAST. As shown in Table 5, the genes coding for 
several elicitors, such as 2, 3-butanediol, acetoin, pepti-
doglycan and EF-Tu were all detected in HJ-2, ZF390 
and HS311, meanwhile flgL was detected in the HJ-2 and 
HS311except for the strain ZF390. The sequence identity 
between HJ-2 and HS311 exhibited higher than those 
between strain HJ-2 and ZF390.

Discussion
Bacillus peoriae was originally recognized as a new spe-
cies of gas-producing Bacillus polymyxa on the basis of 
DNA relatedness, multilocus enzyme electrophoresis 
analysis, and other phenotypic characteristics. It was later 
reclassified as  Paenibacillus peoriae  with an emended 
description of the species. Phylogenetic reconstruction 
based on the single-copy genes from the nomenclatural 
type strains of currently recognized Paenibacillus species 
has clearly demonstrated that the species P. peoriae is 
closely related to P.polymyxa, and gene clusters involved 
in antifungal and antibacterial peptides (fusaricidin; poly-
myxin, tridecaptin, paenilan and paeninodin) biosynthe-
sis have been found encoded in the genomes of P. peoriae 
and P.polymyxa. Pair-wise ANI values for the HJ-2 and 
five P.polymyxa strains ranged between 89.8 and 89.9%. 
Meanwhile, pair-wise ANI values for HJ-2 and four P. 
peoriae strains ranged between 96.5 and 97.3%, which 
were considerably higher than the above percentage 

Fig. 6  A Transmission electron microscopy section of HJ-2 (B), Conservation of flg22 motif. The N-terminal of FliC proteins of HJ-2 shown a highly 
conserved motif shared with Paenibacilus flg22
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range. Under the assumption that ANI values of 95–96% 
indicate bacterial species boundaries, these results are 
congruent with the phylogenetic tree.

Due to the advantages of plant growth promotion and 
broad-spectrum antimicrobial activity, the species P. peo-
riae is a potential BCA used as biofertilizer. However, 
limited  number of comprehensive studies have revealed 
the biocontrol mechanism of P. peoriae to date. With the 
aim of providing some insight into biocontrol mecha-
nisms in molecular level,  the genome of P. peoriae HJ-2 
was completely sequenced. In contrast to other species 
of P. peoriae, the genome of HJ-2 is smaller than that of 
HS311 (6,219,810 bp) and ZF390 (6,383,990 bp), and was 
found to share 3510 orthologous genes with IBSD35. This 

number is slightly larger than those (HJ-2 vs HS311, 3421; 
HJ-2 vs ZF390, 3436; HJ-2 vs FSL R7-0321, 3497) shared 
between HJ-2 and other three P.peoriae strains, reflect-
ing the closer phylogenetic relationship of P.peoriae HJ-2 
and P.peoriae IBSD35. Based on the results of genome 
assembly and annotation report, numerous coding genes 
for rRNAs were found in P. peoriae strains. The genome-
encoded divergent rRNAs regulate gene expression at 
the ribosome level in bacteria.With the characteristic of 
possessing numerous rRNAs, soil microorganisms have 
capacities to rapidly cope with ceaseless nutritional com-
positions changes [35, 36]. GIs are composed of inte-
grated foreign DNA fragments, which are frequently 
associated with pathogenesis, metabolism and antibiotic 

Fig. 7  Colonization of P. peoriae HJ-2 on the seeding roots (A), Green fluorescence protein (GFP)-tagged P. peoriae HJ-2 mainly colonized the P. 
polyphylla roots (B), the content of effectively colonized bacteria on the roots of four plants. Bars = 100 µm

Table 3  Comparison of core genes involved in biofilm formation in strain HJ-2, HS311 and ZF390

Gene name Location Product Identity(%)

ZF390 HS311

kinB 2,363,269 2,364,546 sensor kinase 97.03 97.73

spoOF 3,760,041 3,760,352 stage 0 sporulation protein F 98.72 99.04

spoOA 1,218,318 1,219,121 stage 0 sporulation protein A 97.76 98.88

degU 3,007,565 3,008,287 response regulator 98.2 99.45

degS 3,008,292 3,008,813 sensor histidine kinase 99.81 100.00

AbrB 3,635,054 3,635,596 transcriptional regulator 99.26 99.82

spoOB 2,363,269 2,364,546 sporulation sensor kinase 97.03 97.73

rapZ 3,796,330 3,797,229 RNase adapter protein 98.22 99.56
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resistance [37]. GIs are important players in genome 
plasticity, thus supporting their rapid adaptation. Bac-
teria have multiple immune functions to remove exoge-
nous virus genes by CRISPRs [38, 39]. The result suggests 
that the strain HJ-2 successfully resisted bacteriophages 
invasion. No plasmid has been identified when assem-
bling the P.peoriae HJ-2 genome sequence data.

Effective colonization is a prerequisite for PGPRs to 
implement their biocontrol function. Colonization of 
PGPRs are influenced by various factors, such as root 
exudates and environmental factors. Plant could recruit 
beneficial rhizobacteria  via secreting metabolite, and 
the major inducible root-secreted metabolite selectively 
activated chemotactic mobility  of rhizobacteria [40]. 
Rhizobacteria finally reach the surface of plant roots by 
flagella-driven motion. However, a few PGPRs coloniza-
tion is not limited to a specific region in the plant (such as 
rhizosphere), and they can be transported to other tissues 
using transmission systems (e.g. bacterial endophytes). In 
the process of colonization, bacterial endophytes often 
produces many enzymes, such as endoglucanases and 
endopolygalacturonidases [41]. To examine the ability of 

HJ-2 to colonize plant roots, we labeled the strain with 
GFP. In the present study, HJ-2-gfp cells were found to 
be attached to the surface of Paris roots. We also found 
that the bacterial cells could colonize on pepper, tomato 
and tobacco roots, but lesser than that on Paris roots. As 
a signal to attract or repel microbes, the root exudates 
serve as a carbon source for soil microorganisms. There-
fore, we surmise that the root exudates of Paris contain 
one or more signaling molecules that directly bind to 
receptor domains. Such direct binding enables a highly 
sensitive response over a wide dynamic range of back-
ground ligand concentrations. The formation of biofilm is 
a dynamic process involving an attachment stage, accu-
mulation stage, maturation stage and dispersal stage. The 
cells residing in the biofilm are encased within a self-pro-
duced exopolymeric matrix that commonly comprises 
lipids, proteins (frequently exhibiting amyloid-like prop-
erties), eDNA and exopolysaccharides [42]. This matrix 
fulfills a variety of functions for the community, from 
providing structural rigidity and protection from the 
external environment to controlling gene regulation and 
nutrient adsorption [43]. Previous studies have revealed 

Table 4  Comparison of gene clusters involved in antibiotic biosynthesis in strain HJ-2, HS311 and ZF390

Antibiotic name Activity Location Identity (%)

HJ-2 HS311 ZF390 HS311 ZF390

Fusaricidin Broad antimicrobial activity against Fusarium sp., also suppresses 
G+ bacteria [28]

3,650,067 -3,719,981 63,180
- 131,651

62,571
- 131,051

99.3 98.4

Tridecaptin Suppresses G− bacteria [29] 89,772- 182,664 2,578,853
-2,671,371

2,419,321
-2,511,835

93.2 95.5

Polymyxin Broad antimicrobial activity, especially against G−bacteria [30] 2,710,256
-2,790,093

5,116,022
- 5,197,037

95.1

Pelgipeptin Broad antimicrobial activity against G + and G− bacteria [31]; 
PelgipeptinA and PelgipeptinB against Fusarium graminearum 
and Rhizoctonia solani [32]

485,090
- 558,941

- - - -

Paenilan Suppresses G+ bacteria [33] 5,331,079
- 5,358,085

- 1,620,879
- 1,647,885

- 96.2

Paeninodin Broad antimicrobial activity against G + and G− bacteria [34] 5,011,316
- 5,035,438

1,439,160
- 1,463,275

1,301,862
- 1,325,980

97.2 96.3

Table 5  Comparison of genes involved in synthesis of resistance inducers in strain HJ-2, HS311 and ZF390

Resistance inducers Plant 
resistance 
type

Gene name Location Product Identity(%)

ZF390 HS311

2,3-Butanediol ISR alsS 5,251,050 5,251,535 Acetolactate synthase 98.77 98.97

alsD 5,947,927 5,948,673 Acetolactate decarboxylase 98.80 98.80

bdh 1,893,383 1,893,679 2,3-butanediol dehydrogenase 96.26 97.98

Acetoin ISR alsD 5,947,927 5,948,673 Acetolactate decarboxylase 98.80 98.80

Peptidoglycan PTI dacA 3,710,123 3,710,332 carboxypeptidase 94.39 95.81

Flagellin PTI flgL 2,996,323 2,996,535 Flagellin - 92.45

EF-Tu PTI tuf 2,113,547 2,113,711 elongation factor Tu 96.96 98.71
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the signaling pathway for biofilm formation in B.subtilis, 
the signals are sensed through histidine kinases(KinA-
KinD) that phosphorylate Spo0F, Spo0F∼P transfers the 
phosphate to Spo0A, and Spo0A∼P leads to SinI accu-
mulation and matrix gene expression [44]. Among this 
signaling pathway, Spo0A is a key transcription regula-
tory factor that controls the expression of genes involved 
in biofilm formation and sporulation [45]. Meanwhile, 
biofilm formation is negative regulated by Rap family 
of phosphatases, which lower the Spo0A∼P level in the 
cell, and prevent sporulation [46]. To date, the signaling 
pathway of biofilm formation has not been reported in 
P. peoriae. In this study, core genes involved in biofilm 
formation were detected in genome of HJ-2, ZF390 and 
HS311, with high sequence identity. Therefore, the sign-
aling pathway for biofilm formation in P. peoriae probably 
possess high similarity with those reported in B.subtilis.

PGPRs have attracted considerable attention owing 
to their demonstrated ability to solubilize mineral 
phosphates, fix nitrogen, synthesize phytohormones 
and degrade lignocellulose and increase plant toler-
ance to abiotic stress by reducing host ethylene levels 
through 1-aminocyclopropane -1-carboxylate (ACC) 
deaminase activity [47]. In this study, greenhouse and 
field experiments have confirmed that selected strain 
HJ-2 could improve the growth of physical parameters 
in P. polyphylla. IAA plays a vital role in plant growth 
and development as a regulator of numerous biologi-
cal processes. The capacity for IAA production of HJ-2 
was proved in  vitro by using LC/MS method. Accord-
ing to the KEGG database analysis, genes encoding key 
enzymes in the IAA biosynthesis were found in strain 
HJ-2 (Suppl. Table  5). Another strategy that PGPRs use 
to enhance plant growth is nitrogen fixation. P. peoriae 
HJ-2 established nitrogen-fixing potential through the 
ARA method. As reported in N2-fixing strains within 
the genus Paenibacillus, nitrogen fixation is carried out 
by molybdenum-dependent nitrogenases, which are 
encoded by a conserved nif gene cluster (comprised by 
nine genes: nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA, 
and nifV) [48]. According to the KEGG database analysis, 
six of these genes were also detected in genome of HJ-2 
(Suppl. Table 5). At present, the excessive use of nitrogen 
fertilizer leads to environment pollution. The detrimental 
effect may be lessened by using the nitrogen-fixing rhizo-
bacteria, and P. peoriae HJ-2 could be utilized as bioferti-
lization in agriculture.

The genus Paenibacillus is known for its potential 
to produce a series of bioactive compounds, including 
non-ribosomally synthesized lipopeptides (LPs), pol-
yketides and ribosomally synthesized peptides [49]. LPs 
(e.g. polymyxins, pelgipeptin, surfactins, and fusarici-
dins) have been reported as strong antibacterial agents 

mostly active against phytopathogens [50, 51]. Fusari-
cidins displayed excellent antifungal activities against 
many plant pathogenic fungi, especially Fusarium spp, 
in  vitro [52]. The antifungal mechanism of fusaricidin 
is through permeabilization and disruption of the cell 
membraneis. The production of fusaricidins by P. poly-
myxa is encoded on the NRPS gene cluster called fus 
with eight genes(fusA-fusH) [53]. In addition to P. poly-
myxa, we also found the fus cluster existed in species of 
P. peoriae, and the majority of these gene clusters are 
conserved in all P. peoriae strains. Polymyxins and tri-
decaptin have been described in species of P. polymyxa 
for possessing strong antimicrobial activity against 
Gram-negative bacteria. On the basis of antiSMASH 
database, the majority of these gene clusters were also 
detected in genomes of P. peoriae strains except for 
ZF390. Pelgipeptins were first discovered as second-
ary metabolites in Paenibacillus elgii, and the variants 
A and B display antifungal activity against several soil 
borne pathogens, including Fusarium graminearum 
and Rhizoctonia solani. The gene cluster encoding pel-
gipeptin biosynthesis was merely detected in genomes 
of P. peoriae strainsHJ-2, and was not typical in other 
P. peoriae strains. The diversifications of antibiotic 
gene clusters in P. peoriae presumably explain the dif-
ferences of their target profiles and efficiency against 
phytopathogens.

In addition to producing a spectrum of antimicrobial 
peptides, P. peoriae HJ-2 produces antibacterial proteins, 
most of which are cell wall-degrading enzymes synthe-
tized by ribosomes, such as β-1,3-glucanase and chitinase. 
β-1,3-glucanase can hydrolyze the cell wall of most 
plant-pathogenic fungi, thus inhibiting the growth of the 
hyphae. The β-1,3-glucan metabolism enzymes mainly 
include three important enzymes: endo-β-1,3-glucanase, 
exo-β-1,3-glucanase and β-1,3-glycosyltransferase [54]. 
According to the Carbohydrate-Active enZYmes Data-
base, a series of endo-β-1,3-glucanases are produced by 
P. peoriae HS311. Based on the analysis of the KEGG 
database, genes encoding endoglucanase were also found 
in P. peoriae HJ-2 (Suppl. Table 6). β-1,3-glucanase pro-
duced by Gliocladium catenulatum inhibited Fusarium 
spp. growth, conidia germination and degraded the cell 
walls of the pathogen [55]. The inhibition of the spore 
germination and hyphal growth of pathogenic fungi by 
fusaricidin or β-1,3-glucanase or both is not well under-
stood. Based on the current data and previous studies, 
the activities of β-1,3-glucanase are repressed by glucose 
and reduced under an acidic pH.

ISR can be triggered by PGPRs or fungi and lead to 
resistance priming against subsequent exposure to 
biotic and abiotic stresses. Several compounds secreted 
by PGPRs have been identified as bacterial elicitors 
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responsible for ISR, such as 2, 3-butanediol, acetoin and 
surfactin [56]. The genes coding for several elicitors were 
detected in genome of HJ-2, ZF390 and HS311, with high 
sequence identity. Bacterial flagellin or EF-Tu is a general 
conserved elicitor that results in intracellular signaling 
in defense responses known as pathogen or microbe-
triggered immunity (PTI/MTI) [57]. Flagellin contain-
ing N-terminally conserved flg22 was also found in P. 
peoriae HJ-2 (Fig. 6B). Previous studies have shown that 
the plant growth-promoting rhizobacteria could elicited 
reactive oxygen species (ROS) burst in plant leaves and 
roots, and PGPR tolerated higher oxidative stress than 
plant pathogen via two-component regulatory system 
ResDE. According to this mechanism, PGPR can success-
fully colonize in both root and leaf of plants [58]. To infer, 
P. peoriae HJ-2 could trigger ISR and accelerate defenses 
against plant pathogen.

Conclusions
In summary, the results of this study indicate that P. peo-
riae HJ-2 could serve as a potential BCA against stem rot 
on P. polyphylla. The genome of HJ-2 consists of a single 
6,001,192 bp chromosome with an average GC content of 
45% and 5,237 predicted protein coding genes, 39 rRNAs 
and 108 tRNAs. The phylogenetic tree indicated that HJ-2 
is most closely related to P. peoriae IBSD35. Based on 
genome analysis, the genome of HJ-2 contains more than 
70 genes and 12 putative gene clusters related to second-
ary metabolites, which have previously been described as 
being involved in chemotaxis motility, biofilm formation, 
growth promotion, antifungal activity and resistance 
inducers biosynthesis. The underlying biocontrol mecha-
nisms can be inferred as follows: (1) Plant recruits PGPR 
to  colonize in the rhizosphere via secreting metabolite; 
(2) Biofilm formation and antibiotics biosynthesis pro-
tect plant against pathogen infection; (3) PGPR greatly 
revitalize plant growth through nitrogen fixing, phyto-
hormones biosynthesis and phosphate solubilization; and 
(4) ISR can be triggered by PGPR and lead to resistance 
priming against biotic and abiotic stresses, etc. This study 
may provide a scientific basis for the further optimiza-
tion of biofertilizers based on P. peoriae HJ-2 in terms of 
field application. The knowledge obtained can be further 
translated into comprehensive strategies for establish-
ing sustainable agricultural practices by using biocontrol 
agents to suppress plant pathogens.

Materials and methods
Isolation of rhizosphere bacteria
Soil samples (50 g) were collected from Paris polyphylla 
roots in a herb plantation of Saiwudang, Shiyan, Hubei 
Province, China (32°27′58″N; 110°40′45″E). Bacteria was 

isolated with the dilution plating method. Subsamples 
(5  g) were diluted with 50  mL of sterile distilled water, 
thoroughly dispersed by shaking (150 r/min) for 30 min 
at 28  °C, and further diluted 103–107−fold. A 100 μL of 
the diluted samples was spread onto Luria–Bertani (LB) 
agar plates and maintained at 25 °C for 24 h. After incu-
bation, the bacterial colonies were picked and repeatedly 
restreaked onto agar plates until their purity was con-
firmed for 16S rRNA gene analysis. The isolated strains 
were maintained at -80  °C in LB media with glycerol 
(30%, v/v) for long-term storage.

In vitro antagonism test
To evaluate the biocontrol potential of  P. peoriae HJ-2, 
we performed a co-cultivation assay on PDA medium in 
vitro. Five Fusarium spp. including F. oxysporum, F. 
graminearum sensu stricto, F. solani var. coeruleum 
(Sacc.) Booth., F. concentricum and F. tricinctum were 
used as pathogenic fungus. F. oxysporum and F. concentri-
cum which had been reported causing stem rot on P. poly-
phylla in China were isolated in our lab from infected P. 
polyphylla. The 6 mm plugs from the edge of pathogenic 
fungus were inoculated in the center of PDA medium 
(90 mm in diameter), and then the HJ-2 was inoculated 
on both sides of the culture dish by using sterile paper 
disks (8 mm in diameter), filter paper with sterile water 
was used as the control. After incubated for 7  days at 
25 °C, the colony diameters were measured and recorded. 
Effect of P. peoriae HJ-2 on F. Concentricum spore ger-
mination assays were performed as described by  Jiang 
[59]. The top surface of P. peoriae HJ-2 cultured in LB 
broth was sliced and removed. Subsequently, the sub-
layer was transferred to a 1.5 mL centrifuge tube (sterile). 
The centrifuge tube was inoculated with 10 μL conidium 
suspension of F. concentricum (1 × 105 conidia/mL), and 
incubated for 24 h at 25  °C. The germination of conidia 
was observed using Phenix BMC500 microscope (Phenix 
China, Inc.). The experiment was conducted three times 
with two replicates per treatment.

Biocontrol experiments in greenhouse and field
To evaluate plant growth promotion and biocontrol 
effect of P. peoriae HJ-2, greenhouse and field experi-
ments were carried out in this study. For the greenhouse 
experiment, the seeds of P. polyphylla were sown into 
autoclaved soil with one seedling per pot and then cul-
tivated in a greenhouse at 20/25 °C (night/day) with 70% 
humidity and 14-h photoperiod. The seedling was treated 
with 10  mL of bacterial suspension of HJ-2 at OD600 of 
0.8 by sprinkling the root in combination with spraying 
the leaf when the seedling grew to six leaves, and ster-
ile water served as a control. Ten days later, the seed-
ling in each treatment was inoculated with 10 mL spore 
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suspensions of F. concentricum (1 × 105 conidia/mL). The 
length, fresh weight, dry weight of roots and stems, and 
the incidence rate of disease were recorded and photo-
graphed after inoculation for twenty-five days. All experi-
ments were conducted three times with twenty seedlings 
per treatment.

Moreover, the field experiments were conducted in a 
herb plantation of Saiwudang, Shiyan, Hubei Province, 
China (32°27′58″N; 110°40′45″E), and the experiments 
did not involve endangered or protected species. Two 
treatments were established, and water was used as a 
mock control. A 20  mL of bacterial suspension of HJ-2 
at OD600 of 0.8 was poured onto the roots, and sprayed 
on both sides of the leaves when the seedlings grew to six 
leaves. Fifty days later, the effects on plant growth pro-
motion and the incidence rate of disease were recorded 
and photographed. All experiments were conducted 
three times with fifty seedlings per treatment.

Indole 3 acetic acid (IAA) production, nitrogen fixation, 
and phosphate solubilization assays
The production of IAA was measured using LC/MS 
method previously described [60], with some modifi-
cations. A 20 μL of bacterial suspension at OD600 of 0.5 
(106—107 CFU/mL) was added to 20 mL of liquid Landy 
medium (20  g/L glucose, 5  g/L glutamic acid, 1  g/L 
KH2PO4, 0.5  g/L MgSO4·7H2O, 0.5  g/L KCl, 5  mg/L 
MnSO4, 0.16  mg/L CuSO4, 0.15  mg/L FeSO4, 2  mg/L 
L-pheny- lalanine, 1  g/L yeast powder). The medium 
was maintained at 28 °C for 72 h by shaking (160 r/min), 
and the culture was centrifuged at 4  °C with 8000  rpm 
for 2 min. Then, a 100 mL of filtrate was collected with 
a 0.22  μm microporous membrane, and extracted with 
ethyl acetate for three times. The organic solvents were 
collected and dissolved with methanol after vacuum 
drying for LC–MS analysis. An Agilent 1100 Series LC/
MS system and an Agilent Zorbax Exteng-C18 chro-
matographic column (2.1  mm × 150  mm, 3.5  μM) were 
used. IAA (Sigma) were prepared by methanol dissolu-
tion, and each standard sample had a concentration of 
5 × 10−7 g/L.

Nitrogen fixation ability of HJ-2 was tested using the 
acetylene reduction assay (ARA), as described by Bod-
dey [61]. A 20 μL bacterial suspension at OD600 of 0.5 
was inoculated to 4  ml of semi-solid (0.18% agar–agar) 
NFb media. After incubation for 72 h at 28 °C in the dark, 
10% (v/v) of the air phase was replaced with acetylene. 
The amount of C2H4 was measured using a gas chroma-
tograph (Agilent  7890A) after incubation for 1  h with 
acetylene. The protein concentration of bacteria was col-
lected and determined by using protein extraction kit 
(TaKaRa, DaLian, China).

The ability of phosphate solubilization was tested as 
previously described [62]. A 5 μL bacterial suspension 
at OD600 of 0.5 was inoculated to NBRIP medium (0.5% 
Ca3(PO4)2, 1% glucose, 0.01% (NH4)2SO4, 0.5% MgCl2, 
0.02% KCl, 0.025% MgSO4·7H2O, 1.5% agar). After incu-
bation for ten days at 28 °C, the growth of bacterial was 
recorded. The experiments were conducted three times.

Colonization assays with the strain HJ‑2 on seedling roots
The GFP-labelled P. peoriae HJ-2 was constructed with 
the pHT01EGFP plasmid, which carried the gfp and CmR 
genes. The competent cells of HJ-2 and transformation 
were obtained as described previously [63]. The seeds of 
four plants (P. polyphylla, pepper, tomato and tobacco) 
were surface-sterilized by soaking in 20% sodium 
hypochlorite solution for 20 min and cultured in flower-
pot with autoclaved soil. When the roots of seeding were 
approximately 2 cm (cm) in length, a 10 mL of bacterial 
suspension at OD600 of 0.8 was inoculated onto the roots. 
For GFP observation, root surfaces were rinsed with ster-
ile water and stained with 10 μg  ml−1 propidium iodide 
(PI) for 15 min. Excitation and emission wavelengths for 
detecting the GFP- tagged HJ-2 were 488 and 510  nm, 
respectively. Excitation and emission wavelengths for 
detecting the PI- stained root were 535 and 617  nm, 
respectively. The colonization of the strain HJ-2 on seed-
ling roots was observed using NikonDS-Ri2 microscope 
(Nikon Japan, Inc.).

Bacteria counting was performed by using the plate 
counting method with LB medium containing Chloram-
phenicol (Cm, 5  μg  mL−1) as described previously [64]. 
The roots of four plants were harvested after inoculation 
for 5 d, 8 d, 16 d, 22 d, 25 d, 30 d, 35 d, 40 d, 45 d and 50 
d, and washed twice with phosphate buffer (1 M, pH 7.0). 
Then, the effectively colonized bacteria was remove from 
roots to sterile water. Last, the CFU count was recorded 
after 48  h of incubation at 28  °C, and the sterile water 
was applied as control. All bioassays and experiments 
were conducted three times with twenty seedlings per 
treatment.

DNA extraction, PCR amplification, 16S rRNA gene analysis
Genomic DNA was extracted with a DNA Mini Bacteria 
Kit (Invitrogen, Shanghai) following the manufacturer’s 
instructions. The 16SF-(AGA​GTT​TGA​TCC​TGG​CTC​
AG) and 16SR-(GGT​TAC​CT- TGT​TAC​GACTT) uni-
versal primers were used for PCR amplification [65]. The 
16S rRNA gene was sequenced by Life Technologies Inc. 
(Shanghai, China) and manually aligned with reference 
sequences retrieved from the GenBank database follow-
ing BLAST searches for fast identification.
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Whole‑genome sequencing and annotation
DNA was extracted from cells harvested from LB broth 
culture medium of HJ-2 with a Genomic DNA extrac-
tion kit (TaKaRa, DaLian, China). The whole genome was 
sequenced using the PacBio Sequel platform. Reads were 
assembled using HGAP (version 2.3.0, SMRT Analysis) 
[66]. The assembly data for the complete genome have 
been deposited in GenBank with the accession number 
PRJNA580302. Coding DNA sequence (CDS) predic-
tion was performed using Glimmer 3.02 [67]. A circular 
map of the genome was obtained using Circos version 
0.64 [68]. Genomic islands (Gis) were predicted using the 
IslandPath- DIOMB GI prediction method [69]. tRNAs 
and rRNAs were predicted using tRNAscan-Sev1.3.1 
and Barrnap 0.7 software4, respectively [70]. Clustered 
regularly interspaced short palindromic repeat sequences 
(CRISPRs) were identified using MinCED [71]. Func-
tional annotation was based on BLASTP searches 
(BLAST 2.2.28 +) against the NCBI nonredundant (NR) 
database and gene database, the STRING database, and 
the Gene Ontology (GO) database. Based on the string 
database, BLASTP comparisons were used to perform 
Clusters of Orthologous Groups of proteins (COG) anno-
tation, according to which protein functions could be 
classified [72]. The BLAST algorithm was used to com-
pare the predicted genes with the KEGG database, and 
the corresponding genes involved in specific biological 
pathways were identified according to the KEGG Orthol-
ogy (KO) numbers obtained from the alignment [73]. GO 
was annotated with Blast2GO [74].

Genome comparison
103 genome sequences of Paenibacillus spp. were 
obtained from GenBank. The accession numbers of the 
strains used for the analysis are provided in Supple-
mentary Table  S1. Phylogenetic Tree was conducted by 
using the Phylogenetic Tree Building Service available 
at the Patric website (https://​www.​patri​cbrc.​org), with 
codon tree  method and 1000 genes selected for analy-
sis as option [75]. ANI values were computed by using 
OrthoANI Tool version 0.93.1. Heatmap of the ANI 
matrix was computed using Morpheus (https://​softw​are.​
broad​insti​tute.​org/​morph​eus) with Hierarchical clus-
tering applied using euclidian distance matric and com-
plete linkage clustering method. Pangenome analysis was 
conducted for P. peoriae HJ-2 and other nine strains by 
using OrthoMCL software [76]. Nucleic acid co-linearity 
was assessed for P. peoriae HJ-2 and P. peoriae HS311 
by using MUMmer 3.0 software [77]. The gene clusters 
for secondary metabolites (containing antibiotics) in 
P. peoriae HJ-2 were annotated using the antiSMASH 
database version 4.0.2, and the other antibiotics were 
selected based on previous studies [78]. BLAST was used 

to compare the identities of the genes or gene clusters 
between HJ-2 and other strains.

Transmission electron microscopy (TEM) section of HJ‑2
A single colony from the LB agar plate was inoculated 
into 20  mL of liquid medium. After incubation, the 
medium was maintained at 30 °C for 12 h by shaking (160 
r/min). A bacterial suspension at OD600 of 0.5 was gath-
ered and washed with phosphate-buffered saline (PBS) 
(pH = 7.2). Then, the strain was negatively stained with 
2% phosphotungstic acid (Sigma). Finally, the stained 
bacteria was deposited on a carbon-coated grid, followed 
by observation under a HT-7700 transmission electron 
microscope (HT-7700, Hitachi  High-Tech Corporation, 
Tokyo, Japan).

Statistical analysis
All datas were analysed by using analysis of variancein-
SPSS24.0 (IBMSPSS Inc.,United States). Significant 
differences between means were compared by using 
the LSD test (Fisher’s protected least significant differ-
ences test) at P = 0.05. A P value < 0.05 was considered 
significant.
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