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Abstract 

Identifying the genes underlying fitness-related traits such as body size and male ornamentation can provide tools for 
conservation and management and are often subject to various selective pressures. Here we performed high-depth 
whole genome re-sequencing of pools of individuals representing the phenotypic extremes for antler and body size 
in white-tailed deer (Odocoileus virginianus). Samples were selected from a tissue repository containing phenotypic 
data for 4,466 male white-tailed deer from Anticosti Island, Quebec, with four pools representing the extreme phe-
notypes for antler and body size after controlling for age. Our results revealed a largely homogenous population but 
detected highly divergent windows between pools for both traits, with the mean allele frequency difference of 14% 
for and 13% for antler and body SNPs in outlier windows, respectively. Genes in outlier antler windows were enriched 
for pathways associated with cell death and protein metabolism and some of the most differentiated windows 
included genes associated with oncogenic pathways and reproduction, processes consistent with antler evolution 
and growth. Genes associated with body size were more nuanced, suggestive of a highly complex trait. Overall, this 
study revealed the complex genomic make-up of both antler morphology and body size in free-ranging white-tailed 
deer and identified target loci for additional analyses.
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Background
Characterizing the genomic architecture underlying phe-
notypes in natural populations provides insights into 
the evolution of quantitative traits [1]. Some quantita-
tive traits are correlated with metrics of fitness and are 
particularly important because they might directly influ-
ence population viability [2]. This relationship between 
genomic architecture and quantitative traits, however, is 
not easy to empirically identify [3], and often has unclear 
and unpredictable responses to selection [4]. Sample size 
in particular, of both the number of sequenced individu-
als and assayed SNPs, greatly limits the power of genome 
scans [5]. As such, alternative sequencing and sampling 

strategies have emerged to identify the genetic basis of 
traits in natural populations.

One approach that has gained traction seeks to sample 
individuals representing the extreme ends of the spec-
trum for any observable phenotype, instead of randomly 
sampling individuals from the entire distribution (e.g. 
[5–10]). This sampling methodology of so-called extreme 
phenotypes aims to maximize the additive genetic vari-
ance for the sampled trait, increasing the power to detect 
quantitative trait loci or QTL [5]. Simulations have 
showed that sampling the whole genome increases power 
[11], but this varies by the effect size of each SNP [5]. 
Population history (i.e. degree of linkage disequilibrium) 
also has a profound effect on identifying QTL, essentially 
making the ability to identify linked or causative loci 
easier in small (isolated) populations, and challenging in 
large populations with high effective population size (Ne), 
and by proxy high recombination rates (see also [12]).
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In contrast to individual genome re-sequencing, pooled 
sequencing (pool-seq) uses DNA from many individuals 
within a population and is a cost-effective alternative to 
the whole genome sequencing of each individual sepa-
rately [13]. Individual identity is lost through the pooling 
of DNA, but the resulting allelic frequencies are repre-
sentative of the population and can be used to conduct 
standard population genomic analyses, including QTL 
mapping and association studies [14]. Pool-seq meth-
ods have successfully identified genes underlying colour 
morphs in butterflies and birds, abdominal pigmentation 
in Drosophila, horn size of wild Rocky Mountain bighorn 
sheep, and growth and reproduction in salmon [15–18]. 
Depending on the quality of annotation, similar pooled 
approaches can characterize differences in transposable 
element insertions [19]. The latter aspect, broadly speak-
ing, is particularly relevant for genotype-phenotype cor-
relations as most causative SNPs occur outside coding 
regions [3, 20], and there is evidence of TE insertions 
causing phenotypic differences [21] that are adaptive 
[22].

Combining pool-seq and sampling of phenotypic 
extremes seems promising, if not only for financial con-
siderations [23], in studies interested in the genetic basis 
of traits in wild populations. Coalescent simulations by 
Hivert et al. [24] showed high accuracy of FST estimates 
from pool-seq, at times more precise than individual 
genomes. Similarly, Inbar et al. [25] showed that pooled 
approaches produced near identical allele frequency dis-
tributions to that of whole and reduced genome sequenc-
ing, with simulations reliably detecting moderate to large 
effect QTL. While Bastide et al. [26] showed that low fre-
quency alleles and small effect sizes, particularly for com-
plex traits, were difficult to detect, this is also the case 
for non-pooled studies (e.g. Caballero et al. [11]). Recent 
pool-seq work by Mohamed et  al. [23] and Michelletti 
and Narum [17] identified the same associated regions 
for traits previously identified with extensive SNP arrays 
[27] and pedigree-based QTL mapping [28], respectively. 
Even when effect sizes are small, gene set and pathway 
analyses can be used to detect the collective effect of 
SNPs underling the traits [29, 30], and provide comple-
mentary tools to detect genetic associations to a given 
phenotype [31].

Here, we explored the genomic basis for phenotypic 
variation by sampling the extreme distribution ends 
of a phenotype in a non-model big-game species, the 
white-tailed deer (Odocoileus virginianus, WTD). Two 
traits are of particular interest in WTD; body size and 
antler size, which have a degree of observable variation 
[32] and are connected to individual reproductive suc-
cess [33–35]. Heritability for antler and body measure-
ments are moderate to high for antler features and body 

size [36–38]. Large antlers and body size are also sought 
after by hunters, both as trophies and food throughout 
North America. Our objective was to identify genomic 
windows and TE insertions associated with variation in 
antler and body size phenotypes in WTD; we assume a 
polygenic trait (e.g. [39]), but due to extreme phenotypic 
sampling there should be detectable outlier windows and 
gene pathways related to these phenotypes. This to our 
knowledge the first application of pooled-GWAS study of 
extreme phenotypes in a free-ranging population.

Methods
Study area
Anticosti Island (49°N, 62°W; 7,943 km2) is located in 
the Gulf of St. Lawrence, Québec (Canada) at the north-
eastern limit of the white-tailed deer range (Fig. S1). The 
island is within the balsam fir-white birch bioclimatic 
region with a maritime sub-boreal climate character-
ized by cool and rainy summers (630mm/year), and long 
and snowy winters (406 cm/year; Environment [40, 41]). 
Approximately 220 white-tailed deer were introduced 
between 1896 and 1897 and the population has an esti-
mated contemporary Ne of ~1,500 [42]: the island’s 
demographic history might have resulted in increased 
additive variance [43]. There is no population subdivi-
sion [42] and the mean relatedness of our database is 
zero [36]. Any related individuals in the data set should 
manifest in genome-wide patterns as opposed divergent 
windows between pools. Quantitative genetic analyses 
showed no effect of sampling year on trait heritability, 
which was interpreted as a uniform environmental effect 
across the island [36].

Sample Collection and Phenotypic Distribution
No live animals were directly involved in this study, 
rather we collected tissue samples stored in 95% ethanol 
and phenotypic data on 4,466 male deer harvested by 
hunters from September to early December, 2002–2014 
on Anticosti Island. The sample and measurements were 
completed as part of a large effort led by the NSERC 
Industrial Research Chair in integrated resource manage-
ment of Anticosti Island focussed on collecting data on 
the body condition of deer on the island. We used cemen-
tum layers in incisor teeth to age individuals [44]. Two 
metrics of antler size were selected: the number of antler 
tines or points (>2.5 cm) and beam diameter (measured 
at the base; ±0.02 cm) [45]. We used one metric for body 
size: body length which is correlated to other metrics 
such as body weight and hind foot length [46]. Because 
antler and body size of male cervids are correlated to age 
[47, 48], we used linear models to first assess the relation-
ship between age and each metric separately. We then 
computed an antler and body size index based on the 
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average rank of each individual’s residual variation for 
the phenotypic metrics. The top and bottom ranked indi-
viduals from each group were selected from the available 
database for DNA extraction, with only non-overlapping 
samples for large and small phenotypes from the same 
year, were included in the final pool to limit temporal 
variation. This created four groups for pooled-sequenc-
ing: large antler (LA), small antler (SA), large body size 
(LB), and small body size (SB; Table S1).

DNA Extraction and Genome Sequencing
We isolated DNA from tissue using the Qiagen DNeasy 
Blood & Tissue Kit. The concentration of each DNA 
extract was determined using a Qubit dsDNA HS Assay 
Kit (Life Technologies, Carlsbad, CA, USA). We aimed 
to sequence each pool to 50X as per recommenda-
tions of Schlötterer et al. [14]. Equal quantities of DNA 
(100 ng/sample) were combined into representative 
pools for LA (n = 48), and SA (n = 48), LB (n = 54), and 
SB (n = 61) for a desired final concentration of 20 ng/
ul combined DNA for each pool. Sequencing was con-
ducted at The Centre for Applied Genomics (Toronto, 
ON, Canada) on an Illumina HiSeqX with 150 bp pair-
end reads (Table S2).

Genome Annotation
The draft WTD genome constructed from long 
(PacBio) and short-read (Illumina) data was used 
as a reference (NCBI PRJNA420098; Accession No. 
JAAVWD000000000). We performed a full genome 
annotation by masking repetitive elements throughout 
the genome using a custom WTD database developed 
through repeat modeler v1.0.11 [49] in conjunction with 
repeatmasker v4.0.7 [50] using the non-masked NCBI 
repeat database for artiodactyla, without masking low 
complexity regions. The masked genome was anno-
tated using the MAKER2 v2.31.9 pipeline [51]. We used 
a three-stage process [52] for the generation of an initial 
training data set; 1) using publicly available white-tailed 
deer EST and Protein sequences available through NCBI 
an initial GFF file was generated with SNAP v2013-11-
29 [53]; 2) an hmm file was generated from the initial 
SNAP training GFF output and was used as evidence for 
the MAKER2 prediction software, again using SNAP; 
and lastly 3) evidence from the prior SNAP trials in GFF 
format were used as for the generation of a training data 
set for AUGUSTUS v3.3.2 gene prediction software. 
Gene IDs were generated using blastp v2.9.0 [54] on the 
WTD annotation protein transcripts, restricting the 
blast search to human protein annotations in the uniport 
database (parameters -max_hsps 1 -max_target_seqs 1 
-outfmt 6 -taxids 9606).

Mapping and SNP calling
We trimmed reads for quality and adaptors using the 
default Trimmomatic v.0.36 settings [55]. Reads were 
then aligned to the unmasked WTD reference genome 
with BWA-mem v0.7.17 [56]. We used samtools v1.10 
[57, 58] to merge and sort all aligned reads into four 
files for each representative pool. Prior to calling SNPs 
we filtered for duplicates using Picard v2.20.6 [59], kept 
uniquely mapped reads with samtools, and conducted 
local realignment using GATKv3.8 [60]. We called SNPs 
with samtools mpileup (minimum mapping quality (-q) 
= 20). INDELs were identified using a perl script in the 
Popoolation2 software suite [61, 62], and all INDELs as 
well as SNPs within 5 kb up/downstream of these regions 
were removed. We filtered out all masked regions and all 
scaffolds <= 50 kb.

Genome wide differences were calculated between 
large and small phenotypes for antler and body size. 
We used a sliding window approach with window sizes 
of 1000 bp with a step size of 500 bp and minimum cov-
ered fraction of 0.8 to test for allele frequency differences 
using Fisher’s exact test (FET) and estimate the fixation 
index (FST) from the Popoolation2 software suite [61, 
62]. A minimum and maximum coverage were deter-
mined based on the mode depth +/- half the mode as 
per Kurland et  al. [63] and a minimum overall count of 
the minor allele of 3 for each pool was specified (Fig. S2). 
We calculated the mean allele frequency differences of 
each window in R v3.6.1. We first corrected for multi-
ple testing by using an FDR correction (see [64]) but also 
set a conservative α (1.0e-7) as Popoolation multiples 
all p-values within each window by default. We ran all 
subsequent analyses on the FET windows, noting here a 
correlation to FST (Fig. S3). Manhattan plots were gener-
ated using a custom R script to plot the distribution of 
outliers by position and scaffold throughout the entire 
WTD genome. Bedtools v2.27.1 was used to character-
ize whether a window was within 25 kb up/downstream 
of a gene (i.e. regulatory) which were used for gene set 
analysis (below). To identify the most differentiated 
SNPs within each outlier region we used the modified 
chi-square test from Spitzer et al. [65] that accounts for 
overdispersion. This multi-pronged approach to identify 
outlier windows and SNPs was used to limit the potential 
for false positives.

Lastly, we generated two null populations to quan-
tify the rate of false positives. Here, we combined all the 
reads from SA, SB, LA, and LB into one large pool using 
samtools -merge; we then generated two artificial pools 
by randomly sub setting reads using the samtools view -s 
flag that matched the coverage of our original pools. The 
same window-based analyses were conducted assum-
ing any outlier would represent background noise. Note 
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that pool-seq uses read counts to estimate allele frequen-
cies, hence the need for high coverage; sampling variance 
is expected to generate some differences in minimally 
diverged populations as for example 50X coverage with 
a minor allele count of 3 and 4 results in a 2% allelic fre-
quency difference.

Transposable Elements
We used consensus transposable element (TE) sequences 
from the repbase database for cow to repeat mask the 
WTD reference genome, and subsequently merged this 
masked genome with the repbase TE reference sequences 
[66]. We used the repbase database consensus sequences 
to re-mask the genome due to more robust information 
for TE identities, family and order required in this anal-
ysis. Trimmed reads for both antler and body size phe-
notypes were aligned to the TE-WTD merged reference 
genome using bwa-mem as stated in previous methods 
for SNP analysis. We used the recommended workflow 
for the software suite popoolationTE2 v1.10.04 [19] to 
create a list of predicted TE insertions. From this we 
calculated TE frequency differences between large and 
small phenotypes as well as proximity to genic regions. 
Here, we only examined TEs that were within 25 kb up 
or downstream from a gene and within the 95th percen-
tile for absolute frequency differences to allow for more 
features to be assessed subsequently. The same analyses 
were performed on our null pools to generate the null TE 
frequency distribution.

GO Pathways
To evaluate the enrichment of gene pathways in our 
outlier windows the program Gowinda v1.12 [67] 
was used to test for GO term enrichment, while also 
accounting for biases in gene length but requires input 
of individual SNPs. We also used TE start position as 
a proxy for SNP location for program compatibility. A 
gtf version of our annotation was created by removing 
duplicate genes and retaining only the longest tran-
script – resulting in 15,395 unique genes. All SNPs in 
outlier windows that were within 25 kb of a gene were 
included in this analysis and compared to all SNPs in 
every outlier window for antler and body size pheno-
types independently. Similarly, all TEs that were within 
25 kb up or downstream from a gene and within the 
95th percentile for absolute frequency differences were 
included in a separate analysis for antler and body phe-
notypes independently. We used the program REVIGO 
[68] to remove redundant GO terms and to visual-
ize semantic similarity-based scatterplots: the latter 
turns GO biological descriptions into numerical values 
that allow for aggregating similar terms. Results from 

Gowinda with p-values < 0.01 were used with REVIGO 
to generate plots of significant GO terms for biological 
processes of antler and body size phenotypes. Only GO 
terms with a dispensability score < 0.20 were included 
in figures, representing the least redundant terms in the 
analysis.

We also created outlier gene ID lists (i.e. genes within 
25 kb of an outlier TE and window) for antler and body 
size that were provided independently to DAVID v6.8 
[69], while removing all duplicate gene IDs. DAVID uses 
a modified FET to determine the significance of enrich-
ment for any given GO pathway based on the size of the 
gene list provided, the number of genes used as a back-
ground for a species, and level of enrichment for each 
term from the list. Results from DAVID with a p-value 
< 0.01 were used with REVIGO to generate plots of sig-
nificant GO terms for biological processes, molecular 
function, and cellular components of antler and body size 
phenotypes.

Validation of outliers
Pool-seq SNP callers can vary in their allele frequency 
estimates [70]; we therefore selected three candidate 
SNPs for qPCR validation of allele frequencies. The SNPs 
were selected based off significant FET and chi-square 
values, were near or inside a gene, and passed qual-
ity control with respect to primer design (Fig. S4 & S5). 
Custom genotyping assays using rhAMP chemistry (Inte-
grated DNA Technologies) were designed and genotyped 
on the QuantStudio 3 (Thermo Fisher Scientific). Oligo 
sequences and reaction parameters are provided in Table 
S3. Using the phenotypic category as the binary response 
variable, we ran a logistic regression treating the geno-
typic data as additive (e.g. 0-2 LA/LB alleles per locus, 
per individual) to calculate the effect size.

Results
Phenotypes
We selected the top individuals at the tail ends of the 
distribution for measurements used in our antler and 
body size rankings which are representative of the 
extreme phenotypes. Artist renderings and the distribu-
tion of measurements for the number of antler points, 
beam diameter, and body length between the groups of 
individuals representing each extreme phenotype pool 
(LA, SA, LB, SB) are shown in Fig.  1a. There were no 
significant differences in mean age between the pools 
(Fig.  1b) and individual rankings between antler and 
body size were weakly correlated (Pearson r = 0.33, p 
<0.01).
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Detecting genetic variants and their genomic regions
The total reads generated from resequencing are 
observed in Table S  2 (BioProject ID PRJNA576136). 
The WTD genome is 2.52 GB and has a N50 of 17 MB, 
727 scaffolds >50 kb (98.85% of genome), and BUSCO 
completeness of 91% across 303 orthologs. The genome 
annotation resulted in 20,750 genes and we identified 
29,484,233 and 29,703,634 SNPs from the antler and 
body analyses respectively across the genome, with 
25,116,953 shared SNPs (Fig.  2). The mean allele fre-
quency difference across the antler outlier windows 
were calculated to be 14% with 5038 windows meeting 
the FDR and α threshold (p <= 1x10-7); many of the top 
windows were adjacent to genes with known functions 
(Fig.  3; Tables  1 & 2; full gene list in Tables S4 & S5). 
For the comparison of body size, the mean allele fre-
quency difference was 13% in 1301 windows meeting 
the FDR threshold. 247 windows overlapped between 
phenotypes. For all individual SNPs within outlier win-
dows the modified chi-square test with FDR correction 
identified 5,184 and 1,166 divergent SNPs (p < 0.01) 
from the antler and body analysis, respectively. Over-
all genome-wide allele frequency differences in both 
phenotype pools were 8%; in contrast, the null pool 

comparisons had 3% difference on average and only 5 
windows met the FDR cut-off with a mean allele fre-
quency difference of 5%.

TE Insertions
We identified 19,160 TE insertions through the joint 
analysis of antler phenotype sequences (both large and 
small). Of these TEs, we identified 950 insertions that fell 
in the 95th percentile for the absolute difference between 
large and small phenotypes for further analysis (>|0.20|%; 
Fig. S6). Of the 95th percentile TE insertions in the ant-
ler analysis, 92 were found to overlap with genes, with 
275 within a 25 kb window up or downstream of genic 
regions. For body size, 6,610 TE insertions were identi-
fied with 320 insertions in the 95th percentile (>0.21%). 
Of these, 28 overlapped with genes, and 104 within 25 
kb of a genic region. The null pool TE comparisons had 
considerably shifted frequency distribution, with the 95% 
percentile being TEs that differed by >0.11%.

Gene Ontology Annotations
The results from Gowinda comparing all SNPs within 
outlier windows to background SNPs from all windows 
showed the top 10 enriched GO terms and gene counts 

Fig. 1  The phenotypic extremes used in our sampling methodology. a Artist renderings of the average phenotypic measures for all individuals 
included in each pool. Measurements for antler pools (top) included mainbeam diameter and number of points, while body size (bottom) included 
body length. Scale bars are present for body size to better show differences in average body length, and chest circumference between large and 
small phenotypes. b Violin plots displaying the original measurements of each individual, grouped by large antler (LA), small antler (SA), large body 
size (LB), and small body size (SB) pools. The phenotypes measured include age (years), number of points, beam diameter (cm), and body length 
(cm)
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(Fig. S7). Six statistically enriched GO terms (FDR < 
0.01) from the antler analysis were: GO:0004888 (trans-
membrane signaling receptor activity), GO:0004872 
(receptor activity), GO:0038023 (signaling receptor activ-
ity), GO:0004930 (G-protein coupled receptor activ-
ity), GO:0022835 (transmitter-gated channel activity), 
GO:0022824 (transmitter-gated ion channel activity). 
There were no significant GO terms identified through 
the body analysis following FDR corrections. We show 
term reductions for significantly enriched GO terms 
(p-value < 0.01) through the program REVIGO, with 
clustered items relating to the semantic similarity in the 
antler pool (Fig. 4 and Fig. S7) and body pools (Fig. S8). 
There were no significant GO terms identified through 

the TE analysis using Gowinda and REVIGO following 
FDR corrections (FDR < 0.01) for both the antler and 
body analysis.

DAVID pathway analysis identified 6 statistically sig-
nificant GO terms (FDR < 0.05); GO:0006614 (SRP-
dependent cotranslational protein targeting to membrane), 
GO:0000184 (nuclear-transcribed mRNA catabolic pro-
cess, nonsense-mediated decay), GO:0019083 (viral 
transcription), GO:0006413 (translational initiation), 
GO:0055085 (transmembrane transport), and GO:0007586 
(digestion). No significant terms were identified through 
the body analysis. There were insufficient outliers (n = 5) 
with adjacent genes (n = 2) to conduct these analyses on 
the null pools.

Fig. 2  Stacked barplots representing the proportion of SNPs from all windows in different genomic regions (exon, intron, or 25 kb flank). Each bin 
is grouped by -log10(p-values) calculated by Fisher’s Exact Test. and corresponds with the y-axis values from the Manhattan plots. Coordinating 
barplots represent the number of SNPs in each bin is presented on a log scale
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Validation of Outliers
We genotyped putative antler SNPs (RIMS1, and SRP54) 
and one body locus (LIRF1) split between pools which 
resulted in 80 and 70 individuals having complete gen-
otype and phenotypic data, respectively, that were a 
subset of the pooled samples. The allele frequency dif-
ferences between poolseq and qPCR were as follows: 
RIMS1 (15% vs 6%), SRP54 (16% vs 10%), and LIRF1 
(12% vs 16%). There was an effect of the number of antler 
alleles at the SRP54 locus on antler category (ß = -0.99, p 
= 0.02) and the LIRF1 alleles had an effect on body size. 

(ß = -0.94, p = 0.03; The RIMS1 locus frequency differ-
ences were not shown to have an effect in the model (p 
> 0.05).

Discussion
The extensive database with phenotypic measurements 
for Anticosti Island white-tailed deer allowed us to select 
individuals from the full range of the distribution result-
ing in a sampling representative of extreme phenotypes 
(Fig. 1). The deer on the island form a panmictic popu-
lation and have a smaller Ne [42] relative to contiguous 

Fig. 3  Manhattan plots representing pairwise genetic differentiation (Fisher’s Exact Test) for scaffolds of interest in 1000 bp sliding windows, with 
a step size of 500. Plots represent 200 kbp (+/- ) surrounding the most highly differentiated win dows and their associated gene regions; the top 
panel representing LGALS9 (ref0001370), MTMR2 (ref0001836), and DMBT1 (ref0000845) from the comparison of antler phenotype pools and the 
bottom panel representing FLVCR2 (ref0002232), SLC7A3 (ref0000892), and KRR1 (ref0002547) from the comparison of body size phenotype pools. 
The horizontal black like represents the false detection rate (p = 10-5), while the red line represents a conservative significance threshold (p = 10-7)

Table 1  The top 10 outlier window positions from the antler trait analysis based on corrected p-values that were within 25 kb of 
genes or regulatory regions up/downstream. The closest gene is listed for each window. Functions of each gene are abbreviated from 
RefSeq/Uniprot

Scaffold Window Position p Gene Function

ref0001370 16015000 2.66E-37 LGALS9 The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-
cell and cell-matrix interactions.

ref0001836 5479500 1.24E-34 MTMR2 This gene is a member of the myotubularin family of phosphoinositide lipid phosphatases.

ref0000845 16534000 5.97E-33 DMBT1 Considered as a tumor suppressor gene. May play a roll in epithial differentiation.

ref0002391 7908000 1.75E-29 ITLN2 ITLN2 (Intelectin 2) is likely involved include carbohydrate binding.

ref0001924 2123500 1.52E-28 TRIM64 TRIM proteins are involved in pathogen-recognition and by regulation of transcriptional path-
ways in host defence (Ozato et.al., 2008).

ref0000845 16751500 1.14E-27 CD163 Involved in the clearence and endocytocis of hemoglobin/heptaglobin complexes by mac-
rophages. May protext tissues from free hemoglobin-mediated oxidative damage.

ref0002391 7907500 1.79E-27 ITLN2 See above.

ref0000505 9079500 1.37E-26 ATP5F1A This gene encodes a subunit of mitochondrial ATP synthase.

ref0000881 8059500 1.91E-26 MYH9 This gene encodes a conventional non-muscle myosin.

ref0002644 7312000 2.23E-26 RIMS1 The protein encoded by this gene is a RAS gene superfamily member that regulates synaptic 
vesicle exocytosis.
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mainland populations [71]. Moreover, quantitative 
genetic assessment revealed a consistent environmental 
effect across traits [36]. Collectively, these factors suggest 

a pooled-sequencing approach of phenotypic groups 
could identify key genes and pathways underlying these 
important traits.

Table 2  The top 10 outlier window positions from the body trait analysis based on corrected p-values that were within 25 kb of 
genes or regulatory regions up/downstream. The closest gene is listed for each window. Functions of each gene are abbreviated from 
RefSeq/Uniprot

Scaffold Window Position p Gene Function

ref0002232 15310000 1.71E-31 FLVCR2 This gene encodes a transmembrane protein that is a calcium transporter.

ref0000892 4172500 4.82E-29 SLC7A3 SLC7A3 appears to be involved in amino acid transmembrane transporter activity and basic 
amino acid transmembrane transporter.

ref0002547 2917000 2.98E-23 KRR1 KRR1 (KRR1 Small Subunit Processome Component Homolog) appears to be involved win 
cytosol and Gene Expression.

ref0000845 16369000 1.26E-20 CD163 Involved in the clearence and endocytocis of hemoglobin/heptaglobin complexes by mac-
rophages. May protext tissues from free hemoglobin-mediated oxidative damage.

ref0000438 13320500 1.64E-20 KIF3C Microtubule-based anterograde translocator for membranous organelles.

ref0002813 16028000 8.08E-20 DOCK1 This gene encodes a member of the dedicator of cytokinesis protein family.

ref0002788 19947500 2.45E-19 SYK This gene encodes a member of the family of non-receptor type Tyr protein kinase that is 
involved in coupling activated immunoreceptors to downstream signaling events that mediate 
diverse cellular responses, including proliferation, differentiation, and phagocytosis.

ref0000529 431000 4.31E-19 TRDV1 T cell receptors recognize foreign antigens which have been processed as small peptides and 
bound to major histocompatibility complex (MHC) molecules at the surface of antigen present-
ing cells (APC).

ref0002645 24851500 8.41E-19 RNASEH1 Endonuclease that specifically degrades the RNA of RNA-DNA hybrids

ref0002547 2916500 1.27E-18 KRR1 See above.

Fig. 4  Antler FET analysis of GO terms grouped by semantic similarity. Points are coloured based on significance, with all terms with p-values < 
0.01 from the output of the Gowinda analysis for gene enrichment being included in the analysis. The size of each point represents the specificity 
of each term; GO terms for smaller points being more specific, and larger points more general. Only points with a dispensability score < 0.20 are 
labeled
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We identified outlier regions for both traits that are 
atypically differentiated for what would be expected 
in this population and our null distribution model. The 
most divergent windows and TEs for antler and body 
traits are widely dispersed throughout the WTD genome. 
While effect sizes cannot be estimated from pooled 
samples, the sampling suggests we have maximized the 
additive variance of this population and these outlier 
windows are likely associated with the traits. The GO 
analysis, and more broadly a collection of small putative 
islands of divergence (Fig.  3), is consistent with a poly-
genic trait controlled by many genes: this interpretation 
is also supported by the literature on body size and orna-
ments in mammals [72–74], including red deer [39].

Genomic architecture of antlers and body size
Phenotypic association of SNPs has traditionally focussed 
on non-synonymous variants, but it is evident that non-
coding regions impact phenotypic variation [20], often 
with clear relationships to promoters and enhancer 
regions [75–77]. While some outliers are surely false 
positives [78, 79], cattle GWAS for similar traits typically 
identify 100s to 1000s of QTL [80, 81]. Our data analysis 
– including the GO pathway analyses that incorporated 
TE insertions – suggest that it is the cumulative effects 
from these variants on biological pathways underlying 
antler and body trait variation in white-tailed deer.

Antlers are the only completely regenerable organ found 
in mammals [82], a unique process that involves simul-
taneous exploitation of oncogenic pathways and tumor 
suppressor genes, and the rapid recruitment of synaptic 
and blood vesicles [74]. Antlers might also be an honest 
signal of male quality [83]. A study of differential RNA 
expression in sika deer antlers identified numerous gene 
clusters, and we detected an overlap in gene pathways 
associated with cell death, cell wall formation, and protein 
metabolism (Fig. 4 [84];). One notable outlier in our study 
also detected by Ba et al. [84] is IGF1R that is responsible 
for antler mesenchymal cell proliferation and is a critical 
gene for antler development [85–87]. More broadly, the 
most divergent windows were often near genes linked to 
cancer and other biological processes related to devel-
opment (Table  1), consistent with our understanding 
of antler growth and function. LGALS9, for example is 
a gene that produces Galactin-9, a well-studied protein 
expressed on tumour cells [88], and DMBT1 is a tumour 
suppressor gene involved in bone cancer [89] that like 
IGF1R has been previously identified as key velvet ant-
ler peptide [74]. MTMR2 (Myotubularin Related Protein 
2) has been indicated as a candidate gene for litter size in 
pelibuey sheep [90] and plays a role in spermatogenesis 
[91]. Likewise, the qPCR validated SRP54 gene has been 

linked to bone marrow failure syndromes and skeletal 
abnormalities [92]. Thus, we report testable antler-genic 
links to bone formation, oncogenic pathways, and sexual 
selection detected from a pooled-GWAS approach.

Using analogous human tissue and cell expression, 
most of these reported genes appear to have low tissue 
specificity (IGF1R, MTMR2, SRP54) or are most highly 
expressed in adaptive immune tissues (LGALS9) or in 
the intestine (DMBT1). The specificity for the single cell 
type expression of these genes all fall into the categories 
of neuronal cells and glial cells (IGFR1, MTMR2), glan-
dular epithelial cells (LGALS9, DMBT1), and germ cells 
(MTMR2, SRP54) [93].

The comparison of extreme body size phenotype 
sequences also revealed an array of genes of interest, but 
causal inferences are more challenging (see [94]) as traits 
of this nature, for example human height, involve thou-
sands of SNPs and a multitude of biological pathways 
[95]. Despite the relatively high heritability of body size in 
this population [36], there were fewer windows meeting 
our threshold and no significant GO pathways. Similarly, 
Taye et  al. [96] and Deng et  al. [97] detected divergent 
genes, but no pathways associated with body size.

Considering a role for transposable elements
Traditionally, masking transposable elements reduces 
misalignments due to the repetitive nature of their 
sequences and current limitations with mapping soft-
ware [98], but also misses a wealth of information that 
encompasses a large portion of the genome. Our focus 
was the frequency differences of TE insertions to prop-
erly mapped reference sequences, and how these varied 
between phenotypes. This stems from increasing evidence 
showing that TE insertions impact gene expression, and 
thus the variation for a given phenotype [21]. We found 
275 highly divergent TE insertions in genic regions from 
our antler analysis and 104 from the body size analysis. 
The insertion of these highly variable sequences has the 
potential to impact gene function and studies are now 
starting to emerge that both validate insertions [99, 100] 
and show evidence for positive selection [61, 62]. Our GO 
pathway analysis that included TE insertions did identify 
pathways in antler, but not body size, and is an analytical 
consideration we wanted to highlight to the broader com-
munity. Validating the TEs and characterizing their influ-
ence on neighbouring genes is also warranted given the 
high frequency differences between pools.

Implications for studying quantitative traits in natural 
populations
Antler and body size are traits that are sexually selected 
and linked to reproductive success in WTD [35, 101]; 
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they are also traits desired by hunters, managers, and 
farmers (e.g. antlers for velvet or large body for meat). 
We have detected highly divergent genomic regions, 
and thousands genome-wide variants with allele fre-
quency differences between the phenotypic extremes 
for these traits. Additional lines of evidence, specifi-
cally RNA-seq studies (see [84]), should look at the 
regions identified here, but also consider interactions 
across the entire genomic, epigenomic, and transcrip-
tomic landscape.

We validated two out of three QTL allele fre-
quencies via qPCR and showed an effect in a mixed 
model on phenotypes for WTD. While we applied 
the added stringency of accounting for overdisper-
sion in the chi-square test, our inability to validate 
one outlier suggests a small effect size (e.g. [36]) and 
thus requires increased sample size (see [5]), or is a 
true type I error. Alternatively, epistatic interactions 
might also be at play [102], but detection requires 
whole-genome sequencing of many hundreds of 
individuals thereby defeating the purpose of pooled 
sequencing. Here, expanded individual genotyp-
ing might still reveal the predicted effect, and it is 
encouraging that approaches for low coverage pooled 
data are emerging [103].

The unrelated nature of males in our database [36] 
and null population analyses would support these pat-
terns being inherent to the sampling strategy; however, 
replicating this approach in other populations would 
serve as further validation as we anticipate at least a 
portion of the outlier windows and genes to be shared 
across the species (e.g. [104]). More broadly, polygenic 
traits are difficult to characterize under ideal situations, 
and so the approach presented here is particularly 
promising for discrete traits, rare alleles and moderate-
to-large effect loci (e.g. [17, 18, 25]). As we continue to 
identify and validate candidate QTLs, it is conceivable 
that a gene panel could be developed in white-tailed 
deer and assist in breeding and management programs 
or assess the effects of artificial selection by trophy 
hunting; however, until a reasonable amount of phe-
notypic variation can be attributed to specific QTL, a 
gene targeted approach for management and breeding 
of white-tailed deer will remain a challenge.
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