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Abstract

Background: Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used
tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the
phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this
study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as
single predictors compared to a SNP array, where these omic datasets included different types of sequence variants
(full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence
variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and
metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets
information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance
when using SV, GE, and ePAV from simulated 3’end mRNA sequencing of different lengths as predictors.

Results: The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV
information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the
transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP
array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic
datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining
the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that
of the single predictors alone.

Conclusions: The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a
cost-effective approach generating 3’end mRNA sequencing with transcriptome data extracted from seedling
without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of
such prediction methods in commercial breeding programs.
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Background
Barley (Hordeum vulgare L.) is the fourth most important
cereal crop in the world (FAOSTAT, http://www.fao.org/
faostat/en/) and is used for human nutrition and animal
feed [1]. In the context of a growing global population [2],
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producing sufficient food is a big challenge for agriculture
[3]. In addition, climate change is expected to negatively
impact global crop production by increasing extreme tem-
peratures and altering rainfall patterns [4]. Thus, high and
stable yield in barley is one of the most important breed-
ing goals. However, in addition to directly breeding for
yield, the consideration of yield-related characters during
the breeding processes proved successful [5]. Leaf angle
(LA) e.g. is one of the most important canopy architecture
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parameters that influence the efficiency of photosynthe-
sis and further affect yield production [6]. In addition, the
control of plant height (PH) can be used to reduce yield
loss arising from lodging and adaption to variable environ-
ments through heading time (HT) alteration impacts yield
[7]. Therefore, the use of approaches that help breeders to
reliably select for yield and yield-related quantitative traits
increases the gain of selection.
Genomic prediction (GP) has emerged as a powerful

tool to increase selection gain for complex traits in both
livestock and plant breeding programs [8, 9]. This method
is based on the idea that the performance of individuals
can be predicted from genotypic information using the
GP model which was trained on those individuals with
both phenotypic and genotypic information. Thus, the
genotyped individuals can be preselected before their phe-
notypes are measured in the field to shorten the breeding
cycle as well as to reduce the cost of phenotyping [10].
Typically, single nucleotide polymorphisms (SNP) serve

as predictors in GP [11–13]. SNP in gene coding regions
can be classified into non-synonymous (nsSNP) and syn-
onymous SNP (sSNP), which differ in their property to
change or not the amino acid sequence of a protein.
Therefore, these two SNP classes may have different influ-
ence on phenotypes. In previous studies, the advantage
of using these classes of SNP in comparison to randomly
selected SNP for GP was explored in pig [14]. How-
ever, they observed that predictive performance of neither
nsSNP nor sSNP did significantly differ from those of ran-
dom SNP for most traits. In addition, Heidaritabar et al.
[15] observed that nsSNP did not enhance the perfor-
mance of GP in chicken. On the other hand, a protein may
be able to tolerate an amino acid change due to a nsSNP
and still keep its function normal [16]. Therefore, SNP can
be grouped using the SIFT algorithm [17] into (1) tolerant
SNP (tSNP), which can keep a protein’s function normal;
and (2) deleterious SNP (dSNP), which will affect a pro-
tein’s function. To the best of our knowledge, the use of
tSNP or dSNP as predictor of the phenotypic variation has
not yet been compared.
Complex biological processes such as transcription,

translation, and biochemical cascades resulting in various
metabolites occur between DNA sequence and pheno-
types [11], which hamper the predictive power of SNP. In
addition, higher-order epistatic effects may contribute to
the genetic variance of complex traits [18], which can in
most of cases not directly be captured using SNP informa-
tion [13, 19]. Therefore, prediction ability of phenotypic
variation using SNP information for quantitative traits still
leaves room for improvement. In the last years, molecu-
lar technologies were developed, which allow a cheap and
high-throughput gene expression andmetabolite profiling
[20]. Such data can act as bridge to shorten the biologi-
cal distance between genotypes and phenotypes and may

even capture higher-order epistatic interactions for the
prediction of phenotypic variation [21, 22].
Transcription is the first downstream processes after the

DNA sequence and, thus, more likely affects the variation
of traits compared to SNP. Recently, thanks to techno-
logical developments, several studies have proposed to
use gene expression (GE) variation as predictor of phe-
notypic variation in maize [11, 21], rice [22] and barley
[23]. While Schrag et al. [21] and Hu et al. [22] used
GE assessed from microarray experiments for GP and
showed that a considerable proportion of phenotypic vari-
ation can be explained by such information, Guo et al.
[11] and Weisweiler et al. [23] used mRNA sequenc-
ing datasets to predict the performance of phenotypic
traits. The advantage of mRNA sequencing compared to
microarray experiment is the possibility to extract SNP
and small insertions/deletions (INDEL) called sequence
variants (SV hereafter), in addition to the quantification
of transcript abundance. Furthermore, a single gene can
often produce more than one transcript through alter-
native splicing, which can generate various proteins to
regulate the complexity of pathways [24]. These differ-
ent transcripts of the same gene can be identified using
full-length mRNA sequencing. To our knowledge, tran-
script expression (TE) as predictor in GP has not yet been
compared to GE.
Compared to the two previous levels of molecular infor-

mation (DNA sequence andGE), metabolites (M) have the
closest relationship to the expressed phenotype because
they are the end-points of upstream biochemical pro-
cesses [25], and, thus, have a high potential as predictors
for GP. Previous studies on the use of metabolites to
predict phenotypic traits in Arabidopsis thaliana, maize,
wheat, and barley reported lower or higher prediction
abilities compared to SNP information, depending on the
traits and species [11, 21, 26–29]. Gemmer et al. [29]
recommended that metabolites cannot be used alone in
barley for phenotype prediction. However, the integration
of expression and metabolite datasets with SNP infor-
mation improved prediction abilities in comparison to
the benchmark using SNP information in maize [11, 21].
Thus, the integration of several layers of omic datasets
such as SV, GE, TE, and M as predictors could outper-
form benchmark methods and should be evaluated in GP
of phenotypic traits in barley.
The objectives of our study were to (i) assess the pre-

diction ability for three yield-related phenotypic traits
(LA, PH, and HT) using different omic datasets as sin-
gle predictors compared to a SNP array, where these omic
datasets included different types of sequence variants (SV,
dSV, and tSV), different types of transcriptome (expres-
sion presence/absence variation-ePAV, GE, and TE) sam-
pled from two tissues, leaf and seedling, and metabolites
(M); (ii) investigate the improvement in prediction ability
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when combining multiple omic datasets information to
predict phenotypic variation in barley breeding programs;
(iii) explore the predictive performance when using SV,
GE, and ePAV from simulated 3’end mRNA sequencing of
different lengths as predictors.

Results
Heritability
The three phenotypic traits (LA, PH, and HT) were mea-
sured for 23 spring barley inbreds in seven environments.
The adjusted entry means of the 23 inbreds ranged from
2.52 to 7.07 for LA, 48.75 to 79.75 cm for PH, and
57.31 to 82.23 days for HT (Suppl. Table S1). Heritabili-
ties on an entry mean basis (H2) were high and similar
for LA (0.91) and HT (0.90) and with 0.83 slightly lower
for PH. A total of 192 chemical entities were annotated
(Suppl. Table S2) and after filtering (see methods), 144
metabolites remained for which the relative abundances
were used for further analyses. A total of 101 metabo-
lites were found in databases and, thus, it was possible
to assign them according to their chemical features to
12 compound classes, while the remaining 43 metabo-
lites were unknown (Suppl. Table S3). The heritabilities
of the metabolites on an entry mean basis ranged from
0 to 0.98 with an average of 0.62 (Suppl. Fig. S1). The
classification of the metabolic predictors using different
degrees of heritability (0.1 to 0.8 in increments of 0.1)
resulted in eight groups with 133, 128, 121, 117, 109,
93, 72 and 45 metabolites, respectively. These groups
were then considered for the omic prediction described
below.

Correlation and genetic dissimilarity analyses
Positive correlations between the three phenotypic traits
were observed (Suppl. Fig. S2). Particularly, LA was highly

and significantly correlated with HT (0.685∗∗∗), where the
correlation coefficients between PH and HT as well as
between PH and LA were with about 0.45 considerably
lower. Many metabolites were significantly (P < 0.05)
negatively associated with the assessed phenotypic traits
(Fig. 1). For instance, a cluster of some acids, amino acids,
and several unknown metabolites was strongly negatively
correlated with the three traits. Interestingly, we found
that the same metabolites that were significantly corre-
lated with LA were also correlated with HT. This was
consistent with the phenotypic correlations between both
traits (Fig. 1 and Suppl. Fig. S2).
To assess similarity/dissimilarity between these omic

datasets, we performed generalized procrustes analysis
(GPA) [30] on the resulting principal component analysis
(PCA) obtained from each omic dataset. The dissimilarity
measurements from GPA were used for principal coordi-
nates analysis (PCoA). The first two PCo accounted for
71.86% and 20.72% of the total variability, respectively
(Fig. 2). The first PCo separated the metabolites from the
other features while the second PCo tended to differen-
tiate the two tissues, leaf (l) and seedling (s). GE, TE,
and ePAV datasets were similar to each other within the
same tissue. This can be explained thereby that the ePAV
dataset was derived from GE dataset and the GE dataset
was derived from the TE dataset. ePAVls was, as expected,
centered between the ePAV from the individual tissues.
Although SNP array, SV, dSV, and tSV clustered together,
SNP array was more distant from the cluster of dSV, tSV,
and SV which almost overlapped. This was due to that
dSV and tSV are a subset of SV. This finding indicated that
SNP, expression and metabolite features would provide
different layers of biological information and might con-
tribute differently and complementarily to the phenotypic
variation.

Fig. 1 Heatmap of Pearson correlation coefficients calculated between all pairs of the three phenotypic traits and the 144 metabolites. The three
phenotypic traits are leaf angle (LA), plant height (PH) and heading time (HT). Correlations marked with ∗ , ∗∗ , and ∗∗∗ were significant at P < 0.05,
0.01, and 0.001, respectively. The heritability of each metabolite is given in parentheses after each metabolite’s name



Wu et al. BMC Genomics          (2022) 23:200 Page 4 of 15

Fig. 2 Plot of the first two axes of the principal coordinate analysis for comparison of the similarity between different omic datasets based on
generalized procrustes analysis. The omic datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence
variants (tSV), gene expression in seedling and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression
presence/absence variation in seedling, leaf and combining both tissues (ePAVs , ePAVl , and ePAVls), and metabolites (M). The colors show the four
groups of omic datasets used in a grid search for integration of multiple predictors (Figure 5). Red represents ePAV, green expression, blue
metabolite, and purple SNP and SV predictors

Omic prediction
The prediction ability of the three phenotypic traits using
different single predictors was examined through five-fold
cross-validation. Regardless of the predictor, the predic-
tion abilities were higher for traits with higher heritabil-
ities (Fig. 3). Prediction abilities based on SV, GE, TE,
ePAV, and M datasets were compared to that realized
with the SNP array which was used as baseline predictor.
The observed median prediction ability based on the SNP
array dataset ranged from 0.185 (HT) to 0.590 (LA). The
prediction ability of SV extracted frommRNA sequencing
dataset was slightly higher than that of SNP array dataset
across the three traits. Moreover, the dSV dataset slightly
outperformed the SV extracted from mRNA sequencing
and the tSV dataset (Fig. 3). Even higher prediction abili-
ties were observed for ePAV, any expression datasets from
seedling (GEs and TEs), and metabolite datasets (Fig. 3).
The prediction abilities for the ePAV dataset were signif-
icantly different among l, s and ls, but not consistently
across the three traits (data not shown). ePAVls was cho-
sen as the best compromise across the three traits for
further analyses, as it was for none of the three traits in
the significance group with the lowest prediction abilities.
The TE datasets slightly outperformed the GE datasets for
HT and LA, and TEs resulted in the highest prediction
ability as single predictor for these traits. In contrast, no
difference between TE and GE was observed for PH.
To explore whether the heritability of a metabo-

lite affects the prediction performance, eight classes of
metabolites based on different degrees of heritabilities
served as predictor. The prediction ability increased when
the metabolites with lower heritability (< 0.1) were

not considered (Fig. 3). However, the prediction ability
didn’t increase significantly and consistently across the
three traits with increasing heritability of the considered
metabolites (data not shown). Therefore, we selected the
metabolite group for which the highest prediction abil-
ity was observed across the three traits (M0.6) for further
analyses.
Pearsons correlation coefficients between pairwise pre-

dicted values of different omic datasets were calculated,
and the correlation-based distance was used for PCoA
analysis for each trait. Across the three examined traits,
the metabolite feature was clearly separated from the
other omics features (Fig. 4), and the predicted values of
M were less correlated with those values of the other omic
datasets than the other omic datasets among themselves
(Suppl. Fig. S3). A similar result was observed between
the two tissues, seedling and leaf, which were clearly sep-
arated on Fig. 4. In contrast, the predicted values from
features that clustered together on Fig. 4, especially SNP
array, SV, dSV, tSV, ePAVls, were highly correlated (Suppl.
Fig. S3).
In order to evaluate whether the prediction ability can

be improved by combining several predictors, a joined
weighted relationship matrix of the single predictors with
the highest prediction ability was established and a grid
search was used to identify those combinations of dSV,
ePAVls, TEs, and M0.6 resulting in the highest prediction
ability. For the three examined traits, the highest median
prediction ability was observed when more than one pre-
dictor was used (Fig. 5). Furthermore, the optimal weights
of the four predictors to reach the maximal prediction
ability differed among the three traits, but the weights of
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Fig. 3 Boxplot of prediction abilities for the three traits, leaf angle, plant height and heading time, based on 22 inbreds using different omic datasets
as a single predictor across 200 five-fold cross-validation runs. The values given above each box represent the medians of 200 runs. The omic
datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence variants (tSV), gene expression in seedling
and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression presence/absence variation in seedling, leaf and
combining both tissues (ePAVs , ePAVl , and ePAVls), metabolites filtered for their heritability (M, M0.1, M0.2, M0.3, M0.4 M0.5, M0.6, M0.7, and M0.8)

ePAVls and TEs were at least 10% and 50%, respectively.
However, the optimal weight for M was, except for PH,
0, and the optimal weight for the dSV was 0 for the three
traits.
We also assessed the prediction abilities of SV, GE,

ePAV from 3’end mRNA sequencing that we simulated
from our full-length mRNA sequencing dataset. Depend-
ing on the trait, a similar, slightly better or worse median
of prediction abilities of SV, GE, ePAV were observed
when considering 3’end mRNA sequencing compared to a
full-length mRNA sequencing dataset as baseline (Fig. 6).
Moreover, we did not observe a systematic trend on the

prediction ability when increasing the length of the 3’end
mRNA sequencing.

Discussion
Ability of different omic features to predict phenotypic
traits
Genomic prediction has become a broadly used tool to
improve the gain of selection in plant breeding [9]. The
current standard procedure of genomic prediction is to
use SNP markers generated from SNP array or genotyp-
ing by sequencing methods as predictors [12]. However,
there are several complicated biological downstream pro-
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Fig. 4 Plot of the first two axes of principal coordinates analysis for comparison of predicted values from different omic datasets as a single predictor
based on the median of correlation-based distance across 200 five-fold cross-validation runs for the three traits, leaf angle, plant height and heading
time. The omic datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence variants (tSV), gene
expression in seedling and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression presence/absence variation in
seedling, leaf and combining both tissues (ePAVs , ePAVl , and ePAVls), and metabolites (M). The colors show the four groups of omic datasets used in
a grid search for integration of multiple predictors (Figure 5). Red represents ePAV, green expression, blue metabolite, and purple SNP and SV
predictors

cesses such as transcription, translation, and biochemical
cascades resulting in various metabolites between DNA
sequences and phenotypes [11]. Using predictors that are
biologically closer to the phenotypes may increase the
prediction ability in genomic predictions. With the devel-
opment of high-throughput molecular technologies, the
availability of such predictors from the genomic, tran-
scriptomic, or metabolomic level is ensured [20]. In this
pilot study, we aim to compare different types of omic
datasets for their predictive performance in order to pri-
oritize them for their later evaluation in large-scale exper-
iments. We hold that this is true also with only 23 inbreds
of our study, especially as these inbreds are representative
of and cover most of the genotypic diversity of barley [23].

For the three examined traits, any of the SV informa-
tion generated from mRNA sequencing (SV, dSV, as well
as tSV) resulted in a higher prediction ability compared to
the SNP data produced with the 50K SNP array (Fig. 3).
This might be explained by the higher number of SV fea-
tures, as increasing the number of predictors can increase
the extent of linkage disequilibrium between SNP and
quantitative trait loci (QTL) [23, 31]. In addition, INDEL
information was included in the SV, which was not the
case in the SNP array. INDEL are one type of genetic
variation in living organisms that involve larger DNA frag-
ments than single variants and have been identified in
known genes (c.f. [32, 33]). Therefore, they are very use-
full for the developpment of functional markers [34] and

Fig. 5 Prediction ability for the three traits, leaf angle, plant height, and heading time, from 22 inbreds for 286 combinations of the joined weighted
matrix which differ in the weights of four predictors, deleterious sequence variants (dSV), expression presence/absence variation in combined leaf
and seedling (ePAVls), transcript expression in seedling (TEs), and metabolite with a heritability on an entry mean basis >0.6 (M0.6). Plotted values
represent medians across 200 cross-validation runs
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Fig. 6 Boxplot of prediction ability for the three traits, leaf angle, plant height and heading time, from 22 inbreds using different omic datasets from
simulated 3’end mRNA sequencing with seven length categories (200, 250, 300, 350, 400,450, and 500 bp) as a single predictor across 200
cross-validation runs. The omic datasets from full-length mRNA sequencing are used as a baseline. The values given above each box represent
medians of 200 prediction abilities. The omic datasets include sequence variants (SV), gene expression in seedling (GEs), and expression
presence/absence variation in seedling (ePAVs)
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are expected to cause extreme change in the phenotypes.
This could be a further explaination why SV had better
predictive performance than SNP array. Our observation
is in agreement with the finding that the PCo 1 resulting
from the GPA separated clearly SV and SNP array (Fig. 2),
which indicates that SV and SNP array provide different
information.
SV in gene coding regions can be classified into nsSV

and sSV, where the former can change the amino acid
sequence of proteins, but not the latter. However, not
all amino acid changes lead to significant changes of the
protein. This can be explored by the SIFT algorithm in
classifying SV into dSV and tSV based on the conver-
sion of amino acid sequences [16], where the former cause
a loss of protein function but not the latter. Kono et al.
[35] showed that known phenotype-altering variants were
more frequently inferred as deleterious than the genome-
wide average, and have a higher probability to contribute
to phenotypic variation. Thus, we compared the predic-
tion ability of dSV and tSV compared to that of SV across
the three traits.
The predicted phenotypic values based on the three dif-

ferent classes of SV were highly correlated with each other
(Suppl. Fig. S3), which can be expected because dSV and
tSV are a subset of SV and clustered together in the GPA
(Fig. 2). However, the prediction ability for the three phe-
notypic traits using dSV information was slightly higher
than using tSV and all SV information, despite the fact
that the number of dSV features was far smaller (15,868)
than the number of tSV features (117,698) and the total
number of SV. This trend of a higher prediction abil-
ity for dSV was even more pronounced when adjusting
for differences in the number of features by resampling
simulations (data not shown). Our finding is in discor-
dance with the results of Do et al. [14] and Heidaritabar
et al. [15], who observed no difference between the pre-
diction performance of nsSNP and randomly sampled
SNPs. A first explanation for our different findings could
be that the former cited studies classified the SNP based
on whether they may induce amino acid change or not,
whereas our study distinguished tolerant/deleterious SNP.
Secondly, the SNP used for GP by Heidaritabar et al. [15]
were imputed for all genotypes from a 60K SNP array.
This might have hampered the improvement of prediction
ability in comparison to our study, which is based on real
variant data for all inbreds (except few missing data that
were mean-imputed). Our finding indicated that the pre-
selection of variants based on their theoreticaly predicted
protein function could improve prediction performance
of traits, which can be of considerable importance for
breeders.
The features derived from the transcriptome datasets

(GE, TE, as well as ePAV) led to increased prediction abil-
ities by 62.81% compared to SNP array and even SV on

average across the three traits and two tissues. This find-
ing was inconsistent with the results of previous studies
[11, 21], who observed that the prediction abilities based
on transcriptomic datasets were a little lower (5.30% and
0.03%) than those based on genomic information aver-
aged across the examined traits. This difference might
be caused by the complex genetic architectures of traits
evaluated and tissue sampled in the studies cited above.
However, the use of transcriptomic datasets as predictors
still had reasonable prediction abilities in the former stud-
ies, which is in accordance with our results and can be
explained by the fact that with such datasets expression
levels can be quantified and physiological epistasis even
captured.
A single gene can encode multiple distinct transcripts

through alternative splicing, which allows organisms to
increase the protein diversity based on the same set of
genes [36], and therefore could lead to more phenotypic
variation. As a consequence, a higher prediction ability
could be expected for phenotypic traits predicted from
TE compared to GE information. This was confirmed by
our findings (Fig. 3), and suggests that TE information
might be more efficient than GE information in predict-
ing the performance of traits when the full-length mRNA
sequencing has been performed.
All the datasets generated by mRNA sequencing from

seedling were well separated from those from leaf (Fig. 2).
Similarly, the correlation between predicted patterns
based on the transcriptomic dataset of the two tissues was
low (Fig. 4 and Suppl. Fig. S3) , which indicated that differ-
ent types of tissue offer dissimilar information concerning
the phenotypic variation and influence the prediction abil-
ity. In general, the prediction ability was considerably
higher for the datasets from seedling in comparison with
the datasets from leaf on average across the three traits
(Fig. 3). This might be explained by the fact that more
diverse genes are expressed in seedling than in leaf.
Only for HT, expression information from leaf (GEl,

TEl) achieved the same level of prediction ability as that
from seedling. One explanation for this finding might be
that HT is triggered by environmental factors in later
developmental stages and therefore the causal expression
features for this trait are more likely to be revealed in leaf
than in early developmental stages like seedling.
A total of 53 of the 144 metabolites quantified in our

study were significantly correlated with at least one of
the three phenotypic traits (Fig. 1). This suggests that
the metabolites can be used for selection for phenotypes.
In addition, the metabolite feature was clearly separated
from the other features in the similarity/dissimilarity anal-
ysis (Fig. 2). More importantly, the correlations between
the predicted values based on metabolic feature and other
omic datasets were low, and lower than the correlation
between different other omic datasets (Suppl. Fig. S3).
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This finding suggested that the metabolites can provide
another biological layer of information to capture the phe-
notypic variation. We observed across the three traits that
prediction abilities based on metabolites were consider-
ably higher compared to SNP or SV information (Fig. 3).
This finding is in contradiction to results of previous
studies [11, 29] who revealed considerably lower predic-
tion ability using metabolites as predictor. This might be
caused by the high accuracy of the metabolite assessment
used in our study. The average heritability on an entry
mean basis across 144 metabolites was with about 0.62
considerably higher than that observed by Guo et al. [11]
with 0.49 and Gemmer et al. [29] with 0.26. This aspect
was studied further by leaving out those metabolites with
heritabilities < 0.1. This resulted in an increased pre-
diction ability for all traits, which suggested that higher
accuracy of metabolites can bring stable information in
the prediction of phenotypes.
Generally, (di)-similarity between (1) different omic

datasets (Fig. 2) and also between (2) the correlation
between predicted phenotypic traits based on different
omic datasets (Fig. 4 and Suppl. Fig. S3) was observed in
our study. This suggested complementation between dif-
ferent biological perspectives to the phenotypic variation.
Therefore, combining predictors covering different layers
of biological information in an integrative model could
have an advantage over the GP model based on single
predictors, and was examined in our study.

Increasing prediction abilities by combiningmultiple
predictors
In this study, a grid search was used to identify those
combinations of dSV, ePAVls, TEs, and M0.6 in the joined
weighted relationship matrix of GBLUP model maximiz-
ing the prediction ability. The highest prediction ability
across the three examined traits was observed when more
than one predictor was used and, for each of the three
traits, without the contribution of the dSV (Fig. 5). This
finding might be explained by the fact that transcriptome
and metabolome information are closer to phenotypes
than gene information according to the central dogma of
molecular biology, and can capture together more genetic
variation and physiological epistasis caused by compli-
cated networks and interactions between genes than when
using only one single predictor [11].
On the other hand, even if a higher prediction ability

for all three examined traits was observed if more than
one predictor was used (Fig. 5), the optimal weight of each
component in the joined weighted relationship matrix
depended highly on the traits. For instance, metabolite
information was needed to obtain the highest prediction
ability for PH, but not for the other traits. Transcrip-
tome was the most important component, but the weight
ranged from 0.5 to 0.9 across the three traits. From the

physiological point of view, this might be explained by
the different genetic architectures of the different traits
and their exposure to different environments at differ-
ent developmental stages and tissues. We observed the
tendency that for traits with a lower heritability more dif-
ferent omic predictors were needed to result in the highest
prediction ability. Further research on traits with high
genetic complexity and low heritability such as yield is
needed to test this hypothesis.

Summary: application in breeding programs
The results of our study suggested that combining the
information of SV, expression, as well as metabolite
dataset into genomic prediction models can improve
the prediction ability of phenotypic traits. Especially, the
expression datasets were the most important compo-
nents for this improvement (Fig. 5). To be implemented
in breeding programs, such datasets have to be created
approximately at the costs of one traditional phenotyp-
ing unit (c.f. [37]). This implies that the datasets of SV,
gene expression, and metabolite are sampled from one
tissue, to avoid the cost of multiple sampling at several
stages. The goal of this study was to compare predictors
for their ability to predict phenotypic traits. The results
of our study indicate that the higher and more stable pre-
dictive performance across traits can be achieved from
gene and transcript expression gained on seedling sam-
ples. Seedling samples combine both aptitude in reaching
a high prediction ability but can be also generated in a
cost-effective and high-throughput manner. Thus, they
are recommended as the best tissue to predict the vari-
ation of phenotypes in barley populations. However, for
other crops such as tuber crops, different approaches and
tissues might be needed, which requires further research.
The limited budget available in practical breeding pro-

grams for full-length mRNA sequencing hampers the
use of such approaches. Instead, 3’end mRNA sequenc-
ing could be a cost-effective alternative method to obtain
transcriptome information. For 3’end mRNA sequencing,
only 50-800bp at the 3’end of the genes are sequenced.
Interestingly, we observed that the prediction abilities
of SV, GE, ePAV from simulated 3’end mRNA sequenc-
ing were on average across the three traits similar to
those from the full-length mRNA sequencing (Fig. 6).
Therefore, our finding suggested that transcriptome data
can be generated from the 3’end mRNA sequencing
without losing prediction ability in comparison to the
full-length mRNA sequencing, paving the path for the
use of such prediction methods in commercial breeding
programs.
Although this study is based on a limited number of

barley inbreds, it can be considered as a pilot research
showing how different omic datasets can improve pre-
diction of phenotypic variation and will open the path to
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perform such analysis on a bigger scale, e.g. on segregating
populations derived from the 23 inbreds [38].

Materials andmethods
Plant materials and phenotypic data collection
This study was based on 23 spring barley inbreds which
were selected from a worldwide collection [39] to max-
imize phenotypic and genotypic diversity [23]. The 23
inbreds were planted as replicated checks in a field exper-
iment laid out as an augmented row-column design.
The experiment was performed in seven agro-ecologically
diverse environments (Cologne from 2017 to 2019, Mech-
ernich and Quedlinburg from 2018 to 2019) in Germany
in which the checks were replicated 10 to 21 times per
environment. At each environment, three yield-related
phenotypic traits were assessed. The leaf angle (LA) was
scored on a scale from 1 (erect) to 9 (very flat) on four-
week-old plants. The heading time (HT) was recorded as
days after planting. Furthermore, the plant height (PH,
cm) wasmeasured after heading (only assessed in Cologne
and Mechernich).

Omic datasets
Metabolite profiling
The metabolite profiling of our study was based on leaf
samples collected for the 23 barley inbreds with quadru-
plicates in a greenhouse experiment, where no phenotypic
traits were assessed. Seeds of the 23 spring barley inbreds
were sown in controlled conditions with 16 hours light
and eight hours dark at 22 °C. Plantlets were cultivated for
two weeks and then moved to vernalisation in a growth
chamber. After five weeks of vernalisation, the plants were
repotted and returned to the greenhouse. After one week,
one 3 x 1cm piece of the central part of the youngest
fully developed leaf was harvested from two plants of
the same inbred, pooled, and immediately flash frozen in
liquid nitrogen. The collection of all samples was done
within one hour tominimize the variation due to circadian
rhythms. Each of the 92 samples was analyzed one time via
gas chromatography-mass spectrometry (GC-MS) using
an adapted protocol from Lisec et al. [40]. Metabolites
were extracted from 45-55 mg frozen mortared samples
with 1.5 ml of a 1:2.5:1 H2O:methanol:chloroform (v:v:v)
mixture pre-cooled to -20 °C, then mixed on a rotator for
10 min and centrifuged at 20,000 g for 2 min (both at 4
°C). A total of 30 μl of the supernatant were dried com-
pletely in a vacuum concentrator and derivatized in two
steps via an MPS-Dual-head autosampler (Gerstel): (1)
with 10 μl methoxyamine hydrochloride (Acros organics;
freshly prepared at 20 mg/ml in pure pyridine (Sigma-
Aldrich)) and shaking at 37 °C for 90 min, (2) adding 90 μl
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA;
Macherey-Nagel) and shaking at 37 °C for 30 min. After
incubation for 2 hours at room temperature, 1 μl of

derivatized compounds was injected at a flow of 1 ml/min
with an automatic liner exchange system in conjunction
with a cold injection system (Gerstel) in splitless mode
(ramping from 50 °C to 250 °C at 12 °C/s) into the
GC. Chromatography was performed using a 7890B GC
system (Agilent Technologies) with a 30 m long, 0.25
mm internal diameter, HP-5MS column with 5% phenyl
methyl siloxane film (Agilent 19091S-433). The oven tem-
perature was held constant at 70°C for 2 min and then
ramped at 12.5°C/min to 320°C at which it was held
constant for 5 min; resulting in a total run time of 27
minutes.
Metabolites were ionized with an electron impact

source at 70V and 200 °C source temperature and
recorded in a mass range of m/z 60 to m/z 800 at 20
scans per second with a 7200 GC-QTOF (Agilent Tech-
nologies). Raw data files exported fromMassHunter Qual-
itative (v b07, Agilent Technologies) in the mzData for-
mat (*mzdata.xml) were converted to the NetCDF format
(*.cdf ) and baseline-corrected via MetAlign (v 041012,
[41]) using default parameters. Baseline-correction was
visually inspected usingOpenChrom (v 1.3.0, [42]). Quan-
titative analysis of GC-MS-based metabolite profiling
experiments was then performed using TagFinder (v 4.1,
[43]). After evaluating the uniqueness and linearity of each
fragment, the aggregated fragment intensity was calcu-
lated as the average of the maximum scaled fragment
intensity. For relative quantification, aggregated fragment
intensities of the compounds were normalized to those of
the internal standard ribitol (Sigma-Aldrich) which was
added to the extraction buffer. Mass spectral annotation
was manually supervised using the Golm Metabolome
Database mass-spectral library (http://gmd.mpimp-golm.
mpg.de/download/) after conversion of absolute time
in retention indices [44]. The raw data, details of
the quantification and annotation steps, and the pro-
cessed metabolite profiles are available (https://www.ebi.
ac.uk/metabolights/MTBLS1561). The compounds cor-
responding to contaminations, siloxane, ribitol, and
dimethylphenylalanine were removed. Furthermore, if
several compounds were identified as the same metabo-
lite, the one with the greatest heritabilty, for which the
calculation is described below, was retained.

SNP genotyping, RNA extraction, sequencing, and
quantification of gene expression
The Illumina 50K barley SNP array [45] was used to geno-
type the 23 inbreds of our study [23]. This dataset is
designated in the following as SNP array.
mRNA was extracted from leaf and seedling samples

of the 23 inbreds as described earlier by Weisweiler et
al. [23]. 46 polyA enriched RNA libraries were prepared
at the Max Planck Genome Centre Cologne (https://
mpgc.mpipz.mpg.de/home/). In addition, two tissue sam-

http://gmd.mpimp-golm.mpg.de/download/
http://gmd.mpimp-golm.mpg.de/download/
https://www.ebi.ac.uk/metabolights/MTBLS1561
https://www.ebi.ac.uk/metabolights/MTBLS1561
https://mpgc.mpipz.mpg.de/home/
https://mpgc.mpipz.mpg.de/home/
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ples of one of the inbreds and one tissue sample of
two other inbreds had to be removed during the data
cleaning process. Reads were trimmed, adapter and low
quality regions were removed. Afterwards, reads were
mapped using HISAT2 (version 2.0.5) [46] to the Morex
referene sequence version 1 [47]. Transcript calling was
performed with StringTie (version 2.1.3) [48]. Newly iden-
tified and annotated genes were included to the dataset as
described by Weisweiler et al. [23]. The expression data
for the 23 inbreds was separated into gene expression
and transcript expression data. The expression quanti-
fied as fragments per kilobase of exon model per million
fragments mapped (FPKM) was measured for every tran-
script of a gene, resulting in one FPKM-value per gene
and the corresponding FPKM-value for each transcript
of a gene. The FPKM-values of genes and transcripts are
designated in the following as GE and TE, where the
indexes l and s were used to separate the leaf (GEl, TEl)
and seedling (GEs, TEs) samples. For further details see
Weisweiler et al. [23].

Determination of ePAV
For each tissue separately, a presence call was made for
each inbred-gene combination in the matrix of pres-
ence/absence calls, if GE >0 and an absence call if GE
= 0. No presence/absence call (“NA”) was made for the
inbreds with 0< GE <10% of the maximum value of
GE for a gene-tissue combination (cf. [49]). Tissue spe-
cific ePAV calls were combined to an across tissue ePAV
call as described in detail by Weisweiler et al. [23]. The
ePAV detection procedure resulted in three ePAV data
sets, namely ePAV leaf (ePAVl), ePAV seedling (ePAVs),
and one across both tissues (ePAVls).

Sequence variant calling
Variant calling of SNP and small INDEL and their fil-
tering was performed with samtools (version 1.11) and
bcftools (version 1.10.2) as described by Weisweiler et
al. [23], and the dataset is designed in the following as
SV. SIFT4G (version 2.4) was used to annotate and pre-
dict tolerant and deleterious variants. The prediction was
done based on the conversion of amino acid sequences
[16]. Amino acid substitutions were classified according
to their effect on the protein functions and were predicted
as tolerant if the score was >0.05 and as deleterious if the
score was <= 0.05. The SIFT4G database was build based
on the uniref 90 database (downloaded 2020/04/29) and
the Morex reference sequence version 1 [47] with the tool
SIFT4_Create_Genomic_DB.

Simulation of 3’endmRNA sequencing
For the simulation of 3’end mRNA sequencing, GEs was
only measured based on the last 200, 250, 300, 350, 400,
450, and 500 bp at the 3’end of each gene. To the same
reduced set of sequence data, the ePAV detection pro-

cedure and the SV calling procedure has been applied
resulting in seven different GE, ePAV, and SV datasets.

Statistical analyses
Adjusted entrymeans, variance components, and heritability
Based on visual inspections of quantile-quantile (Q-Q)
plots of residuals as well as residuals vs. fitted values plots,
phenotypic outliers were removed. Each of the phenotypic
traits was then analysed across the environments using the
following mixed model:

yijk = μ + Ej + Gi + (G × E)ij + εijk , (1)

where yijk was the observed phenotypic value for the ith

genotype at the jth environment within the kth replica-
tion, μ the general mean, Gi the effect of the ith inbred, Ej
the effect of the jth environment, (G × E)ij the interaction
between the ith inbred and the jth environment, and εijk
the random error. To estimate adjusted entry means for
all inbreds, Gi was treated as fixed and the other effects
as random. As the samples for metabolites were collected
from one environment, the model [1] was reduced to:

yik = μ + Gi + εik , (2)

where yik was the observed metabolite for the ith inbred
within the kth replication, and εik the random error. The
resulting adjusted entry means of phenotypic traits and
metabolites for each inbred were used in further analy-
ses, where the adjusted entry means of metabolites were
designated as M.
To estimate the genetic variance (σ 2

G), model (1) and (2)
were used but considering Gi as random. The heritabil-
ity on an entry mean basis for the phenotypic traits and
metabolites was then calculated as H2 = σ 2

G/(σ 2
G + ν̄/2),

where ν̄ was the mean variance of difference between two
adjusted entry means [50].

Prediction of phenotypic traits frommulti-omic datasets
The performance to predict phenotypic variation of dif-
ferent types of predictors: (1) SNP array, (2) sequence
variants (SV), (3) deleterious sequence variants (dSV), (4)
tolerant sequence variants (tSV), (5) ePAVs, (6) ePAVl,
(7) ePAVls, (8) gene expression in seedling (GEs), (9)
gene expression in leaf (GEl), (10) transcript expression
in seedling (TEs), (11) transcript expression in leaf (TEl),
(12) metabolite (M), was compared based on the most
stable and widely used model in GP, genomic best linear
unbiased prediction (GBLUP) model [51], which can be
described as

y = 1μ + Zu + ε (3)

where y is the vector of the adjusted entry means of the
examined trait, 1 the unit vector, μ the general mean,
Z the incidence matrix of genotypic effects, and u the
vector of genotypic effects that are assumed be normal
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distributed with N(0,Gσ 2
u ), in which G denotes the rela-

tionship matrix between inbreds and σ 2
u the genetic vari-

ance. In addition, ε is the vector of residuals following a
normal distribution N(0, Iσ 2

e ). In this study, only additive
effects were modeled.
For each of the above mentioned omic dataset, the

monomorphic features and the features with missing rates
> 0.2 have been filtered out.W was defined as a matrix of
feature measurements for the respective omic dataset that
is designated in the following as predictor. The dimen-
sions of W were the number of barley inbreds (n) times
the number of features in the corresponding predictor (m)
(Table 1). Because of genotyping problems for one of the
inbreds, 22 inbred lines were used for further analyses
(n = 22).
For each predictor, the additive relationship matrix G

was defined as G = W∗W∗T
m , where W∗ is a matrix of

feature measurement for the respective predictor, whose
columns are centered and standardized to unit variance
of W, and W∗T is the transpose of W∗. In addition, to
assess the impact of the heritability of a metabolite on
the prediction performance, only those metabolites with
a heritability on an entry mean basis higher than t, where
t varied from 0.1 to 0.8 in increments of 0.1, were consid-
ered, and the datasets were designated as M0.1, M0.2, M0.3,
M0.4 M0.5, M0.6, M0.7 and M0.8.
In order to understand whether the different omic

datasets can capture similar genetic information, Pearsons
correlation coefficients between pairwise predicted values
of different omic datasets were calculated. Subsequently,

Table 1 The number of features and the abbreviations for each
omic dataset used in this study

Omic dataset Abbreviation Number of
features

50K SNP array SNP array 38,285

Sequence variants SV 133,566

Deleterious sequence variants dSV 15,868

Tolerant sequence variants tSV 117,698

Expression presence/absence
variation in seedling

ePAVs 27,445

Expression presence/absence
variation in leaf

ePAVl 26,653

Expression presence/absence
variation in combining leaf and
seedling

ePAVls 36,235

Gene expression in seedling GEs 67,844

Gene expression in leaf GEl 60,888

Transcript expression in seedling TEs 250,490

Transcript expression in leaf TEl 220,749

Metabolites M 144

1 − the correlation coefficients among all pairs of predic-
tors was used as the correlation-based distance in a PCoA.
Furthermore, to investigate the performance of a joined
weighted relationship matrix [21] to predict phenotypic
variation, the matrices G in model (3) of four predictors
were weighted and summed up to one joined weighted
relationship matrix, where we varied:

1. the weight of SNP (wSNP): the weight of the most
representative SNP datasets was determined as the
one from the SNP array, SV, tSV, or dSV which has
the most stable prediction performance across the
three traits (dSV).

2. the weight of ePAV (wePAV ): the weight of the most
representative ePAV datasets was determined as the
one from ePAVls, ePAVs, or ePAVl which has most
stable prediction performance across the three traits
(ePAVls).

3. the weight of expression (wexpression): the weight of
the most representative of the expression datasets
was determined as the one from GEs, GEl, TEs, or
TEl which has most stable prediction performance
across the three traits (TEs).

4. the weight of metabolite (wM ,
1 − wSNP − wePAV − wexpression): the weight of the
most representative metabolite datasets was
determined as the one from M, M0.1, M0.2, M0.3,
M0.4 M0.5, M0.6, M0.7, or M0.8 which has most stable
prediction performance across the three traits (M0.6).

A grid search, varying any weight (w) from 0 to 1
in increments of 0.1, resulted in 286 different combina-
tions of joined weighted relationship matrix, where the
summation of four weights in each combination must
be equal to 1. In addition, the performance of SV, GEs,
and ePAVs from simulated 3’end mRNA sequencing of
different length as described above was explored.
Five-fold cross-validation was used to assess the model

performance. Prediction abilities were obtained by cal-
culating Pearson correlations between observed (y) and
predicted (ŷ) adjusted entry means in the validation set
of each fold. The median prediction ability across the
five folds within each replicate was calculated and the
median of the median across the 200 replicates was used
for further analyses.

Correlation and genetic similarity analyses
Correlations among the three phenotypic traits, and
between the three phenotypic traits and the individual
metabolites were measured as Pearson correlation coeffi-
cient. Principal component analysis (PCA) was performed
on each omic dataset (SNP array, SV, dSV, tSV, ePAVs,
ePAVl, ePAVls, GEl, GEs, TEs, TEl, and M). To evaluate
similarity/dissimilarity among the various datasets, gen-
eralized procrustes analysis (GPA) [30] was performed



Wu et al. BMC Genomics          (2022) 23:200 Page 13 of 15

based on the PCA results. Subsequently, 1 − the pro-
crustes similarity indexes among all pairs of omic datasets
was used as dissimilarity measurements in a principal
coordinates analysis (PCoA).
All analyses have been performed using the statistical

software R [52].
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