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Micronutrient supplementation affects DNA 
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Abstract 

Background:  DNA methylation has an important role in intergenerational inheritance. An increasing number of 
studies have reported evidence of germline inheritance of DNA methylation induced by nutritional signals in mam‑
mals. Vitamins and minerals as micronutrients contribute to growth performance in vertebrates, including Atlantic 
salmon (Salmo salar), and also have a role in epigenetics as environmental factors that alter DNA methylation status. It 
is important to understand whether micronutrients in the paternal diet can influence the offspring through altera‑
tions of DNA methylation signatures in male germ cells.

Results:  Here, we show the effect of micronutrient supplementation on DNA methylation profiles in the male gonad 
through a whole life cycle feeding trial of Atlantic salmon fed three graded levels of micronutrient components. Our 
results strongly indicate that micronutrient supplementation affects the DNA methylation status of genes associ‑
ated with cell signalling, synaptic signalling, and embryonic development. In particular, it substantially affects DNA 
methylation status in the promoter region of a glutamate receptor gene, glutamate receptor ionotropic, NMDA 3A-like 
(grin3a-like), when the fish are fed both medium and high doses of micronutrients. Furthermore, two transcription 
factors, histone deacetylase 2 (hdac2) and a zinc finger protein, bind to the hyper-methylated site in the grin3a-like 
promoter. An estimated function of hdac2 together with a zinc finger indicates that grin3a-like has a potential role in 
intergenerational epigenetic inheritance and the regulation of embryonic development affected by paternal diet.

Conclusions:  The present study demonstrates alterations of gene expression patterns and DNA methylation signa‑
tures in the male gonad when Atlantic salmon are fed different levels of micronutrients. Alterations of gene expres‑
sion patterns are of great interest because the gonads are supposed to have limited metabolic activities compared 
to other organs, whereas alterations of DNA methylation signatures are of great importance in the field of nutritional 
epigenetics because the signatures affected by nutrition could be transferred to the next generation. We provide 
extensive data resources for future work in the context of potential intergenerational inheritance through the male 
germline.
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Background
The influence of epigenetic information is not only 
limited to mitotic cell-to-cell inheritance but can be 
extended to meiotic intergenerational inheritance [1, 2]. 
In this view, alterations of phenotypic traits caused by 
external factors can be heritable without changes in DNA 
sequence and affect offspring phenotypes [3]. Nutrition 
is one of the major external factors that influence epig-
enomes [4, 5]. Intergenerational studies in zebrafish have 
revealed changes in DNA methylation in offspring when 
the parents are given different levels of fatty acids [6] 
and micronutrients [7]. DNA methylation is a reversible 
and heritable covalent modification of DNA found in the 
genomes of plants and animals [8–10]. Cytosine meth-
ylation at CpG sites is the most common form of DNA 
methylation in vertebrates [8] including Atlantic salmon 
(Salmo salar) [11].

In the present study, we sought to characterise and 
identify DNA methylation signatures in the male gonad 
of Atlantic salmon sampled from a feeding trial cover-
ing the whole life cycle (~ 54  weeks) [12]. Throughout 
the feeding trial, three groups of Atlantic salmon were 
fed plant-based diets with graded levels of micronutrient 
supplementation. The supplement was formulated based 
on a nutrition package (NP) that contained the recom-
mended level of micronutrients for Atlantic salmon [12–
14]. The NP contained 24 micronutrient components, 
including 13 vitamins, eight minerals, two crystalline 
amino acids, and cholesterol (Table  1). Previous studies 
that analysed fish from the same feeding trial reported 
that micronutrient supplementation enhanced growth 
performance [12] and epigenetically improved lipid 
metabolism in liver [11]. Nevertheless, the intergenera-
tional impact of DNA methylation on offspring remained 
unanswered.

The DNA methylation status is globally cleared and 
reset during germ-cell specification as most methylated 

cytosine sites become unmethylated [13, 14]. During 
development, tissue-specific DNA methylation profiles 
are gradually re-established via comprehensive repro-
gramming processes [14, 15]. Altered epigenetic traits 
induced by environmental factors, including deficiency 
or excess of nutrients, can be transmitted to the offspring 
through the germline [16–18]. The knowledge about the 
intergenerational impact of DNA methylation in the male 
gonad is limited; nonetheless, a mouse study showed that 
hypo-methylated sperm DNA in aged fathers negatively 
affected neurodevelopment in its offspring [19]. Although 
both male and female gonads are primary reproductive 
organs to produce gametes, the yolk from the female 
gonad potentially conveys additional factors that con-
tribute to intergenerational inheritance compared to milt 
from the male gonad. Hence, the male gonad can be an 
ideal organ to study a more direct effect of DNA meth-
ylation on intergenerational inheritance than the female 
gonad.

The present study aims to investigate DNA methylation 
signatures influenced by micronutrient supplementation 
in the male gonad of Atlantic salmon. We used reduced 
representation bisulfite sequencing (RRBS) [20] to meas-
ure differences in DNA methylation rates among three 
micronutrient-graded diet groups. To effectively anno-
tate the sites and regions identified with differentially 
methylated status, we used data from multiple sources, 
such as gene expression data from RNA-seq, male liver 
data of the same feeding trial, and human orthologous 
data. Our results indicated that micronutrient supple-
mentation affected the  DNA methylation status in the 
male gonad. Specifically, the supplementation affected 
genes associated with vital pathways for the subsequent 
embryonic development, such as cell signalling, synaptic 
signalling, and brain development. Moreover, we identi-
fied an epigenetically affected region in the promoter of 
an evolutionarily conserved glutamate receptor gene, 

Keywords:  Atlantic salmon, Micronutrient, Epigenetics, DNA methylation, Intergenerational inheritance, Male 
germline, Gonad, Glutamate receptor, GRIN3A, HDAC2

Table 1  Micronutrients contained in the NP (nutrient package) used in the feeding trial

Nutrient group Micronutrients

Vitamin Vitamin A, Vitamin D3, Vitamin E, Vitamin K3, Thiamine (B1), Thiamine (B1), 
Riboflavin (B2), B6, B12, Niacin (B3), Pantothenic Acid (B5), Folic Acid (B9), 
Biotin (B7), Vitamin C

Micro-mineral Cobalt (Co), Iodine, Selenium, Iron, Manganese, Copper, Zinc

Macro-mineral Calcium (Ca)

Amino acid Taurine, Histidine

Cholesterol Cholesterol
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the grin3a-like gene, as a strong candidate for potential 
intergenerational DNA inheritance through the male ger-
mline. The present study represents important resources 
for future research in the context of intergenerational 
DNA inheritance in Atlantic salmon as well as among 
other vertebrates.

Results
Micronutrient supplementation improved the growth 
performance of Atlantic salmon
To study potential intergenerational epigenetic inherit-
ance through the male germline, we used male gonads 
obtained from a whole life-cycle feeding trial of Atlantic 
salmon with three feeding groups of parr, through smolt-
ification, to the final harvest stage (Fig. 1a) [12]. The three 
feeding groups, L1, L2, and L3, were fed different levels of 
micronutrient supplementation throughout the experi-
ment as L1, L2 and L3 contained 100, 200, and 400% of 
the recommended level of micronutrients, respectively 
(Fig. 1a, Additional file 1: Table S1&S2) [21–24].

As summarised in previous studies [11, 12], both 
medium (L2) and high (L3) doses of micronutrients 
contributed to improved growth performance when 
compared to the control diet (L1) by body weight, hepa-
tosomatic index (HSI) [25], and Fulton’s condition factor 
(K) [26]. At the smolt stage, L2 showed the best growth 
followed by L3 in terms of weight gain, whereas at har-
vest, both L2 and L3 showed significantly better growth 
(Fig. 1b, Additional file 1: Table S3). Accordingly, condi-
tion factor (K) indicated that L3 showed the best growth 
performance followed by L2 at harvest (Additional file 1: 
Table  S3). HSI indicated that L1 likely retained more 

energy in liver instead of utilising it for growth than L2 
and L3 at smolt (Fig. 1c, Additional file 1: Table S3).

For gene expression and DNA methylation analyses, 
we used male gonads and male liver collected at the final 
harvest stage (Fig. 1a) and then filtered them by gonado-
somatic-index (GSI) to exclude the fish with overgrown 
gonads by GSI < 0.2%. We included liver samples for com-
parison purposes to elucidate gonad-specific patterns of 
transcriptional and epigenetic regulations as well as com-
mon patterns between them.

Micronutrient supplementation affected overall gene 
expression profiles in male gonads but to a lesser degree 
than in liver
To study the influence of micronutrient supplementation 
on gene expression profiles, we performed differential 
expression analysis (DEA) by pair-wise comparisons with 
two data sets, defined as L2:L1 and L3:L1 (respectively 
L2 against L1, and L3 against L1; see 17), on uniquely 
mapped reads to the Atlantic salmon genome. A total of 
35 RNA-seq samples, with 17 male gonad and 18 male 
liver samples, produced approximately 80% of the reads 
as uniquely mapped (Additional file  1: Table  S4&S5). 
Each group contained an equal number of samples (n = 6) 
except for L2 gonads (n = 5).

Prior to differential expression analysis, principal 
component analysis (PCA) showed no noticeable sepa-
rations in gonads, regardless of using the top 500 high 
variance genes (Fig. 2a) or all the uniquely mapped genes 
(Additional file  1: Figure S1a). In contrast, PCA with 
liver samples produced clear separation by diet with 
L2 being intermediary (Fig.  2b, Additional file  1: Figure 
S1b). Furthermore, PCA with different tissues showed 
distinct clustering between gonads and liver on the first 

Fig. 1  Experimental design and growth performance measurements. a Schematic plan of feeding trial and performed analyses of the present 
study. Bar plots show the average values with SEMs for b body weight and c Hepatosomatic Index (HSI) by diet. The calculation of both 
measurements is based on both male and female samples. Letters above the error bars indicate significant differences between groups (p < 0.05, 
one-way ANOVA) by the compact letter display of Tukey’s HSD
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component of PCA biplots (Fig. 2c, Additional file 1: Fig-
ure S1c).

Differential expression analysis revealed that L3 had 
more differentially expressed genes (DEGs; adjusted 
p-value < 0.1) than L2 in gonads, with having only 6 
DEGs for L2:L1 but 97 DEGs for L3:L1 (Fig. 2d, Table 2, 

Additional file 1: Figure S2). L3 also affected more genes 
than L2 in liver as well as in the dataset defined as G&L 
(see 17), which was used with a multi-factorial design 
to analyse a combinatorial effect of both tissues (gonads 
and liver) along with the diets (Fig. 2, Table 2). More-
over, most of the DEGs appeared to be tissue-specific 

Fig. 2  PCA biplots and MA plots showing gene expression patterns affected by diets. Three PCA biplots on the left show the first and second 
PCA components of top 500 high variance genes of RNA-seq counts with VST (variance stabilization transformation) for a gonads, b liver and c 
G&L (gonads and liver) datasets. The areas of three diet groups (L1: red, L2: green, L3: blue) and two tissue types (liver: turquoise, gonads: red) are 
outlined by convex hulls. d MA plots show the normalised read counts and log fold changes of all the mapped genes for gonads, liver and G&L 
datasets. Red dots indicate DEGs (adjusted p-value < 0.1), whereas grey dots indicate the genes with no significant differences

Table 2  The number of DEGs, enriched KEGG pathways, and enriched GO terms

a Number of samples represented as (# treatment group):(# control group). bNumber of DEGs defined by adjusted p-values < 0.1 and LFC > 0. cNumber of enriched 
KEGG pathways identified by ORA with adjusted p-values < 0.05 and the minimum gene count of 5. dNumber of enriched GO terms by ORA with adjusted 
p-values < 0.05 and the minimum gene count of 5. BP biological process, MF molecular function, and CC cellular component. eNumber of enriched KEGG pathways 
identified by GSEA with adjusted p-values < 0.05, minimum gene counts: 5 and abs(NES) > 2. Up & Down: the number of pathways enriched by up- and down-
regulated genes, respectively

na DEGb KEGGc GOd GSEAe

Up Down BP MF CC Up Down

Gonads

L2:L1 5:6 3 3 0 0 0 0 7 2

L3:L1 6:6 60 37 0 0 0 0 2 7

Liver

L2:L1 6:6 72 57 2 10 8 0 0 4

L2:L1 6:6 153 146 8 36 16 6 0 15

G&L

L2:L1 12:12 75 30 0 3 0 0 5 4

L3:L1 11:12 196 150 3 10 0 0 2 22
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as there were few overlapping DEGs between gonads 
and liver. Approximately 33.3% (2/6) and 7% (7/97) of 
the gonad DEGs were also identified as liver DEGs for 
L2:L1 and L3:L1, respectively (Additional file 1: Figure 
S3).

As expected, different nutrition levels influenced 
hepatic gene expression, as liver is an important organ 
with metabolic functions. Nonetheless, micronutrient 
supplementation also influenced gene expression in 
male gonads to some degree even though the gonads 
are organs that have limited metabolic activity com-
pared to liver. Moreover, the results implied that high 
dosages of micronutrients (L3) affected more genes 
than medium dosages of micronutrients (L2) when 
compared to the control diet (L1) in both liver and 
gonads.

The overall gene expression affected by micronutrient 
supplementation in male gonads showed association 
with cytokine receptor interaction, mismatch repair, 
and DNA replication
Even though there were too few DEGs for L2:L1 gonads 
(6 DEGs) for a  robust functional annotation, L3:L1 
gonads had enough DEGs (~ 100 DEGs) for over-rep-
resentation analysis (ORA) on the KEGG (Kyoto ency-
clopedia of genes and genomes) [27] and the GO (gene 
ontology) [28] databases. Nevertheless, ORA identified 
neither enriched KEGG pathways nor GO terms even for 
L3:L1 gonad DEGs (Table  2). For liver and G&L DEGs, 
ORA identified enriched KEGG pathways and GO terms 
mainly related to lipid metabolism (Additional file  1: 
Tables S6-S9).

Gene set enrichment analysis (GSEA) is another func-
tional annotation method that relies on the whole gene 
set instead of using only DEGs, and its NESs (normal-
ized enrichment scores) indicate the trend of either up- 
or down-regulation of the identified pathways. GSEA on 
KEGG revealed in total 15, 16 and 29 enriched pathways 
for gonads, liver and G&L, respectively (Table  2, Addi-
tional file  1: Tables S10-S12). To control for  potential 
false positive enrichment, we combined the identified 
pathways from L2:L1 and L3:L1 to make common path-
ways between them, which resulted in three enriched 
pathways from the original 15 pathways for gonads 
(Table 3). These functional annotation results were likely 
less robust in gonads than liver because none of the iden-
tified pathways by GSEA for gonads were supported by 
ORA results (Table  3). Nevertheless, the merged GSEA 
result between L2:L1 and L3:L1 implied that micronu-
trient supplementation potentially affected the expres-
sion of genes involved in three biological pathways in 
gonads: up-regulation for cytokine receptor interaction 

(sasa03030), and down-regulation for mismatch repair 
(sasa03430) and DNA replication (sasa04060), potentially 
in a tissue-specific manner.

Micronutrient supplementation altered DNA methylation 
patterns around transcription start sites in male gonads
In a similar way to differential expression analysis with 
RNA-seq samples, we performed differential methylation 
analysis by pair-wise comparisons with L2:L1 and L3:L1 
datasets (see 17) on uniquely mapped reads to the Atlan-
tic salmon genome to reveal the influence of micronu-
trient supplementation on DNA methylation profiles in 
male gonads. A total of 18 RRBS samples for male gonads 
and male liver produced approximately 46% of the reads 
as uniquely mapped (Additional file  1: Table  S13). Each 
group contained an equal number of samples (n = 3).

Prior to differential methylation analysis, we exten-
sively performed clustering analysis to investigate the 
overall as well as regional DNA methylation patterns by 
diet. The result of PCA showed no distinct clusters by 
diet for both gonads and liver (Fig.  3a). Similar to gene 
expression, tissue-specific DNA methylation patterns 
appeared to be strong as indicated by the PCA biplot for 
the G&L dataset (Fig. 3a).

To elucidate regional DNA methylation patterns, we 
first separated the genome into three main regions: reg-
ulatory sequence (RS), gene body (GB), and intergenic 
region (IGR), which were further divided into four sub-
regions: flanks (flanking regions both 10  K upstream 
and downstream around mRNAs) and promoter (P) 
within RS, and exon and intron within GB (see 17 for 

Table 3  Enriched KEGG pathways identified both in L2:L1 and 
L3:L1 by GSEA

a "Down" indicates down-regulation as identified by negative, NES (normalized 
enrichment score) values, whereas "Up" indicates up-regulation as positive NES 
values. bSupported by ORA as "L2&L3" by both L2:L1 and L3:L1 and "L3" by only 
L3:L1. "-" indicates no ORA support

Tissue Enriched pathways KEGG ID NESa ORAb

Gonads DNA replication sasa03030 Down -

Mismatch repair sasa03430 Down -

Cytokine-cytokine receptor 
interaction

sasa04060 Up -

Liver Steroid biosynthesis sasa00100 Down L2&L3

Terpenoid backbone biosynthesis sasa00900 Down L2&L3

Aminoacyl-tRNA biosynthesis sasa00970 Down -

G&L Ribosome biogenesis in eukary‑
otes

sasa03008 Down -

Cell adhesion molecules sasa04514 Up -

Cytokine-cytokine receptor 
interaction

sasa04060 Up -

Steroid biosynthesis sasa00592 Down L3

Terpenoid backbone biosynthesis sasa00900 Down L3
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details). We also defined three sub-regions in promot-
ers distinguished by upstream distances from tran-
scription start sites (TSSs) as P250 (1 ~ 250  bp), P1K 
(251 ~ 1 K bp), and P5K (1001 ~ 5 K bp). Flanks were for 
covering potential enhancer regions, whereas P250 and 
P5K were for covering proximal and distal promoters, 
respectively.

Comparisons of the average methylation rates 
between genomic regions showed P250 had the lowest 
rates (~ 22%) followed by P1K (~ 57%) and exon (~ 76%) 
in gonads (Fig. 3b). There were no noticeable differences 
of methylation rates between diets even though the 
rates of L3 tended to be lower than those of L1 and L2 
in gonads. The methylation rates in liver were similar to 
those in gonads even though the average rates of P250 
in gonads (22.2%) were slightly lower than liver (23.7%; 
Fig. 3b).

Interestingly, the result of PCA with sub-regions 
showed distinct clustering for P250 and P1K in gonads, 
with having both L2 and L3 largely separated from L1 

(Fig.  3c). The other sub-regions in gonads as well as all 
the sub-regions in liver, and G&L showed no such dis-
tinct patterns (Fig. 3c, Additional file 1: Figure S4a&S5a). 
Additional PCA that focused on both upstream (pro-
moter) and downstream (exon) regions around TSS 
showed similar clustering between 1  K upstream and 
150  bp downstream around TSS in gonads (Fig.  3d). 
Again, both liver and G&L showed no such distinct pat-
terns around TSS (Additional file  1: Figure S4b&S5b). 
Therefore, clustering analysis suggested that micronutri-
ent supplementation broadly affected DNA methylation 
profiles around TSS in male gonads.

Differential methylation analysis revealed that most 
of the differentially methylated sites were tissue‑specific
Differential methylation analysis identified over 25 000 
differentially methylated CpG sites (DMCs) defined by 
q-values < 0.01 and methylation rate differences > 25% 
for both L2:L1 and L3:L1 in male gonads (Table 4). The 
distributions of hypo- or hyper-methylated DMCs were 

Fig. 3  PCA biplots and violin plots showing DNA methylation patterns affected by diets. a Three PCA biplots show the first and second PCA 
components of DNA methylation rates for liver, gonads and G&L (gonads and liver) datasets. The areas of three diet groups (L1: red, L2: green, 
L3: blue) and two tissue types (liver: turquoise, gonads: red) are outlined with the ellipses estimated by the Khachiyan algorithm. b Violin plots 
show the regional distributions of methylation rates for gonads and liver datasets. Twelve PCA biplots on the right show the first and second PCA 
components of DNA methylation rates for c six different genomic regions (exon, intron, three promoter regions: P250, P1K and P5K, and flanking 
regions) and d six regions around TSS (three upstream promoter regions and three downstream exon regions from TSS). The areas of three diet 
groups (L1: red, L2: green, L3: blue) are outlined with the ellipses estimated by the Khachiyan algorithm
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Table 4  The number of DMC, DMGs, enriched KEGG pathways and GO terms, and DEG:DMCs

a Number of samples represented as (# treatment group):(# control group). bNumber of DMCs defined by q-values < 0.01 and methylation rate differences > 25%. 
cNumber of DMGs defined as the genes with at least one DMC. dNumber of enriched KEGG pathways identified by ORA with adjusted p-values < 0.05 and the 
minimum gene counts of 20. eNumber of enriched GO terms by ORA with adjusted p-values < 0.001 and the minimum gene counts of 10. fNumber of DEGs that 
contain at least one DMC for gonads, liver and G&L (gonads and liver) datasets. Numbers in bold font are emphasised for those with matched datasets as gonads vs 
gonads, liver vs liver, and G&L vs G&L

na DMCb DMGc KEGGd GOe DEG:DMCf

Gonads Liver G&L

Gonads

L2:L1 3:3 27 433 9 774 20 107 0 21 20

L3:L1 3:3 26 995 9 647 12 95 26 59 69

Liver

L2:L1 3:3 25 420 9 370 16 125 2 20 18

L3:L1 3:3 26 587 9 512 19 153 26 72 80

G&L

L2:L1 6:6 3 786 1 981 1 13 0 2 2
L3:L1 6:6 3 716 1 977 2 25 7 16 21

Fig. 4  Violin plots and bar plots showing distributions and features of DMCs and DMGs. a Two violin plots on the top show the distribution of 
methylation rate differences of all the mapped CpG sites (grey background) as well as hypo-methylated (blue) and hyper-methylated (red) DMCs 
for L2:L1 and L3:L1 datasets. The label boxes display the numbers of corresponding DMCs. b Two stacked bar plots show the proportions of DMC 
counts (1 DMC, 2 DMCs and > 3DMCs) per DMG for L2:L1 and L3:L1 datasets. The numbers on the bars represent the numbers of corresponding 
DMGs. The label boxes next to the region names display the total number of DMGs per region. c Two stacked bar plots show the number of 
DEG:DMGs (DEGs that are also DMGs) for L2:L1 and L3:L1 datasets. The numbers on the bars represent the numbers of corresponding DEGs. The 
label boxes next to the region names display the ratio of DEGs and DMGs as (#DEG:DMGs)/(#DMGs). All the genes that belong to multiple datasets 
(for instance, liver and gonads) are categorized at "overlap"
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balanced in all six sub-regions along with IGR (Fig. 4a). 
Although the counts and distributions of DMCs were 
similar between liver and gonads (Table  4, Additional 
file  1: Figure S6a), most of them were tissue-specific as 
only 5.3% and 5.9% of the gonad DMCs overlapped with 
the liver DMCs in L2:L1 and L3:L1, respectively (Addi-
tional file  1: Figure S7). The counts of DMCs in G&L 
were lower than both gonads and liver, potentially due 
to a multifactorial design with n = 12 rather than n = 6 
(Table 4), which would contribute to smaller differences 
in methylation rates compared to gonads and liver (Addi-
tional file 1: Figure S8a). As expected, only a small frac-
tion of the DMCs were G&L specific as over 97% of G&L 
DMCs overlapped with either gonads or liver (Additional 
file 1: Figure S7).

We defined differentially methylated genes (DMGs) 
as protein-coding genes that contained at least one 
DMC, which led to the identification of over 9 500 
DMGs in gonads (Table 4). Unlike DMC, DMG is just 
a term without any statistical evidence but simply to 
represent a gene that showed association with at least 
one DMC. In gonads, most of the DMGs were sup-
ported by single DMCs, ranging approximately from 
60% in intron to 90% in P250 (Fig. 4b). Similarly, most 
of the DMGs were supported by only single DMCs for 
both liver and G&L (Additional file 1: Figure S6b&S8b). 
Although it was less tissue-specific than the DMCs 
(over 94%; Additional file 1: Figure S8), around 53% of 
the gonad DMGs remained tissue-specific (Additional 
file 1: Figure S9), suggesting micronutrient supplemen-
tation affected DNA methylation patterns differently in 
gonads and liver.

Differentially methylated genes showed association 
with several cell signalling and metabolism pathways 
mainly by their gene bodies in both gonads and liver
Like  functional annotation analysis with DEGs, we per-
formed functional annotation analysis on DMGs. The 
number of identified DMGs was much higher than the 
corresponding DEGs. For instance, 97 DEGs vs. 9647 

DMGs for gonad L3:L1, which could be a potential issue 
with functional annotation since the identified DMGs 
occupied a large part of the whole transcriptome. To 
investigate the regional contribution to enrichment, 
we labelled DMGs with 10 different regions as gene 
body (GB), intron, exon, promoter (P), P250, P1K, P5K, 
flanks, P + GB, and RS + GB (regulatory sequence + GB), 
depending on the locations of the corresponding DMCs. 
Also, one DMG could belong to multiple regional groups 
in case of having multiple DMCs.

Over-representation analysis (ORA) on KEGG iden-
tified 20 and 12 enriched KEGG pathways, whereas 
ORA on GO identified 107 and 95 enriched terms 
respectively for L2:L1 and L3:L1 in gonads (Table  4, 
Additional file  1: Tables S14-S17). Most enriched 
pathways and terms were associated with cell signal-
ling and metabolism in gonads, and the enrichment 
results were similar to those in liver (Additional file 1: 
Tables S18-S21) and those of G&L to a lesser extent 
(Additional file  1: Tables S22-S24). Moreover, all the 
identified pathways and terms were enriched through 
the gene bodies except one pathway—the cellular 
senescence (sasa04218) pathway in P5K for gonad 
L2:L1 (Additional file  1: Table  S14), which could be 
a good candidate for further studies targeting cell 
growth and death influenced by micronutrients in 
gonads.

Since a large part of the identified KEGG pathways 
overlapped between gonads and liver, we filtered the 
results to highlight the tissue specificity. We first elimi-
nated the common enriched pathways identified in both 
gonads and liver, which resulted in a total of 10 pathways 
(Additional file 1: Table S25), and then further eliminated 
the common KEGG sub-classes, which resulted in a total 
of four unique enriched pathways (Table 5). This filtered 
result suggests that high dosages of micronutrients (L3) 
potentially influenced DNA methylation rates of the 
genes associated with the lysine degradation (sasa00310) 
and purine metabolism (sasa00230) pathways exclusively 
in male gonads.

Table 5  Enriched KEGG pathways with high tissue-specificity

Sub class KEGG pathway KEGG ID Region (gene ratio)

Gonads

L3:L1 Amino acid metabolism Lysine degradation sasa00310 Exon (15/545)

Nucleotide metabolism Purine metabolism sasa00230 Gene body (65/1898)

Liver

L2:L1 Membrane transport ABC transporters sasa02010 RS + GB (25/2652), P + GB (22/2123), Gene body (20/1822)

L3:L1 Membrane transport ABC transporters sasa02010 RS + GB (29/2725), P + GB (27/2226), Gene body 
(26/1879), Intron (20/1486)

Lipid metabolism Fatty acid biosynthesis sasa00061 P + GB (14/2226), Gene body (13/1879)



Page 9 of 18Saito et al. BMC Genomics          (2022) 23:115 	

Linking DEGs with DMCs identified two genes in which 
micronutrient supplementation simultaneously influenced 
both gene expression levels and DNA methylation 
signatures in male gonads
To study the epigenetic regulation of DNA methyla-
tion on gene expression affected by micronutrients, we 
merged DEGs with DMGs in all the possible combi-
nations of tissue datasets (gonads, liver and G&L, see 
17 for details) respectively for two diet datasets (L2:L1 
and L3:L1), which resulted in 18 different DEG:DMCs 
(DEGs that had at least one DMC) counts (Table  4). 
These counts were statistically neither over nor under-
represented, as indicated by the result of multiple linear 
regression showing that the counts of DEG:DMCs were 
mostly explained by the counts of DEGs and DMGs 
(#DEG:DMCs ~ #DEGs + #DMGs; adjusted R-squared: 
0.83 and p-value: 7.1e-07; see 17). Moreover, there were 
no noticeable regional specific patterns of DEG:DMC 
counts (Fig. 4c, Additional file 1: Figure S6c&S8c).

For gonads, there were no DEG:DMCs for L2:L1 but 
26 DEG:DMCs for L3:L1 (Table 4), with five DEG:DMCs 
located in promoters—one DEG:DMC in P250 and four 
DEG:DMCs in P5K (Additional file 1: Table S26). Among 
them, guanylate cyclase 2G-like (gucy2g-like) had two 
hypo-methylated DMCs (Additional file  1: Figure S10) 
with strongly up-regulated expression (LFC: 4.92), and 
myelin basic protein-like (mbp-like) had one hypo-meth-
ylated DMC with (Additional file 1: Figure S11) moder-
ately up-regulated expression (LFC: 0.5) when fed the 
L3 diet. The human orthologue of gucy2g-like encodes 
a soluble guanylyl cyclase that has a potential role in 
water and electrolyte balance, and muscle contraction in 
response to calcium levels [29, 30], whereas the human 
orthologue of mbp-like encodes a protein that plays a key 
role in the process of myelination of nerves and interacts 
with the lipids in the myelin membrane [31]. Also, DNA 
methylation plays an essential role in the cellular repro-
gramming of non-myelinating cells in humans [32].

These potential epigenetic regulations of the two genes 
were likely gonad-specific, as both genes were neither 
DEGs nor DMGs identified through the promoters liver 
and G&L except that mbp-like was a DEG in L2:L1 G&L. 
The result of merging DEGs and DMCs suggests that 
gucy2g-like and mbp-like could be two good candidates 
epigenetically affected by  micronutrient supplementa-
tion, as  their gene expression may be regulated  through 
DNA methylation on their promoter regions in male 
gonads.

High and medium doses of micronutrients similarly 
affected gene expression and DNA methylation patterns
Our previous study that used fish from the same 
feeding trial as in  the present study revealed strong 

transcriptomic and epigenetic regulations in a dose-
dependent manner in liver [11]. It could be useful for 
effective filtering of false positives if there were any dose- 
or concentration-dependent regulations in male gonads. 
To investigate the dose-associated influence on both gene 
expression and DNA methylation, we combined L2:L1 
and L3:L1 to create datasets that contained at least one 
DEG/DMC from either L2:L1 or L3:L1. In other words, 
datasets consisted of three types of pairs: one DEG/DMC 
in L2:L1, one DEG/DMC in L3:L1, and two DEGs/DMCs 
in both L2:L1 and L3:L1.

For gene expression, scatter plots of log fold changes 
(LFCs) between L2:L1 and L3:L1 showed strong positive 
correlations for gonads (r = 0.77, p-value < 2.2e-16) and 
liver (r = 0.74, p-value < 2.2e-16) along with linear regres-
sion lines with positive slopes (Fig. 5a), suggesting that L2 
and L3 affected most of the genes in the same direction 
in terms of up- and down-regulation. DNA methylation 
differences (MDiffs) also showed strong positive corre-
lations for gonads (r = 0.73, p-value < 2.2e-16) and liver 
(r = 0.59, p-value < 2.2e-16) again with positive regression 
lines (Fig. 5b), suggesting that L2 and L3 affected most of 
the CpG sites in the same direction in terms of hypo- and 
hyper-methylation.

To inspect potential gradual effects of L2 and L3, we 
split the dataset into positive and negative LFCs/MDiffs 
and compared the distributions between L2:L1 and 
L3:L1. Gene expression showed gradual effects in both 
liver and gonads (Additional file  1: Figure S12a), but it 
was most likely due to the number of DEGs as #(L3:L1 
DEGs) > #(L2:L1 DEGs), where #(x) indicates the size of 
dataset x. Methylation differences showed a strong grad-
ual effect towards L3 < L2 for hypo-methylation in liver 
but no noticeable effects in gonads (Additional file 1: Fig-
ure S12b).

Although there were no strong gradual effects on 
DNA methylation patterns in male gonads, high (L3) 
and medium (L2) doses of micronutrients still affected 
both gene expression and DNA methylation consistently 
in terms of down/up gene regulation and hyper/hypo 
methylation.

Human orthologues of highly differentially methylated 
genes suggested associations with reproductive processes, 
synaptic signalling, and brain development
To make a list of candidate genes for potential intergen-
erational epigenetic inheritance in the male lineage, we 
merged L2:L1 and L3:L1 and then applied several filters 
to reduce the number of potential false positives. The first 
step was to merge common DMCs from L2:L1 (27 433 
DMCs) and L3:L1 (26 995 DMCs) with the same direction 
in terms of hypo/hyper-methylation and exclude the sites 
in IGR (see 17), which produced 6082 common DMCs 
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Fig. 5  Scatter plots of LFCs and methylation rate differences between L2:L1 and L3:L1. a Scatter plots show LFCs of DEGs and corresponding genes 
between L2:L1 and L3:L1 for liver and gonads datasets. Gray dots indicate only one of them is DEG, whereas red dots indicate both of them are 
DEGs. The blue line represents a linear regression line estimated from all the dots. b Scatter plots show methylation differences (%) of DMCs and 
corresponding CpG sites between L2:L1 and L3:L1 for liver and gonads datasets. Gray dots indicate only one of them is DMC, whereas red dots 
indicate both of them are DMCs. The blue line represents a linear regression line estimated from all the dots

Table 6  Top three common DMGs in Exon150, P250, and P1K for gonads

a Human orthologues in UniProt (www.​unipr​ot.​org) except for DDB_G0286901, which is an orthologue of slime mold (Dictyostelium discoideum). bNumber of the 
DMCs for hypo-methylated (hypo) and hyper-methylated (hyper)

Region Gene symbol Gene name Orthologa #DMCsb

Hypo Hyper

Exon150 LOC106566321 potassium voltage-gated channel subfamily A member 2-like KCNA2 0 3

LOC106568430 putative uncharacterized protein DDB_G0286901 DDB_G0286901 0 2

LOC106591755 nuclear pore complex protein Nup50-like NUP50 0 1

P250 LOC106572512 glutamate receptor ionotropic, NMDA 3A-like GRIN3A 2 0

LOC106582681 dnaJ homolog subfamily C member 16-like DNAJC16 1 1

DEAD (Asp-Glu-Ala-Asp) 
box polypeptide 43

DEAD-box helicase 43 DDX43 1 0

P1K LOC106611715 transmembrane protein 35-like TMEM35A 3 0

plcb4 phospholipase C beta 4 PLCB4 0 3

LOC106578665 protein scribble homolog SCRIB 2 0

http://www.uniprot.org
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labelled with seven genomic regions—Exon, Exon150, 
Intron, P250, P1K, P5K, and Flanks. Exon150 contained 
DMCs located from TSS to 150  bp downstream, while 
Exon contained the rest of the DMCs in exons. We then 
defined "common DMGs" as the genes that had at least 
one common DMC and obtained 4336 common DMGs 
for gonads, along with 2869 and 426 common DMGs for 
liver and G&L, respectively (Additional file 1: Table S27). 
Subsequently, we sorted the list by the counts of DMCs 
per DMG and q-values and then selected the top three 
common DMGs from each region (Additional file  1: 
Tables S28-S30). Finally, we selected a total of nine genes 
from Exon150, P250, and P1K (Table 6, Additional file 1: 
Figures  S13-S21) to review epigenetic regulations with 
DNA methylation in the literature using the correspond-
ing human orthologues.

In Exon150, the corresponding orthologues are potas-
sium voltage-gated channel subfamily a member 2 
(KCNA2), which mediates transmembrane transport 
mainly in the brain and the central nervous system [33], 
putative uncharacterized protein DDB_G0286901 (DDB_
G0286901), which encodes a putative recombinant pro-
tein [34], and nucleoporin 50 (NUP50), which encodes a 
component of the nuclear pore complex that plays a role 
in nuclear protein import [35]. Epigenetic regulations 
of DDB_G0286901 and NUP50 are unknown, but DNA 
methylation in the promoter of KCNA2 is associated with 
attenuation of neuropathic pain in humans [36].

In P250, the corresponding orthologue of the most 
affected gene is glutamate ionotropic receptor NMDA 
type subunit 3a (GRIN3A), which encodes a subunit of 
N-methyl-D-aspartate (NMDA) receptor, which fur-
ther belongs to the superfamily of glutamate-regulated 
ion channels [37]. The precise epigenetic regulation of 
GRIN3A is unknown, but DNA methylation in the pro-
moter of glutamate ionotropic receptor NMDA type sub-
unit 2a (GRIN2A), which is another subunit of NMDA, 
is strongly associated with major depressive disorder 
in humans [38]. Moreover, glutamate ionotropic recep-
tor NMDA type subunit 2b (GRIN2B) is associated with 
anxiety-like behaviour in mice when juvenile mice were 
fed a methyl-donor-deficient diet [39]. The other two 
corresponding orthologues are dnaj heat shock protein 
family (HSP40) member C16 (DNAJC16), which is a 
member of the heat-shock protein (HSP40) family [40], 
and DEAD-box helicase 43 (DDX43), which encodes an 
ATP-dependent dual RNA–DNA helicase [41]. As for 
DNAJC16, a cohort study has reported that tea consump-
tion in women epigenetically changes the gene expres-
sion of DNAJC16 through DNA methylation of a single 
CpG site [42]. Aberrant DNA methylation status in the 
DDX43 promoter is known to be associated with human 
cancers including acute myeloid leukemia [43].

In P1K, the corresponding orthologues are trans-
membrane protein 35a (TMEM35A), which encodes a 
soluble peptide that may modulate neurite outgrowth 
[44], phospholipase C beta (PLCB4), which encodes an 
enzyme that uses calcium as a cofactor to play an impor-
tant role in extracellular signals [45], and scribble planar 
cell polarity protein (SCRIB), which encodes a membrane 
protein involved in cell migration and cell polarity [46]. 
While epigenetic regulation of TMEM35A and SCRIB 
are unknown, aberrant DNA methylation status in the 
PLCB4 promoter affects hippocampal neurogenesis in 
mouse offspring upon maternal hexachlorophene (HCP) 
exposure [47].

Our differential expression analysis indicated that none 
of the nine common DMGs were DEGs in gonads. Nev-
ertheless, NUP50 and DDX43 are highly expressed in 
testis, and DNAJC16 is highly expressed in the  oviduct 
epithelium in humans [48]. Hence, DNA methylation of 
these genes may have regulatory roles in the reproductive 
process. Moreover, GRIN3A is expressed in fetal brain 
in humans [48], suggesting DNA methylation of gluta-
mate receptor ionotropic, NMDA 3A-like (grin3a-like) in 
Atlantic salmon potentially has a role in embryonic brain 
development.

Analysis of a specific differentially methylated 
region revealed grin3a‑like, hdac2, and a zinc finger 
protein as prime candidates potentially involved 
in intergenerational epigenetic inheritance
As an alternative to DMCs, differentially methyla-
tion regions (DMRs) are widely used to detect genomic 
regions with different DNA methylation status instead 
of considering only single CpG sites. Nonetheless, most 
DMGs in the present study were supported by single 
DMCs (Fig.  4b), and DMCs were also sparsely located 
(for example, Additional file 1: Figure S10, S11, and S13-
S21). Hence, we focused on loci with multiple DMCs that 
might have similar functionality to DMRs. Among the 
common DMGs, grin3a-like contained a locus with two 
hypo-methylated DMCs for gonads (Additional file  1: 
Figure S16) and G&L, and three hypo-methylated DMCs 
for liver within eight nucleotides of "CGC​GCT​CG" in 
its promoter (P250). Motif analysis with SalMotifDB 
[49] predicted three transcription factors that poten-
tially bind this locus with multiple DMCs (Additional 
file  1: Table  S31). Among them, histone deacetylase 2 
(HDAC2) and a zinc finger protein, zinc finger protein 206 
(ZFP206), had almost identically matched motifs to this 
locus (Additional file  1: Table  S31), suggesting a poten-
tial interaction between HDAC2 and ZFP206. HDAC2 is 
a histone deacetylase that is responsible for the removal 
of acetyl groups from lysine residues of the core his-
tones [50], whereas ZFP206 is a DNA binding zinc finger 
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protein that regulates a very small set of transcripts spe-
cific to embryonic stem (ES) cells [51] and controls pluri-
potency of ES cells [52].

Most entries in SalMotifDB are based on model organ-
isms as HDAC2 is from humans, and ZFP206 is from 
both humans and mice. While HDAC2 has a correspond-
ing orthologue, histone deacetylase 2 (hdac2; Gene ID: 
101,448,008) in Atlantic salmon, ZFP206 has no ortho-
logues identified in Atlantic salmon as well as any other 
fish species. Since zinc finger proteins are one of the most 
abundant groups of proteins [53], there can be some zinc 
finger proteins that have a SCAN domain and a similar 
DNA binding motif to ZFP206 in fish.

Transcripts of both grin3a-like and hdac2 were 
expressed in male gonads, but neither of them were 
DEGs. No expression was detected for grin3a-like in liver, 
but hdac2 showed weak expression in liver. Moreover, 
hdac2 had one common DMC in its intron for gonads 
but no common DMCs for liver. Hence, micronutrient 
supplementation substantially affected DNA methylation 
status in the grin3a-like promoter but without alternating 
its gene expression in gonads.

Combination of DMCs between the datasets of high 
and medium micronutrient doses identified over 4000 
candidates for studying potential intergenerational 
epigenetic inheritance
In addition to the top three common DMCs from 
Exon150, P250, and P1K, all the other common DMGs 
could be strong candidates for studying potential epige-
netic regulations. Since there were over 4000 common 
DMCs identified for gonads, it would be useful to provide 
an easy access data source for future work. Therefore, 
we summarised the data used in the present study into 
13 tabular format files for gonads, liver and G&L avail-
able on figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​
14177​015.​v1), and also created a website (https://​nutre​pi.​
github.​io/​wp1go​nad) for fast and easy online data access 
specifically for gonads (see 17 and also Availability of 
data and materials). These datasets aims to provide vari-
ous types of resources for studying potential intergenera-
tional epigenetic inheritance through the male germline 
affected by different levels of micronutrients.

Discussion
Our extensive analysis on DNA methylation in male 
gonads identified over 4000 CpG sites with differential 
methylation status induced by different levels of micro-
nutrient supplementation. By using human orthologues, 
functional estimation of the top nine common DMGs 
with high methylation differences revealed that most 
of them were associated with neurodevelopment and 

synaptic signalling. In addition to these common DMGs 
in promoters, our functional annotation analysis revealed 
that the other general DMGs were associated with cell 
signalling in environmental information processing and 
cellular processing through the DMCs in their gene bod-
ies. Hence, genes involved in signalling pathways are 
potentially susceptible to alterations of DNA methylation 
induced by environmental factors including different lev-
els of micronutrients.

Establishing a robust method of analysing binding 
motif enrichment on multiple DMC sites could be use-
ful to understanding intergenerational epigenetic regula-
tion. A study about the effect of parental age on offspring 
in mice reported that genomic regions enriched in RE1-
silencing transcription factor (REST) binding motifs were 
hypo-methylated in the sperm of aged fathers, and hypo-
methylated sperm DNA negatively affected neurodevel-
opment in offspring [19]. Moreover, another mice study 
suggested that two zinc finger proteins, zinc finger protein 
217 (Zfp217) and zinc finger protein 516 (Zfp516), con-
trolled the concise epigenetic states on active embry-
onic stem cell (ESC) genes [54]. Interestingly, binding 
sites of Zfp217 were largely overlapped with the target 
sites of a limited number of transcription factors, includ-
ing HDAC2 and REST [54]. Hence, DNA methylation 
of grin3a-like together with hdac2 in the male gonad of 
Atlantic salmon could be one of the prime candidates for 
studying intergenerational epigenetic inheritance that 
affects early cell development stages in offspring.

Major limitations of the present study are (i) usage of 
the F0 gonads, (ii) the limited number of replicates in 
the DNA methylation analysis, and (iii) sparsely located 
DMCs. First, a feeding trial over generations to study 
intergenerational effects of micronutrient supplements 
is expensive and takes many years. In addition, most of 
the fish were too young to get fully matured even at the 
final sampling stage of the feeding trial, and therefore we 
focused on the male gonad to study the potential epi-
genetic inheritance affected by micronutrients. As the 
gonads are primary reproductive organs, the male gonad 
is the most suitable organ to study intergenerational epi-
genetic effects of the male linage especially when sperm 
cells are scarcely available. Second, the number of repli-
cates used for the DNA methylation analysis was n = 3 
for each group, and therefore, we utilized the liver sam-
ples, as verification, from one of our previous studies 
that used the fish from the same experiment with a larger 
number of replicates (n = 6 for two treatments and n = 9 
for control) for the DNA methylation analysis [11]. Since 
the outcomes of this previous study were in line with 
those of the present study, we assumed that our DNA 
methylation analysis was robust enough to support our 
findings. Furthermore, we applied several strict filters 

https://doi.org/10.6084/m9.figshare.14177015.v1
https://doi.org/10.6084/m9.figshare.14177015.v1
https://nutrepi.github.io/wp1gonad
https://nutrepi.github.io/wp1gonad
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to select genes with substantially affected CpG sites. 
Third, most of the identified DMGs in our study only 
contain single DMCs. Even though a single methylated 
site is enough to alter DNA binding affinity of transcrip-
tion factors [55], false positives would be higher for the 
regions with single DMCs. In general, DMRs are more 
likely associated with biological functions than DMCs. 
As optimized methods of predicting DMRs are unclear 
for RRBS data with the salmon genome, benchmarking 
of DMR tools, such as, methylKit [56], DSS [57], and 
dmrseq [58], can be useful to find a method that effec-
tively detects DMRs from sparsely located methylated 
CpG sites. Hence, further studies in both in vivo and in 
silico are needed to refine the candidates of intergenera-
tional epigenetic modulators that respond to nutritional 
signals. To this end, we provide compressive data sets 
both as tabular format files and feature-rich data tables 
on a website for future work.

Our study also has a potential impact on reconsider-
ing the optimised composition of broodstock diet in the 
aquaculture industry. Genetic and epigenetic regula-
tions modulated by nutrients in broodstock of cultured 
fish have been less well studied compared to its offspring. 
Given that different micronutrient levels affect gene 
expression and DNA methylation profiles that may con-
tribute to intergenerational inheritance in the male lin-
age, micronutrients in male broodstock can be one of 
the key environmental factors that control the healthy 
growth and fish welfare of its offspring.

Conclusions
The present study was aimed to unravel the impact 
of adding micronutrient supplementation in Atlantic 
salmon feed that potentially affected epigenetic regula-
tions, specifically for DNA methylation. Although the 
feeding trial used in the present study was limited to 
one generation, we extensively analysed multiple types 
of data, such as different omics, different tissue types, 
human and mouse orthologues, and graded levels of 
nutrients, to examine overall and regional patterns of 
DNA methylation affected by micronutrients. The most 
heavily affected DNA methylation sites by micronutrient 
supplementation were mainly associated with cell signal-
ling, neurodevelopment, and synaptic signalling. We also 
identified an epigenetically influenced genomic region 
in the promoter of the grin3a-like gene, where two tran-
scription factors, HDAC2 and ZFP206, were predicted 
to bind. The functional roles of HDAC2 and ZFP206 in 
humans and mice suggest that DNA methylation of the 
grin3a-like promoter may intergenerationally affect the 
early neurodevelopment of embryonic cells in offspring. 
To obtain a good understanding of the epigenetic inher-
itance triggered by nutrient signals in Atlantic salmon, 

we also provide a wide range of easy access datasets as 
important resources for future work.

Methods
Feeding trial
Atlantic salmon were obtained from SalmoBreed AS 
(Norway), and the whole feeding trial took place in the 
UK. During the freshwater phase, 500 salmon parr were 
kept in nine tanks at the Niall Bromage Freshwater 
Research Facility (Stirlingshire, UK; September 2014). 
After smoltification, the fish were transferred to the 
Mowi Marine Harvest Feed Trial Unit (Ardnish, Scot-
land; November 2014) and kept there for 12  months in 
sea pens. A nutrient package (NP) was used to supple-
ment experimental diets to meet the required levels for 
Atlantic salmon as reported by the Advanced Research 
Initiatives for Nutrition & Aquaculture (ARRAINA) EU 
project [12, 22, 23]. L1, L2, and L3 were termed to rep-
resent three dietary groups prepared as 100%, 200%, and 
400% of NP content, respectively. See the original study 
of the experiment [12] for more comprehensive descrip-
tions of the feeding trial along with the summary of the 
trial. See also Additional file 1: Feeding trial, Experimen-
tal diets, and Micronutrient analysis of experimental 
diets in Supplementary Methods for further details.

Sampling
At each sampling point in freshwater, 50 fish per tank 
were anaesthetised (50  mg/L Tricaine/MS222, PHAR-
MAQ, UK, buffered with bicarbonate, 100  mg/L) and 
measured, while in seawater, all fish per tank were 
counted and individually measured; all fish were sub-
jected to recovery in aerated water prior to letting 
them back to their original tanks. At the termination, 
six fish per tank were euthanised by lethal anaesthesia 
(> 200  mg/L Tricaine, PHARMAQ UK) for sequenc-
ing and molecular analyses. Among them, 17 gonad and 
18 liver samples were used for gene expression analysis 
(Additional file  1: Table  S4&S5), while nine gonad and 
nine liver samples were used for DNA methylation analy-
sis (Additional file 1: Table S13).

All the fish in the feeding trial were euthanised by lethal 
anaesthesia (> 200 mg/L Tricaine, PHARMAQ UK) at the 
termination of the trial, and the fish that were not involved 
in this study were used in the ARRAINA EU project and 
reported elsewhere [11, 12, 59]. See the original study of 
the experiment for more details of sampling methods [12]. 
See also Additional file 1: Sampling and growth measure-
ment in Supplementary Methods for further details.

Extraction of DNA and RNA for sequencing
At the harvest stage of the trial, both gonads and liver 
were dissected followed by snap freezing in liquid 
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nitrogen for RNA and DNA extraction. The same fish 
were used for both RNA and DNA samples, and ceramic 
beads were used to homogenise tissue samples. See Addi-
tional file 1: DNA and RNA extraction in Supplementary 
Methods for further details.

Library preparation and sequencing for RNA‑seq and RRBS
Both gonads and liver samples were sent to the DeepSeq 
sequencing facility at Nord University (Bodø, Norway) 
for RNA-sequencing (RNA-seq) where libraries were 
prepared using an NEBNext Ultra II Directional RNA 
Library Prep Kit for Illumina (New England Biolabs). 
The libraries were subsequently sequenced by the Next-
Seq500 machine (Illumina). See Additional file  1: RNA-
seq library preparation and sequencing in Supplementary 
Methods for further details.

Both gonads and liver samples were sent to the CeMM 
Biomedical Sequencing Facility (Vienna, Austria) for 
reduced representation bisulfite sequencing (RRBS) 
where enzyme digestion by MspI and TaqI were per-
formed followed by size selection and bisulfite conver-
sion. RRBS was subsequently performed using the HiSeq 
3000/4000 instruments (Illumina). See Additional file  1: 
RRBS library preparation and sequencing in Supplemen-
tary Methods for further details.

Atlantic salmon genome and genome annotation
The genome data of the Atlantic salmon genome 
(ICSASG_v2) were obtained from the NCBI assem-
bly site (https://​www.​ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​
00023​3375.1).

Only the longest transcript was kept when a gene ID 
was associated with multiple isoforms with alternative 
splicing. The genome was separated into three main 
regions as regulatory sequence (RS), gene body (GB), 
and intergenic region (IGR). RS contained four sub-
regions: P250, P1K, P5K, and flanks. P250 P1K, and P5K 
were promoter regions separated by the distances from 
TSS (transcription start site) as P250 (1 ~ 250  bp), P1K 
(251 ~ 1  K  bp), and P5K (1001 ~ 5  K  bp), whereas flanks 
were defined as 10 K up and downstream around mRNAs 
with excluding the regions defined as P250, P1K, and 
P5K. GB contained two sub-regions: exon and intron. 
IGR had no sub-regions. In case of overlapping, a site 
was exclusively assigned to one region or sub-region as 
the highest precedence given for exon followed by intron, 
P250, P1K, P5K, flanks, and IGR.

Quality trimming, alignment, and quantification 
of RNA‑seq reads
Raw reads were initially trimmed using Cutadapt [60] 
to remove low-quality reads (phred scores < Q30 or less 
than 20 bases) and adapters. STAR [61] was used with 

the default parameters to index the reference genome 
with RefSeq genes (ICSASG_v2) and align the qual-
ity trimmed reads to the indexed genome. The mapped 
reads were quantified using featureCounts [62] to esti-
mate gene expression levels per gene based on the RefSeq 
genes (ICSASG_v2). Prior to differential expression anal-
ysis, principal component analysis (PCA) was performed 
using the factoextra package from CRAN (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​facto​extra).

Differential gene expression analysis
Differential gene expression analysis was performed 
using the DESeq2 package [63] that produced log-fold 
changes with p-values adjusted by Benjamini-Hochberg. 
Differentially expressed genes (DEGs) were defined as the 
genes with adjusted p-values < 0.1.

The analysis was performed in a pair-wise manner 
using L1 as control for two datasets, termed L2:L1 and 
L3:L1 for each treatment group. In addition, samples of 
both gonads and liver were combined to generate the 
G&L dataset separately for L2:L1 and L3:L1. To perform 
a multifactorial analysis for the G&L dataset, tissue types 
(either gonads or liver) were added to the design matrix 
in addition to diet groups.

Functional analysis of DEGs
The functional analysis of DEGs [64] was performed 
using the R package clusterProfiler [65, 66] based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database [27] for biological pathways and the Gene 
Ontology (GO) database [28] for gene ontology terms. 
Both KEGG and GO were used for over-representation 
analysis (ORA) [64], whereas only KEGG was used for 
gene set enrichment analysis (GSEA) [67]. Enriched 
KEGG pathways and GO terms were defined when p-val-
ues adjusted by Benjamini–Hochberg were less than 0.05 
and a minimum gene count of five. Moreover, enriched 
pathways by GSEA were filtered by absolute values of 
normalized enrichment score (NES) > 2.

Quality trimming, alignment and clustering of RRBS reads
FastQC (Babraham Institute; https://​www.​babra​ham.​ac.​
uk) and MultiQC [68] were used to check the initial read 
quality, followed by trimming of adapters and low-qual-
ity reads performed by Trim Galore! (Babraham Insti-
tute) with the RRBS mode based on Cutadapt [60]. The 
reads longer than 50 bp were trimmed to make the max-
imum length of the reads 50 bp. Only the reads digested 
by two restriction enzymes, MspI and TaqI (around 97% 
of the total reads), were kept by an in-house Python 
script.

Bismark [69] with the default parameters for Bowtie 1 
[70] was used to align the trimmed reads to the Atlantic 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000233375.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000233375.1
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
https://www.babraham.ac.uk
https://www.babraham.ac.uk
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salmon genome, and two Bismark functions, bismark_
methylation_extractor and coverage2cytosine [69], were 
used to subsequent methylation calls at CpG sites. Prior 
to differential methylation analysis, principal component 
analysis (PCA) was performed using the factoextra pack-
age from CRAN (https://​CRAN.R-​proje​ct.​org/​packa​ge=​
facto​extra).

Differential methylation analysis
Differential methylation calling was completed with the 
methylKit R package [56] by calculating methylation 
differences with p-values for all the mapped CpG sites. 
Prior to differential methylation calling, reads with less 
than or equal to 10 and above the 99.9th percentile of 
coverage were discarded. The logistic regression method 
provided methylKit [56] was used to calculate meth-
ylation differences and p-values, and the SLIM method 
[71] also provided by methylKit was used to calculate 
q-values. Differentially methylated CpG sites (DMCs) 
were defined as the CpG sites with q-values < 0.01 and 
absolute methylation differences greater than or equal 
to 25%.

Similar to differential gene expression analysis, differ-
ential methylation analysis was performed in a pair-wise 
manner using L1 as control for two datasets, termed 
L2:L1 and L3:L1 for each treatment group. G&L datasets 
were formed in the same way as differential gene expres-
sion analysis separately for L2:L1 and L3:L1. Again, tissue 
types (either gonads or liver) were added to the design 
matrix in addition to diet groups to perform differential 
methylation analysis with G&L.

The plots of the genomic features with methylation dif-
ferences and average methylation rates were generated by 
the Gvis R package [72].

Functional enrichment of genes containing DMCs
Differentially methylated genes (DMGs) were defined 
when genes contained at least one DMC in the corre-
sponding region. Like functional enrichment analysis 
with DEGs, over-representation analysis (ORA) [64] for 
DMGs was performed on both KEGG [27] and GO [28] 
by using the clusterProfiler R package [66]. Enriched 
KEGG pathways were defined by adjusted p-values < 0.05 
and a minimum gene counts of 20, whereas enriched GO 
terms were defined by adjusted p-values < 0.001 and a 
minimum gene counts of 10.

Linking DNA methylation with gene expression
DEGs and DMCs were merged to produce DEG:DMCs, 
which were defined as the DEGs that had at least one 
DMC. DEG:DMCs were produced for all nine possible 

pairs from the three datasets (gonads, liver, and G&L). A 
pair of the datasets comprised of one DEG dataset and 
one DMC dataset, for instance, (gonad DMGs, gonad 
DMCs), (gonad DMGs, liver DMCs), (gonad DMGs, 
G&L DMCs), and so on so forth. DMCs were used 
instead of DMGs to provide additional information for 
subsequent analyses.

To find statistically unexpected counts (too few or too 
large), a linear regression analysis with the formula of 
#DEG:DMCs ~ #DEGs + #DMGs was performed in R. 
Feature/variable-wise normalization on all the counts 
were performed by using the maximum counts before 
linear regression.

Analysis with the common DMGs generated by merging 
L2:L1 and L3:L1
DMGs from L2:L1 and L3:L1 were merged to pro-
duce common DMGs identified in both datasets. Only 
matched directions of methylation differences (hyper 
and hyper, or hypo and hypo) were merged. DMGs in 
IGR were eliminated from the common DMGs. DMGs 
in exon were split into Exon150 and Exon. Exon150 
was to cover the DMCs located near TSS (~ 150  bp 
downstream).

The website of UniProtKB [73] was used to estimate 
the orthologous genes for the common DMGs. The R 
version of SalMotifDB [49] with the default parameters 
was used to predict matching motifs and transcription 
factors.

Tabular format files and website
As resources for further analyses, 13 tabular format files 
were generated and uploaded to Figshare – (1) DEGs 
for L2:L1, (2) DEGs for L3:L1, (3) DMCs and CpG sites 
for L2:L1, (4) DMCs and CpG sites for L3:L1, (5) DMCs 
by region for gonad L2:L1, (6) DMCs by region for 
gonad L3:L1, (7) DMGs for L2:L1, (8) DMGs for L3:L1, 
(9) DEG:DMCs for gonads (10) DEG:DMCs for liver, 
(11) DEG:DMCs for G&L, (12) common DMCs, (13) 
common DMGs. See Additional file  1: Tables S32-S44 
for data descriptions.

In addition, a website with data for gonads was cre-
ated by Jekyll (https://​jekyl​lrb.​com) and hosted on 
GitHub pages (https://​nutre​pi.​github.​io/​wp1go​nad).

Bioinformatics pipelines
Both RNA-seq and RRBS pipelines were organised 
using Snakemake [74] to combine multiple bioinfor-
matics tools, R and Python scripts for high-throughput 
sequence analysis. Moreover, R was used for basic sta-
tistical analysis and generating figures.

https://CRAN.R-project.org/package=factoextra
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