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Systematic benchmark of state-of-the-art 
variant calling pipelines identifies major factors 
affecting accuracy of coding sequence variant 
discovery
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Abstract 

Background:  Accurate variant detection in the coding regions of the human genome is a key requirement for 
molecular diagnostics of Mendelian disorders. Efficiency of variant discovery from next-generation sequencing (NGS) 
data depends on multiple factors, including reproducible coverage biases of NGS methods and the performance of 
read alignment and variant calling software. Although variant caller benchmarks are published constantly, no previ-
ous publications have leveraged the full extent of available gold standard whole-genome (WGS) and whole-exome 
(WES) sequencing datasets.

Results:  In this work, we systematically evaluated the performance of 4 popular short read aligners (Bowtie2, BWA, 
Isaac, and Novoalign) and 9 novel and well-established variant calling and filtering methods (Clair3, DeepVariant, 
Octopus, GATK, FreeBayes, and Strelka2) using a set of 14 “gold standard” WES and WGS datasets available from 
Genome In A Bottle (GIAB) consortium. Additionally, we have indirectly evaluated each pipeline’s performance using a 
set of 6 non-GIAB samples of African and Russian ethnicity. In our benchmark, Bowtie2 performed significantly worse 
than other aligners, suggesting it should not be used for medical variant calling. When other aligners were considered, 
the accuracy of variant discovery mostly depended on the variant caller and not the read aligner. Among the tested 
variant callers, DeepVariant consistently showed the best performance and the highest robustness. Other actively 
developed tools, such as Clair3, Octopus, and Strelka2, also performed well, although their efficiency had greater 
dependence on the quality and type of the input data. We have also compared the consistency of variant calls in GIAB 
and non-GIAB samples. With few important caveats, best-performing tools have shown little evidence of overfitting.

Conclusions:  The results show surprisingly large differences in the performance of cutting-edge tools even in high 
confidence regions of the coding genome. This highlights the importance of regular benchmarking of quickly evolv-
ing tools and pipelines. We also discuss the need for a more diverse set of gold standard genomes that would include 
samples of African, Hispanic, or mixed ancestry. Additionally, there is also a need for better variant caller assessment in 
the repetitive regions of the coding genome.
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Background
Over the past decade next-generation sequencing (NGS) 
has become a widely used technique in genetics and 
genomics [1]. Rapid technology development, as well as 
the introduction of whole-exome sequencing (WES) and 
target gene sequencing panels, facilitated NGS appli-
cation to the analysis of human genome variation and 
molecular diagnostics of inherited disease. Millions of 
individual exomes and genomes have been sequenced 
across the globe, and large-scale variant datasets have 
been constructed from NGS data, including the Genome 
Aggregation Database (gnomAD) [2] and UK Biobank 
exome sequencing dataset  [3]. These datasets are exten-
sively used in both clinical practice and basic human 
genetics research.

Despite huge developments over the past years, accu-
racy and reliability of variant discovery (variant calling) 
from NGS data still has room for improvement. Any 
basic variant calling pipeline includes two key stages: 
read alignment against a reference genome sequence 
and variant calling itself. Hence, quality of the reference 
genome sequence [4] as well as properties of the software 
tools used for read alignment and variant calling all influ-
ence the final result. While BWA is considered a gold 
standard solution for short read alignment in medical 
genetics [5], several other aligners have been developed 
and are commonly used, including Bowtie2 [6], Isaac 
(Illumina Inc. USA), and Novoalign (Novocraft Technol-
ogies, USA). The spectrum of software tools for variant 
calling is much broader, ranging from relatively simple 
(such as the SAMtools/BCFtools pipeline [7]) to rather 
complex ones (e.g., Genome Analysis ToolKit (GATK) [5, 
8, 9] HaplotypeCaller based on local haplotype assembly 
and Markov model-based genotyping). Active develop-
ment of deep learning models and their application to 
biological data led to the introduction of neural network-
based variant discovery methods such as DeepVariant 
[10]. Variant filtration methods based on convolutional 
neural networks are now also available in the most recent 
versions of GATK.

Existence of multiple variant calling pipelines predi-
cates the need for a gold standard genome variation 
dataset that can be used for extensive benchmarking of 
variant discovery pipelines. Such a gold standard data-
set has been compiled by the Genome In A Bottle Con-
sortium (GIAB) and the National Institute of Standards 
(NIST) [11]. The dataset includes high-confidence gen-
otypes for a set of samples (the European NA12878/

NA12891/NA12892 trio, the Chinese trio, and the Ash-
kenazi trio) obtained using multiple genotyping strate-
gies. These high-confidence variant calls can be used as 
a truth set to evaluate the accuracy of variant calling, and 
estimate the precision and sensitivity of variant discovery. 
The GIAB gold standard dataset has been used multiple 
times for benchmarking of variant detection solutions. 
For example, a 2015 study by Hwang et al. [12] used a set 
of sequencing datasets of the NA12878 sample and dem-
onstrated important differences in the accuracy of variant 
calling pipelines available at the time, with a combination 
of BWA-MEM and SAMtools being the best solution for 
SNP calling, and BWA-MEM and GATK-HC for indels. 
More recently, several comparative analyses have shown 
that DeepVariant and Strelka2 [13] show the best perfor-
mance on individual GIAB samples [14–16]. The most 
recent comparative evaluation also demonstrated the 
utility of combining variant calling results from several 
pipelines [16]. While the aforementioned studies provide 
important information regarding the performance of dif-
ferent software, a single gold standard sample (NA12878) 
is usually used for comparison. This limitation does not 
allow estimation of the robustness of different pipelines 
and their ability to call variants in samples of different 
origin and/or sequencing quality.

In 2019, best practices for benchmarking variant calling 
software have been developed by the Genome Alliance 
for Genomics and Health (GA4GH) [17]. A reference 
implementation of the GA4GH benchmarking strategy, 
hap.py, allows researchers to evaluate the performance of 
a variant calling pipeline in a stratified manner, i.e. com-
pare the accuracy of variant discovery in different sets of 
regions and for different variant types [17]. Such a strati-
fied approach provides important information regard-
ing the major factors affecting variant discovery. This, in 
turn, gives an opportunity to conduct a systematic survey 
of factors affecting reliable variant discovery. Previously, 
we have conducted a detailed analysis of the determi-
nants of human coding sequence coverage in WES and 
WGS [18]. This study showed that all modern approaches 
to human genome resequencing have reproducible cov-
erage bias, and mappability limitations are its major 
drivers. These results prompted us to investigate the 
influence of different sequence-based factors and cover-
age biases on the performance of variant calling software. 
To this end, in this work we applied 45 different combina-
tions of read alignment, variant calling, and variant filtra-
tion tools to a set of 14 gold standard samples from the 
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GIAB data (630 VCF files overall), and evaluated their 
robustness and general performance across different sets 
of human coding sequences.

Results
Data collection and analysis strategy
To dissect the factors that define the accuracy of vari-
ant calling, we selected a matching set of WES and WGS 
datasets available for the gold standard GIAB samples, 
including NA12878 (HG001), three members of an Ash-
kenazi trio (HG002 - HG004), and three members of the 
Chinese Han trio (HG005 - HG007) (Fig.  1a, Table  1). 
All WES datasets used in the analysis were generated 
using similar capture kits (Agilent SureSelect All Exon v5 
or v7), and all WGS samples were done using PCR-free 
WGS technology. While all considered exome samples 
had high (100-200x) coverage, we have restricted WGS 
coverage to more realistic 30-50x (Fig. 1b).

The following analysis strategy was employed for 
each sample (Fig.  1a): raw reads were aligned onto the 
GRCh37 human reference genome with either of the 
four short read aligners: Bowtie2 (in either end-to-end 
(BT-E2E) or local (BT-LOC) alignment mode), BWA 

MEM (BW), Isaac4 (IS), and Novoalign (NO). Result-
ing alignment files in BAM format were subject to pre-
processing with GATK to mark duplicate reads, and were 
then processed with six different variant callers, includ-
ing both well-established (DeepVariant (DV), Strelka2 
(ST), GATK-HC (denoted as G1, G2, or GH depending 
on the filtering strategy), and FreeBayes (FB)), and more 
recently developed Clair3 (CL) and Octopus (OS and OF 
for standard filtering and random forest filtering, respec-
tively) (see Methods for details). Raw variant calls were 
subject to filtering with standard built-in filters or qual-
ity-based filtering (see Methods), and filtered variant call 
sets were then evaluated using the hap.py toolkit, with 
an additional stratification of coding regions by expected 
read depth, GC content, mappability, and other factors 
(see below).

The benchmarking was performed on both the most 
up-to-date GIAB v4.2 high-confidence regions, as well 
as the older GIAB v3.3 which includes less challenging 
sequences. For uniformity of the analysis, high-confi-
dence regions for individual samples were intersected 
to obtain a single set of regions to be used when evalu-
ating all samples. Such a set of high-confidence regions 

Fig. 1  Systematic benchmarking of multiple variant calling pipelines. a A chart representing the analysis workflow. b A scatterplot showing mean 
coverage of high-confidence coding sequence regions (defined by the Genome In A Bottle consortium) and the fraction of bases of such regions 
covered at least 10x total read depth in WGS and WES datasets used (each point corresponds to an individual sample). c Reciprocal overlap of 
GENCODE v19 CDS intervals, GIAB v. 4.2 and GIAB v. 3.3 high confidence regions common for all 7 samples, and pathogenic/likely pathogenic 
variants without conflicting reports from ClinVar (ClinVar v. 20,211,130 was used)
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included 30.4 Mbp of coding sequence for GIAB v4.2 and 
28.4 Mbp - for GIAB v3.3 (Fig. 1c). The high-confidence 
regions cover more than 75% (for GIAB v3.3) or 79% (for 
GIAB v4.2) known pathogenic variants from the ClinVar 
database (Fig. 1c) and are thus most relevant to clinically 
significant variant discovery.

Prior to the analysis of benchmarking results, we 
compared the overall quality and coverage of coding 
sequences in WES and WGS samples used. As the WES 
dataset for HG001 contained more than 250 million 
reads, we randomly selected 40% of all read pairs prior 
to the analysis. All WES samples were characterized 
with significantly higher mean coverage of CDS regions 
and had slightly lower percentages of regions covered 
with at least 10 reads (Fig. 1b, Table 1), with the excep-
tion of HG006 and HG007 that were characterized with 
a narrower coverage (95.5 and 95.7% of high-confidence 
regions covered at 10x), possibly due to minor differ-
ences in the capture protocol for these samples. At the 
same time, the fraction of bases with at least 20x cover-
age was higher in WES than in WGS (Supplementary 
Fig.  1). Overall, these results suggest that the difference 
in the estimated variant calling performance on WES and 
WGS data should not be driven by general low coverage 
in WES and might be in part attributed to CDS regions 
not included into the WES capture kit design.

We then evaluated the total number of variants discov-
ered inside the high-confidence protein-coding regions 
with each of the 45 variant discovery pipelines used. All 
samples had a comparable number of variant calls, with 

a median value slightly above or below 20,000 variants 
per sample (Supplementary Table S1). In all cases, fewer 
variants were discovered for WES samples compared to 
WGS (Table 1). For most samples the difference in vari-
ant count between WES and WGS was around 600 vari-
ants; this discrepancy is most likely explained by exome 
capture kit design and not mappability as we show below 
(Fig. 4). Surprisingly, we also found that some of the vari-
ant calling pipelines yield a very low number of pass-filter 
variants for both WES and WGS data (Supplementary 
Fig. 1b). The reasons for such behavior will be discussed 
in detail later.

Systematic comparison of short read alignment 
and variant calling software
Usage of a set of 14 independent sequencing datasets 
from 7 individuals allows us not only to compare the 
performance of different tools, but also to assess the 
robustness and reproducibility of variant caller per-
formance. To conduct such an analysis, we first exam-
ined the F1 scores (a harmonic mean of precision and 
recall) using variant calls inside CDS regions gener-
ated by each combination of read alignment and vari-
ant calling software (Fig. 2a). This analysis showed that 
variant callers seem to have a greater influence on the 
overall performance of a pipeline compared to short 
read aligners. Among all pipelines tested, a combina-
tion of BWA MEM with DeepVariant had the greatest 
F1 score, while DeepVariant showed best performance 
on both SNP and indels for any aligner. Among other 

Table 1  Descriptive statistics of the gold standard sequencing datasets used in the study

Coverage and variant statistics are given with respect to GIAB v4.2 high-confidence CDS regions. aCoverage values for downsampled HG001 WES dataset are given 
(see Methods); bvariant counts were obtained by calculating the median number of variants discovered by different pipelines. Full statistics for each sample and tool 
combination is given in Supplementary Table S1

Sample Type Source  (SRA ID) Mean coverage Fraction of 10x 
bases

Median called variant 
countb

True 
variant 
count

HG001 WGS GIAB FTP 22.2 0.987 20,422 20,444

WES ERR1905890 248.8a 0.985a 19,875

HG002 WGS GIAB FTP 23.2 0.990 20,651 20,647

WES SRR2962669 241.4 0.987 20,048

HG003 WGS GIAB FTP 23.2 0.987 20,623 20,660

WES SRR2962692 203.9 0.987 20,046

HG004 WGS GIAB FTP 22.8 0.990 20,729 20,745

WES SRR2962694 228.4 0.987 20,112

HG005 WGS GIAB FTP 37.3 0.998 20,650 20,620

WES SRR2962693 195.5 0.985 19,969

HG006 WGS GIAB FTP 25.5 0.991 20,320 20,354

WES SRR14724507 183.2 0.955 19,650

HG007 WGS GIAB FTP 25.6 0.992 20,483 20,526

WES SRR14724506 176 0.957 19,793
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Fig. 2  Statistical comparison of variant discovery pipelines’ performance. A Box plots representing the F1 scores for different combinations of 
aligners and variant callers. B - E Pairwise comparison of tool performance for read aligners (B, C) and variant callers (D, E) using pass-filter SNP (B, 
D) and indel (C, E) calls. On (B-E) the color of the cell corresponds to the median difference in F1 scores between the first tool (on the OX axis) and 
the second tool (on the OY axis); n.s. - the difference is not significant, * - p < 0.05, ** - p < 0.01, *** - p < 0.001 in the Wilcoxon paired signed rank test. 
Read aligners: BW - BWA MEM, BT-E2E - Bowtie2 (end-to-end mode), IS - isaac4, NO - Novoalign; variant callers and filtering strategies: CL - Clair3, DV 
- DeepVariant, G1 - GATK HaplotypeCaller with 1D CNN filtering, G2 - GATK HaplotypeCaller with 2D CNN filtering, GH - GATK HaplotypeCaller with 
recommended hard filters. ST - Strelka2, FB - Freebayes, OS - Octopus with standard filtering, OF - Octopus with random forest filtering
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solutions, the recently developed ones, including 
Strelka2, Clair3, and Octopus showed high accuracy 
when working with BWA, Isaac, or Novoalign and the 
default filters; at the same time, Clair3 and Strelka2 
performance dramatically dropped when using Bowtie2 
as the read aligner in both end-to-end and local modes 
(Fig.  2a, Supplementary Fig.  2). FreeBayes performed 
considerably worse than the aforementioned tools on 
both SNPs and indels, while GATK-HC had high accu-
racy only when 1D CNN or a hard filtering strategy was 
used. GATK-HC combined with the 2D CNN variant 
filtering showed the worst performance in SNP call-
ing irrespective of the aligner used. Similarly, Octopus 
with the pretrained random forest filter also had high 
variance in the accuracy of SNP discovery, though the 
extent of such variability was much lower compared to 
GATK’s 2D CNN method. The reasons for this behavior 
of G2 and OF methods will be discussed in detail later.

We then sought to make a formal statistical com-
parison of read aligners and variant callers based on the 
benchmarking results. The structure of our dataset allows 
us to make such a comparison in a pairwise manner, and 
such comparison could in turn provide important infor-
mation on the reproducibility of the differences between 
pipelines on various datasets. Pairwise comparison of all 
short read aligners showed that, despite low median dif-
ferences in F1 scores (maximum value of F1 difference 
for a pair of aligners was 0.0038 for SNP and 0.0104 for 
indels), Isaac and Novoalign show the best performance 
on both SNPs (Fig.  2b) and indels (Fig.  2c); they are 
closely followed by BWA MEM. Bowtie2, on the other 
hand, performed considerably worse with both SNPs 
and indel variants (Fig.  2c). To our surprise, alignment 
with Bowtie2 in the local mode that allows soft clipping 
of read ends led to an even greater decrease in the per-
formance of nearly all pipelines (Supplementary Fig.  2). 
Among all variant calling and filtering solutions, Deep-
Variant showed the best performance compared to all 
other tools (p-value < 0.001, Fig.  2d, e). Consistent with 
earlier observations, GATK-HC with the 2D CNN model 
performed reproducibly worse on SNPs than any other 
pipeline. At the same time, FreeBayes was the worst solu-
tion for indel discovery, with its F1 score being at least 
5.7% lower compared to any other method (Fig.  2e). 
Clair3, Octopus, and Strelka2 performed almost equally 
well on SNPs and indels (p-value > 0.001) and were the 
closest runners-up to DeepVariant. Taken together, our 
statistical comparison demonstrated that the perfor-
mance differences for variant callers and read aligners are 
reproducible when using different input data. The results 
also confirm that read alignment differences have a gen-
erally lower impact on the accuracy of variant discovery 
compared to variant calling software, with the exception 

of Bowtie2 which causes a substantial decrease in calling 
accuracy in both alignment modes tested.

We next questioned if the observed differences between 
variant calling pipelines can be mostly attributed to dif-
ferences in precision or recall. To address this question, 
we compared precision and recall values reported for 
the same set of pipelines. This analysis revealed that the 
differences in precision were relatively small for all pipe-
lines; at the same time, Clair3 showed markedly worse 
precision compared to other solutions while DeepVari-
ant performed consistently better (p < 0.001). We also 
observed a surprising benefit in precision from otherwise 
underperforming Bowtie2 (p < 0.01, Supplementary Fig. 
S3). In contrast the difference in recall was much more 
substantial, with pipelines showing the lowest F1 scores 
showing the worst recall values (Supplementary Fig. S4). 
Given these observations, we conclude that the repro-
ducible differences between variant calling software arise 
mostly from the power differences and not from different 
false positive rates.

Dramatic differences in recall values between vari-
ant calling pipelines prompted us to ask to what extent 
does variant filtering negatively influence the results. 
To test this, we first compared the F1 scores for the raw 
unfiltered data (Supplementary Fig. S5). Remarkably, 
we found that the differences between F1 scores of dif-
ferent pipelines on unfiltered data were less dramatic, 
though tools that showed best or worst performance on 
filtered data tended to have higher or lower F1 values on 
unfiltered data as well. This result indicates that variant 
filtering might decrease recall more than increase preci-
sion. To formally test this hypothesis, we compared the 
precision and recall values for variant sets before and 
after filtering with various filtering strategies. This analy-
sis showed that the benefit from variant filtering heavily 
depends on the data type and variant calling method. For 
example, variant filtering was universally beneficial when 
using Strelka2 and FreeBayes; however, the effects of 
variant filtering in GATK and Octopus were different for 
WES and WGS samples (Fig. 3, Table 2). GATK’s neural 
network filters showed substantial gain in precision only 
for WGS data while having a significant negative impact 
on recall for WES samples. Filtering with either a stand-
ard filter or random forest model in Octopus was benefi-
cial for WGS datasets but not for WES in which random 
forest filtering had a dramatic negative effect on recall. 
For DeepVariant, accurate comparison could not be made 
due to the lack of information about filtered genotypes.

To sum up, we demonstrate that variant calling pipe-
lines reproducibly differ in their performance of variant 
discovery (both for SNPs and indels). These differences 
are mostly driven by sensitivity of variant caller software, 
which could be substantially affected by variant filtering, 
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especially for WES data. Pipelines based on DeepVari-
ant consistently perform better than all other considered 
solutions, while usage of Bowtie2 and FreeBayes is not 
recommended due to large losses in accuracy, especially 
in certain combinations.

Analysis of factors influencing the accuracy of variant 
discovery
We next went on to evaluate the influence of enrich-
ment technology and other sequence-based factors on 
the accuracy of variant discovery with different tools. To 

Fig. 3  The necessity and possible benefit of variant filtering depends on the variant calling method. Shown are positive changes in precision (blue 
boxes) and negative changes in recall (yellow boxes) on SNPs and INDELs in WES and WGS data. Gray shading corresponds to cases where filtering 
is beneficial, i.e. gain in precision is greater than the loss of recall. Variant callers and filtering strategies: CL - Clair3, DV - DeepVariant, G1 - GATK 
HaplotypeCaller with 1D CNN filtering, G2 - GATK HaplotypeCaller with 2D CNN filtering, GH - GATK HaplotypeCaller with recommended hard filters. 
ST - Strelka2, FB - Freebayes, OS - Octopus with standard filtering, OF - Octopus with random forest filtering

Table 2  Effects of standard variant filtering methods on precision and recall

a Median values across all samples are shown, greater absolute value (precision gain/recall loss) for each filtering strategy is highlighted in bold; beffects of filtering on 
DeepVariant calls could not be assessed due to the structure of the output files

Caller and filtering strategy Type Filtering effects on SNPsa Filtering effects on indelsa

Raw calls F1 Precision gain Recall loss Raw calls F1 Precision gain Recall loss

DeepVariant
(default filter)

WGS 0.996 n.a.b n.a.b 0.988 n.a.b n.a.b

WES 0.996 n.ab n.a.b 0.990 n.a.b n.a.b

Clair3 (default filter) WGS 0.991 0.0 0.0 0.983 0.0 0.0

WES 0.991 0.0 0.0 0.975 0.0045 0

Octopus (standard filter) WGS 0.987 0.0129 −0.0120 0.973 0.0328 − 0.0153

WES 0.992 0.0049 − 0.0028 0.967 0.0429 −0.0056

Octopus (random forest filter) WGS 0.987 0.0133 −0.0003 0.973 0.0379 0.0

WES 0.992 0.0104 −0.0471 0.967 0.0518 −0.0360

Strelka2
(default filter)

WGS 0.936 0.1152 − 0.0034 0.980 0.0125 −0.0026

WES 0.980 0.0274 −0.0026 0.969 0.0120 −0.0056

GATK (1D CNN, tranches 99.9/99.5) WGS 0.987 0.0102 −0.0014 0.971 0.0189 0.0

WES 0.988 0.0039 −0.0063 0.962 0.0196 −0.0532
GATK (2D CNN, tranches 99.9/99.5) WGS 0.987 0.0099 −0.0006 0.971 0.0310 0.0

WES 0.988 0.0108 −0.3548 0.962 0.0219 0.0909
GATK (recommended hard filtering) WGS 0.987 0.0056 −0.0133 0.971 0.0067 −0.0052

WES 0.988 0.0078 −0.0125 0.962 0.0217 −0.0027

Freebayes (standard quality-based filter) WGS 0.975 0.0469 −0.0301 0.950 0.0661 −0.0971

WES 0.983 0.0206 −0.0087 0.948 0.0695 0.0328
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do so, we conducted a stratified benchmarking of variant 
discovery pipelines using hap.py with both pre-defined 
stratifications provided by GIAB and custom region sets 
obtained from the coverage model [18].

We first compared the performance of different variant 
calling pipelines on WES and WGS data. Analysis of F1 
scores for SNPs and indels revealed that, while accuracy 
of SNP discovery was comparable for WES and WGS, 
indel variants are harder to call using exome data (Fig. 4a, 
Supplementary Fig. S6). This result was reproducible 
across different read alignment and variant calling tools, 
with the exception of FreeBayes which showed compa-
rably low efficiency of indel calling with both WES and 
WGS data as input, and DeepVariant which, to our sur-
prise, had better median performance on WES compared 
to WGS data. Interestingly, GATK-HC with the 2D CNN 
variant scoring performed much worse on WES than 
on WGS data; in particular, due to very low accuracy of 
SNP filtration (we were unable to fix such behavior with 
parameter tuning). At the same time, scoring variants 

with the 2D CNN provided substantially higher accuracy 
for WGS data. A similar pattern can be seen, though to 
a much lower extent, for Octopus’ random forest filter-
ing which also performs well on WGS but underperforms 
on WES data (Table  2, Table  3), particularly for SNPs. 
Hence, it can be concluded that the 2D scoring model in 
GATK and the random forest filter in Octopus should be 
applied only to whole-genome datasets with a more even 
coverage profile. Importantly, the aggregate differences 
between WES and WGS in SNP calling F1 scores for best 
variant calling pipelines were smaller compared to the 
differences in variant caller performance (median perfor-
mance difference = 0.0003 for SNP and 0.006 for indels), 
suggesting that WES allows for a reasonably accurate 
variant discovery within CDS regions with the best per-
forming variant calling solutions (Figs. 3, and 4).

Given our previous work on WES/WGS comparison 
[18], we hypothesized that lower WES performance in 
indel discovery was driven by regions in the vicinity of the 
CDS borders. To test this, we compared the median F1 
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score of variant discovery with different variant callers in 
regions located 25, 50, 75, 100, 125, or 150 bp away from 
the exon-intron boundary. This comparison revealed that 
the performance of best variant calling pipelines (Novoa-
lign + DeepVariant/Strelka2/GATK-HC-1D) on SNPs 
declined modestly with increasing the distance from CDS 
for all pipelines (Fig. 4b, Supplementary Fig. S6), and the 
F1 metric value was comparable for CDS boundary and 
regions located up to 50 bp upstream and downstream 
of each CDS region. At the same time, reliability of indel 
variant discovery decreased more rapidly, and the over-
all accuracy of indel calling dropped significantly even at 
the distance of 25 bp from the CDS, and was lower than 
exome-wide F1 even at the exon boundary itself (Fig. 4b, 
Supplementary Fig. S7).

Remarkably, variant calling pipelines that performed 
worse in the general comparison (Fig.  2) also showed a 
greater rate of the accuracy decay while increasing the 
distance from the CDS boundary (Supplementary Fig. 
S7). We were surprised to discover that the trend was 
reversed for the GATK-HC with 2D CNN filtering and 
the random forest model in Octopus, which both showed 
higher accuracy in regions more distant from the CDS 
boundary. Given these observations, we can assume 
that high coverage might be one of the factors that nega-
tively impacts the performance of these models. Taken 
together, our data suggest that variant calling in the 
regions flanking coding sequences (especially regions 

located no further than 50 bp away) is generally reliable 
for SNPs, but not indel variants when using WES data. 
Moreover, our observations suggest that the differences 
in indel calling accuracy between WES and WGS may be 
explained by low performance of variant callers near the 
exon boundaries. This offers an exciting opportunity to 
amend the probe design, greatly improving this specific 
aspect of WES performance and bringing it even closer 
to that of WGS.

We next turned to the analysis of other factors known 
to influence the reliability of variant calling. There are 
plenty of sources of coverage bias in both WES and WGS 
experiments, as detailed previously [18]. However, it is 
unclear which sources of reproducible coverage bias in 
WES and WGS impact the performance of variant calling 
software. To assess this, we compared the performance of 
variant discovery in regions with systematic differences 
in normalized coverage, GC content, and the fraction of 
non-uniquely mapped reads (multimapper fraction, MF) 
[18].

We started off by evaluating the dependence of the F1 
score for each variant calling solution on the expected 
level of normalized sequence coverage as predicted by 
our recently proposed coverage model [18]. As expected, 
accuracy of all variant callers was decreased in regions 
with low normalized coverage in both WES and WGS. 
Surprisingly, we found that some variant calling pipe-
lines also underperform in regions with high normalized 

Table 3  Aggregated median statistics of variant caller performance on WES and WGS data

All values are given with respect to the Novoalign v.4.02.01 read alignment. Bold font corresponds to the best values for WGS and WES data. a1D - 1D CNN model in 
GATK, 2D - 2D CNN model in GATK, HF - hard filtering with recommended parameters

Caller (filtering)a Type SNP F1 SNPPrecision SNP    Recall indel
F1

indel
Precision

indel
Recall

DeepVariant WGS 0.995794 0.995365 0.996218 0.988316 0.986772 0.992126

Octopus (standard) WGS 0.987666 0.991172 0.984631 0.979687 0.985000 0.981771

Octopus (forest) WGS 0.993052 0.990870 0.995244 0.987600 0.977995 0.994595
Strelka2 WGS 0.992320 0.991075 0.9929913 0.983985 0.984252 0.984375

Clair3 WGS 0.991248 0.987123 0.995530 0.984759 0.979798 0.989770

GATK (1D) WGS 0.991736 0.988720 0.994891 0.977392 0.966921 0.992327

GATK (HF) WGS 0.983078 0.983781 0.983338 0.969068 0.952618 0.984655

GATK (2D) WGS 0.991804 0.988431 0.995803 0.981741 0.972010 0.991892

FreeBayes WGS 0.976158 0.992710 0.960205 0.933873 0.987988 0.884910

DeepVariant WES 0.995837 0.9972385 0.994441 0.990379 0.989218 0.986523
Octopus (standard) WES 0.992911 0.992147 0.993656 0.983605 0.981818 0.980392

Octopus (forest) WES 0.954045 0.997630 0.915830 0.959206 0.988796 0.931507

Strelka2 WES 0.992490 0.992002 0.992391 0.978279 0.975741 0.977961

Clair3 WES 0.991704 0.990249 0.991938 0.975506 0.970350 0.980716

GATK (1D) WES 0.986426 0.984869 0.987764 0.942208 0.956044 0.922865

GATK (HF) WES 0.985205 0.987470 0.983273 0.970658 0.958656 0.983193

GATK (2D) WES 0.747232 0.991695 0.641138 0.914491 0.960000 0.900826

FreeBayes WES 0.987447 0.991496 0.983301 0.952451 0.976667 0.931507
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coverage, especially for WES samples (Fig. 4c, left panel; 
Supplementary Fig. S8). Such reduced performance in 
high-coverage regions is the most pronounced for GATK 
neural network-based filtering methods; the most dra-
matic effect is seen for the 2D CNN method and the 
Octopus’ random forest filter, in line with earlier obser-
vations (Supplementary Fig. S8). Strelka2 is also slightly 
sensitive to high read depth, particularly for WGS 
datasets.

Yet another source of coverage bias in both WES and 
WGS is the GC-content of the sequence. We have pre-
viously shown that, while GC content is not a dominant 
determinant of poor sequencing coverage, extremely 
GC-rich or GC-poor regions tend to be substantially 
under-covered in WES. To assess the effects of the GC-
content on the performance of variant calling software, 
we evaluated the F1 scores for each variant calling pipe-
line in regions with different GC content (split into 10% 
windows). We found that most variant callers’ perfor-
mance drops significantly in extremely GC-rich regions 
(Fig. 4c, middle; Supplementary Fig. S8). Again, the effect 
of GC content on variant caller accuracy was the most 
pronounced for worst-performing variant calling meth-
ods such as FreeBayes; and the GC-content affects indel 
calling more than SNP calling in both WES and WGS. 
Importantly, variant calling in GC-rich regions was less 
efficient in WGS as well, although the relative drop in 
performance of variant callers in GC-rich regions is less 
significant for WGS than for WES (Fig. 4c).

At the same time, extremely GC-rich and GC-poor 
regions span not more than 80 kb (~ 0.2%) of the human 
coding sequence. Previously we demonstrated that map-
pability limitations of short reads play a much more 
important role in poor sequencing coverage in both WES 
and WGS. The performance of variant callers in com-
pletely repetitive coding regions (for example, in dupli-
cated genes) cannot be evaluated as these regions are 
mostly unreachable for short reads. On the other hand, 
there are multiple CDS regions with imperfect repeats 
that are only partially covered by multimapping reads. To 
assess whether variant caller performance in such regions 
is decreased, we compared the F1 scores for all variant 
calling pipelines in regions with different proportions 
of non-uniquely mapped reads. This analysis showed 
that, indeed, accuracy of variant discovery is compro-
mised in such regions (Fig. 4c, right panel). Similarly to 
previous comparisons, best-performing solutions such 
as DeepVariant tend to be less sensitive to read mappa-
bility issues, while conventional haplotype-based meth-
ods such as FreeBayes or GATK are the most sensitive 
to read mapping ambiguity. This observation suggests 
that machine learning-based software could at least par-
tially overcome the mappability limitations and allow for 

variant discovery in regions with a high fraction of non-
uniquely mapped reads.

Finally, we analyzed the total contribution of complex 
regions to the performance of variant calling and filter-
ing methods. To this end, we compared the F1 scores 
obtained using GIAB v. 4.2 and v. 3.3 data (the high-con-
fidence regions of the newer version include as much as 
2 Mbp of hard-to-call regions). The comparison showed 
that the performance of all methods tested dropped 
when a broader set of regions was used (Supplementary 
Fig. S9). However, concordantly with all of the previous 
observations, the drop in performance was smaller for 
best-performing methods (such as DeepVariant) (median 
performance differences between GIAB versions < 0.005 
for both SNPs and indels).

Taken together, our results demonstrate that, while 
coverage, GC-content, and mapping quality all affect 
accuracy of variant discovery in coding sequences, the 
best-performing variant calling pipelines are less sensi-
tive to such confounding factors and perform better in all 
coding regions. At the same time, differences in the qual-
ity of variant discovery between WES and WGS are sub-
tle and are mostly attributable to the low power of indel 
calling near the exon boundaries.

Validation of variant caller performance using alternative 
datasets
Having dissected the major factors that affect variant 
caller performance on gold standard data, we next sought 
to assess whether the accuracy of variant calling will be 
similar on non-GIAB datasets. This analysis is especially 
important in the context of machine learning algorithms 
that might be prone to overfitting. This problem becomes 
increasingly relevant as NGS methods are increasingly 
applied to the analysis of poorly studied populations and 
ethnicities [19, 20]. To test for potential overturning of 
variant callers on GIAB data, we acquired an additional 
set of 3 WES and 3 WGS samples. The three exome sam-
ples came from our recent platform comparison  study 
[18], while the three WGS samples were obtained from 
the NCBI SRA database and correspond to three indi-
viduals from the Yoruba population in Nigeria from 
1000 Genomes project (NA18870, NA18871, NA18874) 
(Table  4, Supplementary Fig. S10). We decided to limit 
our analysis to BWA alignments and exclude GATK’s 2D 
CNN method as the one that is highly sensitive to cover-
age, as shown above (Fig. 4).

Evaluation of variant caller accuracy in the absence 
of gold standard variant calls is not straightforward and 
requires a certain metric that can be used as an indirect 
measure of false positive and false negative calls. We 
hypothesized that the concordance between different 
variant callers might be used as such an indirect measure. 
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To test this assumption, we first selected all discordant 
variant calls from the main GIAB dataset, i.e. (a) false 
negative (FN) variants defined as true high-confidence 
variants missed by at least one of the variant callers; and 
(b) false positive variants defined as any false variant 
reported by at least one variant caller. We next applied 
principal component analysis to analyze the concordance 
between variant callers on this subset of FN and FP vari-
ants. PCA results showed that the concordance between 
variant callers is directly related to the performance, with 
the best-performing methods having high concordance 
and forming a dense cluster on a PCA biplot (Fig. 5a). In 
contrast, variant calling methods that were less efficient 
according to our evaluation (i.e., FreeBayes and GATJ-
HC with hard filtering) or had issues with over-filtering 
of variants on WES samples, like Octopus’ random for-
est model, deviated significantly from the main group of 
points on the PCA, indicating lower concordance of vari-
ant calls.

We next asked whether the majority of discordant vari-
ant calls are represented by variants that were uniquely 
called or not called by only one variant calling pipeline. 
To answer this question, we plotted the distributions of 
the number of callers reporting each FN and FP variant 
in GIAB data. This analysis demonstrated that, indeed, 
most FN variants were missed by only one of the callers, 
while the majority of FP variants were reported by only 
one method (Fig.  5b). Taken together, the results of the 
concordance analysis on GIAB data showed that (i) the 
concordance between variant calling and filtering meth-
ods is indicative of their performance; and (ii) number of 
unique calls and unique non-calls can be used as an indi-
rect measure of the accuracy of variant calling.

Given the aforementioned findings, we next ana-
lyzed the concordance of variant callers using a set of 6 
non-GIAB samples described above. Principal compo-
nent analysis of the discordant genotypes showed that 
the overall concordance of variant calling methods on 
non-GIAB samples is similar to GIAB, with FreeBayes, 
GATK-HC with hard filtering, and Octopus with random 

forest filtering showing substantial discordance of variant 
calls compared to the best-performing methods such as 
DeepVariant, Strelka2, and Octopus with standard filter-
ing (Fig.  5c). At the same time, it’s worth noticing that 
the sum of variance explained by PC1 + PC2 is notably 
lower in case of non-GIAB samples (50.8% vs. 82.3%). In 
concordance with these findings, analysis of the number 
of unique calls and unique non-calls for each method 
revealed no substantial differences between GIAB and 
non-GIAB data for all variant callers except FreeBayes 
(Fig. 5d). In line with the rest of our results, this analysis 
showed that the total burden of unique calls (i.e., candi-
date FPs) and unique non-calls (i.e., candidate FNs) was 
the smallest for best-performing methods (DV, OS, and 
ST) and did not differ on GIAB and non-GIAB data.

Taken together, our analysis suggests that the perfor-
mance of variant calling and filtering algorithms is simi-
lar on GIAB and non-GIAB data. This result implies that 
the results of the benchmarking presented above can be 
considered reliable and can be used as an unbiased meas-
ure of variant calling accuracy in coding regions of the 
human genome.

Discussion
NGS methods have dramatically transformed the world 
of human genetics, both from the research and clini-
cal perspective. WES and WGS are becoming the new 
standard in the diagnosis of Mendelian disease. However, 
despite the rapid spread and wide application of NGS-
based methods in clinical practice, the average diagnostic 
rate is still below 50% for both trio-based WGS and trio-
based WES [21]. Such low diagnostic rates are explained 
by a multitude of factors including inherent limitations 
of short-read sequencing technologies, imperfect human 
reference genome sequence, software limitations and, 
perhaps most importantly, incomplete understanding of 
the disease etiology and pathology [22]. In earlier publi-
cations, our and other groups have previously addressed 
some of the limitations associated with variability of 
WES/WGS coverage, short read mappability, and other 

Table 4  Descriptive statistics of the additional non-GIAB samples used for overfitting analysis

Sample Type Source(SRA ID) Ethnicity Mean coverage Fraction of 10x 
bases

Median 
variant 
count**

NA18870 WGS ERX3266761 African 123.8 0.999 25,528

NA18871 WGS ERX3266762 African 104.5 0.999 25,277

NA18874 WGS ERX3270176 African 70.1 0.998 25,269

RUSZ02 WES [18] Russian 154.3 0.986 20,184

RUSZ05 WES [18] Russian 178.0 0.986 19,972

RUSZ07 WES [18] Russian 174.2 0.984 20,092
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related issues [4, 18, 23, 24]. In this study, we addressed 
the other major factor that plays an important role in var-
iant discovery, namely, the performance of software pipe-
lines for variant calling.

In contrast to other previously published studies, we 
undertook a more systematic approach by evaluating the 
performance of numerous different combinations of read 
aligners and variant callers using a large set of 14 WGS 
and WES samples. Such an approach allowed us to make 
estimates of the relative importance of different factors 
for accurate and reliable variant discovery. We show that 
variant calling software is the most important factor that 
greatly affects both SNP and indel calling. At the same 
time, the sequencing method (WGS or WES) has sig-
nificant influence on the accuracy of indel detection, but 
virtually does not affect SNP calling (Table 3). Moreover, 
to our great surprise, we discovered that best-performing 

variant callers could show higher overall accuracy on 
WES than on WGS data. Finally, read alignment software 
has generally the lowest influence on the accuracy of var-
iant discovery in coding sequences, although we would 
argue that the usage of Bowtie2 in human variant call-
ing should be discouraged (Fig.  2b-c). According to our 
evaluations using public search engines, BWA is the most 
popular short-read aligner used in human variant call-
ing; however, all of the profiled tools appear to be used to 
some extent. Taken together, these results highlight the 
fact that the correct choice of software tools for variant 
discovery is paramount for high-quality variant calling.

We showed that variant callers mostly differ in their 
sensitivity (Supplementary Figs. S3-S4) and the ability to 
accurately call variants in regions with poor sequencing 
coverage, extremely high or low GC-content, and/or non-
zero fraction of multimappers (Fig. 4; Supplementary Fig. 

Fig. 5  Variant calling and filtering methods perform similarly on GIAB and non-GIAB datasets. (a, c) A scatterplot showing the results of the 
principal component analysis in space of discordant variant calls on GIAB (a) and non-GIAB (c) data. b Distributions of the number of variant calling 
methods that detected each false negative (top) or false positive (bottom) variant. Note that the majority of FN and FP variants are represented 
by unique non-calls and unique calls, respectively. d Boxplots showing the number of unique calls (top) and unique non-calls (bottom) on GIAB 
and non-GIAB datasets for the indicated variant calling and filtering methods Variant callers and filtering strategies: CL - Clair3, DV - DeepVariant, 
G1 - GATK HaplotypeCaller with 1D CNN filtering, G2 - GATK HaplotypeCaller with 2D CNN filtering, GH - GATK HaplotypeCaller with recommended 
hard filters. ST - Strelka2, FB - Freebayes, OS - Octopus with standard filtering, OF - Octopus with random forest filtering
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S8). We demonstrate that modern tools such as Deep-
Variant [10], Strelka2 [13], Clair3 [25], and Octopus [26], 
have the highest robustness and provide high accuracy of 
variant discovery for all tested datasets. These data sup-
port and expand previous observations that were made 
using individual gold standard samples [15, 16]. The 
best-performing solutions also tend to be less sensitive to 
these confounding factors such as depth of coverage and 
GC-content. Thus, our data suggest that recent develop-
ments in the field of variant calling software compensate 
for many of the limitations of short-read sequencing.

The DeepVariant method, the one that consistently 
shows the best accuracy of variant calling for both SNPs 
and indels, is based on a convolutional neural network 
model. Neural networks and other complex machine 
learning approaches are clearly the most promising for 
future development of bioinformatic software, including 
variant callers [27]. At the same time, in some cases (e.g., 
GATK CNNScoreVariants tool, or Octopus’ random for-
est variant filtering model) machine learning methods 
are more sensitive to artifacts and data quality, especially 
sequencing depth (Figs.  2, 3 and 4). This problem likely 
arises from overfitting, i.e. excessive tuning of the model 
to show best performance on the specific sets of training 
data. Such overtuning has also been demonstrated in the 
recent precisionFDA Truth 2 Challenge [28]. Unfortu-
nately, machine learning models for variant calling and 
filtering have been trained using the same GIAB gold 
standard sequencing datasets that are usually used for 
benchmarking (including this study). This complicates 
the unbiased evaluation of the performance of these 
tools. To address this limitation and evaluate the perfor-
mance of variant callers on other data, we employed a 
set of 6 non-GIAB samples (3 WES and 3 WGS datasets) 
from individuals of underrepresented ancestries (African 
and Russian). We showed that variant caller concordance 
can be used as a proxy to estimate the accuracy of vari-
ant calling (Fig. 5). Application of the concordance-based 
framework to the non-GIAB data showed that the variant 
callers are not substantially overtuned for GIAB data and 
show similar behavior in GIAB and non-GIAB datasets. 
Our results suggest that the machine learning methods 
currently used in variant calling are not sensitive to the 
individual’s ancestry or other properties of GIAB data; 
however, variation in sequencing depth and/or read dis-
tribution (for example, in WES data) may still greatly 
affect the results of variant calling with such methods 
(outside of DeepVariant).

Despite the lack of direct evidence of overfitting on 
GIAB samples we would still advocate the inclusion 
of a more diverse set of samples into the GIAB dataset, 
especially of African, Hispanic, or mixed ancestry. This 
would improve the models and increase robustness of 

the best-performing variant callers on different ethnical 
backgrounds, and increase the opportunity for cross-
benchmarking. Recently, a new set of high-quality refer-
ence datasets have been generated for benchmarking of 
variant callers [29], and evaluation of several variant call-
ers’ performance on these data corroborates the results 
present in our study. However, the new dataset is also 
based on the same individual GIAB genomes.

Given the results of our comparison, a simple set of 
recommendations could be made. All of the best-per-
forming variant callers (DeepVariant, Strelka2, Clair3, 
or Octopus) could be used depending on the given tasks 
and resources. For example, DeepVariant and Clair3 were 
the slowest methods we tested, while Strelka2 was the 
fastest by a factor of 3 to 4. At the same time, we show 
that variant filtering is not always done in an optimal way, 
and that filtered variants should be retained and care-
fully examined for medical genetic applications. In par-
ticular, variant filtering with machine learning models 
(such as random forest available for Octopus or GATK’s 
CNN methods) is strongly not recommended on WES 
data unless the user has an in-house pretrained model 
designed specifically for such data type. It should also be 
noted that even the best variant callers could not make 
the correct call when the alignment is wrong. Thus, we 
would discourage the use of Bowtie2 which showed 
markedly lower performance in our benchmark in both 
end-to-end and local alignment modes. Finally, aside 
from notable outliers of HG006 and HG007, we con-
firm our previous conclusions that best WES solutions 
achieve performance that is very close to that of WGS, 
and should be considered a reliable and low-cost option 
for many applications. Some of the calling and filtering 
methods, however, are incompatible with WES data and 
should only be applied to WGS.

While we believe that our results provide important 
insights into the performance of state-of-the-art vari-
ant calling methods and highlight prospects for future 
development, several important issues have not been 
explicitly addressed in our work and may require fur-
ther exploration. First, the version of the human ref-
erence genome assembly substantially influences the 
accuracy of variant discovery, beyond the problem of 
reference minor alleles reported previously [4]. Apart 
from major differences between commonly used 
GRCh37 (used in this study) and GRCh38 reference 
assemblies, inclusion of unplaced contigs, patches, and 
decoy sequences could influence both quantity and 
quality of variant calls. Additionally, a complete tel-
omere-to-telomere (T2T) assembly of a human cell line 
has been published recently [30], representing the most 
dramatic change of the human reference genome in 
the last decade. Early evaluation of the T2T reference 
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in variant calling has promised notable improvements 
in variant discovery [31], especially regarding the large 
and complex variants. However, the exact influence of 
using the complete reference on the performance of 
variant calling tools remains unknown.

Second, only high-confidence variant calling regions 
are routinely used for benchmarking of variant calling 
pipelines. While usage of such regions is useful to avoid 
the negative effects of coverage bias, it makes it harder 
to accurately compare variant caller sensitivity to low 
coverage, read mapping quality, and sequence complex-
ity. Construction of a broader set of ground truth variant 
calls in non-high confidence regions would be useful for 
better benchmarking of variant calling methods, and for 
the development of robust new solutions for variant dis-
covery in complex regions. The newer GIAB v. 4.2 truth 
set that was used in our study adds ~ 2 Mbp of difficult 
coding regions [28, 32], enabling a more nuanced com-
parison of pipeline performance. Side-by-side compari-
son of benchmarking results on GIAB v. 3.3 and GIAB v. 
4.2 high-confidence regions shows that variant calling is 
less reliable in complex sequence regions (Supplementary 
Fig. S9). While the development of the GIAB v. 4.2 truth 
set represents a major step towards a comprehensive set 
of gold-standard variants for all coding regions of the 
genome, as much as 4.7 Mbp of human CDS sequence are 
either completely or partially not covered by the GIAB v. 
4.2 high-confidence regions (Fig. 1c). This means further 
refinement of GIAB truth sets is indeed still required.

Third, we did not address the differences that could be 
introduced by the specific short-read sequencing tech-
nology, device, or library preparation method. Much 
of this variability would translate into systematic differ-
ences in coverage, which has been addressed before. On 
the other hand, differences in basecalling and error pro-
files could generate instrument-specific biases. However, 
a recent publication comparing NovaSeq 6000, HiSeq 
4000, MGISEQ-2000, and BGISEQ-500 [14] has found 
the differences to be modest, at least among the Illumina 
machines.

Finally, software tools for bioinformatic analysis of 
NGS data are constantly improving. Besides accuracy, 
running time (which was not specifically evaluated in our 
analysis) may also present a serious problem when work-
ing with large genomic datasets. Multiple attempts have 
been made recently to achieve high scalability of the read 
alignment and variant calling software. These include, 
but are not limited to, development of a native Google 
Cloud Platform integration in the recent versions of 
GATK, faster reimplementation of the BWA MEM algo-
rithm (BWA-MEM2, [33]), and many others. Constant 
development of novel methods and software tools sug-
gests that large-scale stratified comparisons, like the one 

presented in our work, should be repeatedly conducted 
at least once in several years.

Conclusions
The ongoing development of software for variant calling 
predicates the need for regular benchmarking of such 
tools. Our systematic comparison showed that vari-
ant caller typically influences the result more than read 
aligner, and that state-of-the-art variant callers, such as 
DeepVariant, Clair3, Octopus, and Strelka2 all allow for 
accurate variant discovery despite certain limitations. An 
indirect evaluation of pipeline performance using a set of 
GIAB and non-GIAB samples allowed us to conclude that 
variant callers do not show noticeable signs of overfitting 
for GIAB and perform comparably on non-GIAB sam-
ples, with DeepVariant showing the best performance on 
both datasets. Given such a robust performance of Deep-
Variant, we can argue that further development of gold 
standard datasets could further improve model training 
and push the accuracy of variant discovery closer to the 
limits of second-generation sequencing technologies.

Methods
Data acquisition
For our analysis, samples from seven GIAB individuals 
were selected: the NA12878 (HG001), three members 
of the Ashkenazi trio (HG002, HG003, and HG004), 
and three representatives of the Chinese trio (HG005, 
HG006, and HG007). Gold standard data for these sam-
ples were downloaded from the GIAB FTP repository (all 
WGS samples) or the NCBI Sequencing Read Archive 
SRA (all WES samples, respective SRA IDs: ERR1905890, 
SRR2962669, SRR2962692, SRR2962694, SRR2962693, 
SRR14724507, and SRR14724506). All sequencing data-
sets were generated using the Illumina Hiseq platform 
(HiSeq 2500 for all WGS datasets and HG002-HG005 
WES samples; HiSeq 4000 for HG001 WES). Truth vari-
ant sets and high-confidence variant calling regions in 
BED format (release v. 3.3.2 or v. 4.2.1) were downloaded 
from the GIAB FTP data repository (https://​ftp-​trace.​
ncbi.​nlm.​nih.​gov/​giab/​ftp/​relea​se/). Importantly, prior to 
being used in our analysis, the high-confidence regions 
for individual samples from GIAB were intersected using 
BEDtools, and only the regions found in all samples were 
retained. This totalled 30.4 Mbp of CDS sequences for 
v. 4.2.1 and 28.4 Mbp - for 3.3.2. Reference stratification 
BED files were retrieved from the GitHub repository 
provided by GIAB (https://​github.​com/​genome-​in-a-​
bottle/​genome-​strat​ifica​tions/​blob/​master/​GRCh37/​
v2.0-​GRCh37-​strat​ifica​tions.​tsv). Coding region intervals 
were extracted from the primary GENCODE v19 GTF 
annotation file. For the analysis of pathogenic variant 
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distribution, pathogenic and likely pathogenic variants 
with non-conflicting interpretations were selected from 
ClinVar v.20211130.

For an additional comparison using non-GIAB datasets, 
a set of three WGS and three WES samples was selected. 
We have leveraged three exomes from the cohort used 
in our earlier analysis [18], and three genomes from the 
1000 Genomes project’s YRI population (African ances-
try) (SRA IDs ERX3266761, ERX3266762, ERX3270176).

Variant calling pipelines
Variant discovery and filtering was performed using 45 
different strategies, with 4 different read aligners (local 
and global modes were tested for Bowite2) and 9 mod-
ern variant callers. For read alignment, we used BWA 
MEM v.0.7.17 [34]; Bowtie2 v.2.3.5.1 [6], Novoalign v. 
4.02.01 (http://​novoc​raft.​com/​novoa​lign/) and Isaac v. 
04.18.11.09 (https://​github.​com/​Illum​ina/​Isaac4). Novo-
align was used under trial license obtained by R.A. and 
Y.A.B. Reads were aligned against the GRCh37.p13 pri-
mary human reference genome sequence. Aligned reads 
were pre-processed using GATK [9] v. 4.2.3 to mark 
duplicate read pairs. Coverage statistics were collected 
using GATK. GENCODE v19 exon coordinates were 
used to evaluate the depth and breadth of coverage. Cov-
erage of the high-confidence CDS regions in all samples 
was analyzed using the results of read alignment with 
BWA MEM.

Variant calling was performed using six different 
tools and nine tool/filter combinations: FreeBayes v. 
1.3.1 [35], GATK HaplotypeCaller (HC) v. 4.2.3 [8, 9], 
Strelka2 v. 2.9.10 [13], DeepVariant v. 1.2.0 [10], Clair3 
v. 0.1-r8 [25], and Octopus v. 0.7.4 [26]. The DeepVari-
ant caller was used with the default model for WGS or 
WES data, respectively. For Clair3, the default model for 
Illumina reads was used in all cases. For the GATK Hap-
lotypeCaller, deduplicated reads in BAM format were 
also preprocessed using base quality score recalibration 
according to GATK Best Practices (https://​gatk.​broad​
insti​tute.​org/​hc/​en-​us/​artic​les/​36003​55359​32-​Germl​ine-​
short-​varia​nt-​disco​very-​SNPs-​Indels-). Variants were 
called in a single-sample mode, and the resulting VCF 
was subject to variant filtration using CNNScoreVari-
ants with different model types (reference-based (1D) 
or reads-based (2D)) and hard filtering with the recom-
mended parameters. For both CNN models, different 
tranche values were tested, and SNP tranche value of 99.9 
and indel tranche value of 99.5 were used as showing the 
best performance. For CNN scoring, GATK v.4.2.0 was 
also used to assess the reproducibility of variant scoring 
results. For Strelka2, BAM files with marked duplicates 
were processed with Manta ([36]; https://​github.​com/​
Illum​ina/​manta) to obtain a list of candidate indel sites. 

After Manta processing, Strelka2 v. 2.9.10 was configured 
using the default exome or genome mode and candi-
date calling regions obtained from Manta. Default filter-
ing parameters were used. For FreeBayes we applied the 
default settings and filtered the resulting variant set by 
quality (QUAL < 30) and other recommended parameters 
using GATK. For Octopus, variants were first called in a 
default mode with standard filters applied. Next, a pre-
trained random forest model for germline variants was 
used to re-filter variants identified in the first step.

Benchmarking of variant discovery tools
Benchmarking was performed using the hap.py tool, a 
reference implementation of the GA4GH recommen-
dations for variant caller benchmarking [17]. RTGtools 
vcfeval was used as an engine for comparison [37]. For 
all samples and variant discovery pipelines, performance 
was evaluated using a set of GENCODE v19 exon regions 
with an additional 150 bp padding upstream and down-
stream of each exon. For WES samples, an additional 
BED file was provided to limit the analysis to targeted 
exon regions that are included in the design as indicated 
by the kit vendor. A common set of high-confidence vari-
ant calling intervals was used to make all comparisons as 
described above.

Reference stratification BED files were used for bench-
marking alongside the custom BED. Several custom sets 
of regions were added to this set: (i) regions upstream 
and downstream of each CDS sequence (0–25 bp, 
25–50 bp, 50–75 bp, 75–100 bp, 100–125 bp, and 125–
150 bp), regions with varying fraction of reads with 
MQ = 0 (multimapper fraction, [18]), and regions with 
different expected normalized coverage obtained using a 
coverage model [18]

Comparison of performance on GIAB and non‑GIAB data
For comparison of the variant caller performance on 
GIAB and non-GIAB data, only BWA alignment results 
were used. For each sample, filtered variants obtained 
by each pipeline were transformed into a matrix form 
such that each row of the matrix represents a variant, 
and each column represents the variant calling method. 
In each cell of the matrix, the value indicated whether 
a given variant was reported (25) or not reported (0) by 
the specific variant caller. For GIAB samples, truth sets 
were additionally utilized to mark variants as true posi-
tive or false positive. All true variants that were missed 
by all variant callers for a given sample were added to 
the matrix and marked as false negatives. The resulting 
matrix contained 436,734 variant sites from each of the 
20 samples used (14 GIAB and 6 non-GIAB ones).

For the analysis of the general variant caller concord-
ance, principal component analysis was performed on a 
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subset of the main matrix that did not contain true posi-
tive or false positive variants reported by all callers. PCA 
was performed separately on GIAB and non-GIAB data. 
For an indirect evaluation of the accuracy of variant call-
ing, we calculated the number of unique calls and unique 
non-calls for each method. Unique calls were defined 
as variants that were reported by only one variant caller 
(such variants represent likely false positive calls), while 
unique non-calls were variants that were missed by a sin-
gle variant caller (representing likely false negative calls).

Statistical analysis
Statistical analysis of coverage statistics and benchmark-
ing results was performed using R v. 4.1 with the follow-
ing external packages: cowplot, colorRamps, ggplot2 
[38], ggsci (https://​github.​com/​nanxs​tats/​ggsci), lattice, 
reshape2. Statistical comparison between short read 
alignment software and variant callers was performed 
using the paired Wilcoxon signed rank test.
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