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Abstract

Background: Aeromonas veroniiis a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater
environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human
enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with
inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains
that cause human gastrointestinal diseases.

Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. vero-
nii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from lllumina
and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated
from different sources.

Results: We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely
related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative
virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains
isolated from patients with gastrointestinal diseases. Type Ill Secretory System (T3SS) in A. veronii was in AVI-1 genomic
island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T35S was sig-
nificantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains
isolated from fish and domestic animals.

Conclusions: This study provides novel information on source of infection and virulence of A. veronii in human gas-
trointestinal diseases.
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Introduction

Aeromonas veronii is a Gram-negative rod-shaped motile

bacterium that inhabits mainly freshwater environments
*Correspondence: L Zhang@unsweduau such as ground water, lakes and river [1]. It has also been
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as skin ulceration and systemic hemorrhagic septicemia
in fish, which is a great concern in aquaculture globally
[7-9].

A. veronii and several other Aeromonas species also
cause human diseases. The most common diseases
caused by Aeromonas species in humans are gastroen-
teritis, soft-tissue infections and bacteremia [1]. Aero-
monas species associated human gastroenteritis are
mainly caused by three Aeromonas species including A.
veronii, Aeromonas caviae and Aeromonas hydrophila,
with A. veronii being the most commonly isolated spe-
cies [10]. Aeromonas species caused human gastrointes-
tinal infections are positively associated with increasing
age [10]. Aeromonas species caused gastroenteritis may
present with acute or chronic courses [11-15] While
most patients can recover without medical treatment,
those with severe symptoms and chronic infections often
require hospital admission and antibiotic therapy [14]. In
addition to gastroenteritis, Aeromonas species were often
detected in patients with inflammatory bowel disease
[16].

Several studies have examined the genomes of A.
veronii strains isolated from dairy cattle, fish, and envi-
ronmental samples [17, 18]. However, limited genomic
data from A. veronii strains isolated from patients with
gastrointestinal diseases are available. In order to bet-
ter understand the pathogenicity of A. veronii in human
diseases, there is a need to examine the genomes of A.
veronii strains isolated from patients with gastrointestinal
diseases.

In this study, we sequenced, assembled and analysed
25 genomes of A. veronii strains isolated from fecal sam-
ples of patients with gastrointestinal diseases, including
one complete and 24 draft genomes. These 25 A. vero-
nii strains were identified in our previous study based
on the sequences of seven housekeeping genes includ-
ing gyrB, rpoD, gyrA, recA, dnaj, dnaX and atpD [10].
Comparative genome analysis of 168 A. veronii strains
isolated from different sources in 18 countries were also
conducted.

Results

The complete and draft genomes of 25 A. veronii strains
isolated from fecal samples of patients with gastroenteritis
We successfully obtained the complete genome of A.
veronii strain A29V through hybrid assembly of the data
obtained from Illumina MiSeq sequencing and Oxford
Nanopore sequencing. The complete genome of A. vero-
nii strain A29V had a size of 4.54 Mb, with a GC con-
tent of 58.8%. Two plasmids, designated as pAV1K and
pAV7K, were identified in strain A29V, consisting of 1740
and 7073 bp respectively, with each encoding one and five
proteins respectively. The pAV1K was found in another
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four A. veronii strains (pamvotica, NK02, CNRT12, and
NKO07), as well as other Aeromonas species including
Aeromonas popoffii (strain CIP 105,493), Aeromonas
sobria (strains 2014-10,509-27-20 and PAQ091014-19),
and Aeromonas allosaccharophila (strain Z9-6), while
pAV7K was only found in one additional A. veronii strain
UDRTO09. No potential virulence factors were identified
in these two plasmids.

The detailed information of the 25 A. veronii genomes
sequenced in this study are shown in Table 1.

Phylogenetic analysis of global A. veronii genomes

A total of 168 A. veronii genomes were used for analysis
in this study, including 25 A. veronii genomes sequenced
in this study and 143 A. veronii genomes obtained from
public databases (Table 2). The A. veronii genomes in the
public databases were obtained from National Center
for Biotechnology Information (NCBI) genome data-
base and their genome details and isolation sources were
recorded. The core genome of the 168 A. veronii strains
contained 1315 genes. Based on the maximum likelihood
phylogenetic tree constructed from the core genome of
the 168 A. veronii strains, three distinctive phylogenetic
clusters were observed (Fig. 1). Cluster 1 contained 149
A. veronii strains (bootstrap value 99), which were from
18 countries. Cluster 2 (bootstrap value 100) had 11 A.
veronii strains, which were from five countries including
Australia (four strains), China (four strains), Israel (one
strain), India (one strain) and USA (one strain). Cluster
3 (bootstrap value 100) contained the remaining eight A.
veronii strains, which were from seven countries includ-
ing Australia (two strains), Turkey (one strain), South
Africa (one strain), India (one strain), Germany (one
strain), Spain (one strain) and China (one strain). All
three clusters contained strains from different sources,
including humans, animals and environmental samples
(Fig. 1).

Within Cluster 1, A. veronii strains isolated from envi-
ronmental samples or domestic animals from the same
geographic locations often formed small groups (Fig. 1).
For example, 13 of the 17 A. veronii strains isolated from
dairy cattle were in the same group (bootstrap value 100).
The five strains isolated from pig rectal swabs from South
Africa (A31, A5, A86, A34 and A136) were in the same
group (bootstrap value 100). Similarly, the nine strains
(PDB, NS2, NS6.15.2, NS22, NS13, NS, VCK1, AG5.28.6
and BIOO50A) isolated from Dicentrarchus labrax fish
from Greece also formed their own group (bootstrap
value 100) (Fig. 1).

The average nucleotide identity (ANI) values of each A.
veronii strain against the other 167 A. veronii strains were
mostly over 95%. An exception was strain WP2-S18-
CRE-03, which was isolated from a wastewater treatment
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Table 2 The 143 Aeromonas veronii strains in the public databases that were used in this study

Strain names Country Source Level Size (Mb) GC N50 (bp) No.of contigs Plasmid Ref
%

BC88 Australia Human feces, dysentery Draft 460 585 215,763 155

FCO51 India Human feces, diarrhea Complete 4.86 587 N/A 2 1

126-14 China Human feces, diarrhea Draft 437 586 72,935 146

312M Brazil Human feces, gastroenteritides Draft 4.57 586 502,756 14

VBF557 India Human feces, gastroenteritides Draft 4.70 584 19,666 526

ERR1305902-bin.15 Denmark Human feces, diarrhea Draft 411 594 32,267 226

CN17A0013 China Human feces Draft 445 589 167,760 49

CN17A0029 China Human feces Draft 460 588 2,737,631 19

CN17A0031 China Human feces Draft 442 589 156,076 45

CN17A0036 China Human feces Draft 445 589 230,866 38

CN17A0040 China Human feces Draft 444 589 302838 32

CN17A0049 China Human feces Draft 430 589 302677 31

CN17A0054 China Human feces Draft 433 589 217,304 57

CN17A0059 China Human feces Draft 4.26 589 164457 48

CN17A0067 China Human feces Draft 455 58.7 180,288 60

CN17A0087 China Human feces Draft 458 586 145832 80

CN17A0093 China Human feces Draft 435 586 120695 64

CN17A0097 China Human feces Draft 452 586 141,638 88

CN17A0102 China Human feces Draft 447 58.7 126,005 75

CN17A0103 China Human feces Draft 443 588 110,083 102

CN17A0114 China Human feces Draft 443 589 237189 35

CN17A0120 China Human feces Draft 452 586 82,803 128

CN17A0122 China Human feces Draft 448 58.7 196,730 33

CN17A0154 China Human feces Draft 444 590 260206 33

ADV102 France Human feces Draft 452 586 108450 87 [19]

AMC34 USA Human intestinal tract Draft 4.58 584 219,183 1

MGYG-HGUT-02529 China Human gut Draft 4.70 584 119,499 124

ZJ12-3 China Human rectal swab Draft 470 584 119,499 124

AVNIH1 USA Human perirectal swab Complete 4.96 585 N/A 2 1 [20]

(GCA_001634325)

AVNIH2 USA Human perirectal swab Draft 452 589 211,774 50 [20]

1708-29,120 China Human cholangiolithiasis bile Complete 4.50 589 N/A 1

C198 Thailand Human blood, septicaemia Draft 4.58 586 4,550,752 3

FDAARGOS_632 USA Human Complete  4.56 589 N/A 2 1

CECT 4257 USA Human sputum Draft 452 589 148,348 52 [21]

AER39 USA Human blood Draft 442 588 188,051 4 [21]

AER397 USA Human blood Draft 4.50 588 645,709 5 [21]

BVH37 France Human blood Draft 446 588 115,181 55 [19]

BVH46 France Human blood Draft 451 588 215,038 39 [22]

BVH47 France Human blood Draft 464 589 96,732 108 [19]

AK247 France Human forehead abscess Draft 4.55 588 260,691 36 [19]

AMC35 USA Human wound Draft 457 58,5 351,392 2 21]

CCM 4359 USA Human sputum, drowning Draft 451 589 245067 56

TTU2014-108 AME USA Dairy cattle feces Draft 453 587 162,342 62 7]

TTU2014-108ASC USA Dairy cattle feces Draft 453 58.7 187473 58 (7]

TTU2014-113AME USA Dairy cattle feces Draft 466 586 74,547 122 N7

TTU2014-115AME  USA Dairy cattle feces Draft 4.53 587 205013 53 (17]

TTU2014-115ASC USA Dairy cattle feces Draft 453 58.7 233,487 52 [17]

TTU2014-125ASC USA Dairy cattle feces Draft 468 586 168,256 58 7
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Table 2 (continued)

Strain names Country Source Level Size (Mb) GC N50(bp) No.of contigs Plasmid Ref
%

TTU2014-130AME USA Dairy cattle feces Draft 468 586 189,668 64 n7

TTU2014-130ASC USA Dairy cattle feces Draft 468 586 247,513 49 7]

TTU2014-131ASC USA Dairy cattle feces Draft 4.68 586 187444 70 (171

TTU2014-134AME USA Dairy cattle feces Draft 468 586 204,478 50 7

TTU2014-134ASC USA Dairy cattle feces Draft 4.68 586 193,661 59 [17]

TTU2014-140ASC USA Dairy cattle feces Draft 468 586 148012 81 [17]

TTU2014-141AME USA Dairy cattle feces Draft 468 586 223,907 48 n7

TTU2014-141ASC USA Dairy cattle feces Draft 4.68 586 241272 45 [17]

TTU2014-142ASC USA Dairy cattle feces Draft 468 586 247560 45 7

TTU2014-143AME ~ USA Dairy cattle feces Draft 4.68 586 204478 59 [17]

TTU2014-143ASC USA Dairy cattle feces Draft 468 586 202296 54 7]

A31 South Africa  Pig rectal swab Draft 464 585 114,767 84

A5 South Africa  Pig rectal swab Draft 4.77 582 230041 33

A86 South Africa  Pig rectal swab Draft 464 585 206,004 42

A34 South Africa  Pig rectal swab Draft 4.64 585 139859 82

A136 South Africa  Pig rectal swab Draft 467 584 213,730 41

Ae52 Sri Lanka Carassius auratus Draft 456 58.7 158,595 80

CL8155 China Carp gut, healthy Draft 4.68 586 284,020 50

JC529 China Carp sepsis Complete 4.83 583 N/A 1

MS 17-88 USA Catfish Draft 518 582 1334815 13

MS-18-37 USA Catfish Complete 4.68 586 N/A 1

ML09-123 USA Catfish Draft 4.75 584 299,782 32

VCK_1 Greece Dicentrarchus labrax kidney, diseased  Draft 4.63 586 68239 120

PDB Greece Dicentrarchus labrax kidney, diseased  Draft 472 585 72,590 141

AG_5286 Greece Dicentrarchus labrax kidney, diseased  Draft 461 586 85872 98

NS Greece Dicentrarchus labrax kidney, diseased  Draft 471 585 67,042 140

NS2 Greece Dicentrarchus labrax kidney, diseased  Draft 472 58,5 69,902 143

NS_6.15.2 Greece Dicentrarchus labrax kidney, diseased  Draft 4.72 585 66,300 149

NS22 Greece Dicentrarchus labrax kidney, diseased  Draft 474 584 61,224 172

NS13 Greece Dicentrarchus labrax kidney, diseased  Draft 4.67 586 72418 139

BIOO50A Turkey Dicentrarchus labrax kidney, diseased  Draft 461 586 73,700 109

171SAe South Korea  Discus spleen Complete  4.66 585 N/A 2

A8-AHP India Labeo rohita, diseased Complete 4.77 584 N/A 4

UBA1835 Spain Anguilla anguilla epidermal mucus Draft 4.11 590 17,609 323

ZfB1 China Fish Complete  4.71 585 N/A 1

Phin2 India Fish intestinal Draft 430 588 3789 1899 [21]

CB51 China Grass carp Complete 4.58 586 N/A 1 [17]

XHVA1 China [ctalurus punctatus Draft 5.36 565 259638 62

XHVA.2 China [ctalurus punctatus Draft 491 58.1 259509 48

X11 China Megalobrama amblycephala Complete  4.28 588 N/A 1

X12 China Megalobrama amblycephala Complete  4.77 583 N/A 1

Aer_WatCTCBM21 Brazil Oreochromis niloticus Draft 460 58.7 317324 45

CNRT12 Thailand Oreochromis sp. Draft 490 581 265,081 479

NKO1 Thailand Oreochromis sp. Draft 4.56 585 171547 95

NKO2 Thailand Oreochromis sp. Draft 480 582 110,255 400

NKO7 Thailand Oreochromis sp. Draft 4.78 586 21499% 46

UDRT09 Thailand Oreochromis sp. Draft 461 58,5 169,295 186

BAQO71013-135 USA Perch head kidney Draft 462 589 167,400 50

B44 Brazil Pseudoplatystoma corruscans kidney — Draft 461 586 290,712 51




Liu et al. BMC Genomics (2022) 23:166 Page 6 of 15

Table 2 (continued)

Strain names Country Source Level Size (Mb) GC N50(bp) No.of contigs Plasmid Ref
%

B48 Brazil Pseudoplatystoma corruscans kidney — Draft 4.73 587 284404 49

WB12 China Carassius auratus intestine, sick Draft 452 588 282,522 40

AVNIH1 South Korea  Silurus asotus Complete 4381 585 N/A 1

(GCA_009834065)

THO0426 China Tachysurus fulvidraco Complete 4.92 583 N/A 1

XU1 Greece Xiphophorus helleri kidney Draft 4.80 580 206,195 92

XhG1.2 India Xiphophorus hellerii Draft 4.57 587 305294 34

HX3 China Alligator Complete 4.76 585 N/A 2 1

CQ-AV1 China Andrias davidianus liver Draft 478 585 204,972 36

161 China Channa argus Draft 451 587 312206 28

LMG 13,067 USA Frog Draft 4.74 584 91,946 72 [21]

S00030 USA Heterelmis comalensis Draft 451 587 237,167 21

HmM21 Turkey Hirudo verbena digestive tract Complete 4.77 587 N/A 2 1 [21]

CMF India Insect gut Draft 456 58.7 40,276 200

CIP 107,763 India Mosquito gut Draft 443 588 188049 64 [21]

AK241 France Snail Draft 4.60 586 215278 42 [19]

B565 China Aquaculture pond sediment Complete  4.55 587 N/A 1 [18]

22 Brazil Combined sewer Draft 5.09 583 66,851 185

28 Brazil Combined sewer Draft 497 585 94322 108

CECT 7059 Spain Drinking water Draft 4.81 584 188889 31

RU31B USA Duckweeds Draft 453 58.7 73,776 93

CECT 4902 Germany Environment Draft 4.64 584 347,677 29 [19]

AK236 France Lake water Draft 441 588 412,126 26

Colony604 Thailand Food Draft 4.57 57.8 7493 1

Colony111 Thailand Food Draft 4.58 578 7510 1

Colony512 Thailand Food Draft 460 58,5 16,905 1

Colony125 Thailand Food Draft 4.58 580 7702 1

pamvotica Greece Lake Pamvotis surface sentiment Draft 492 58.1 739,151 21

A134 Israel Lake Kinneret microcystis bloom Draft 441 58.7 50,812 151

S50-1 USA Organic kale Draft 4.56 585 104479 130

CTe-01 Peru Oxidation pond Draft 468 586 111,555 200

ARB3 Japan Pond water Draft 454 588 205,115 63 [21]

72-7 China Pork Draft 441 587 265145 48

KLG7 UK River Don Draft 455 588 139212 104

KLG5 UK River Don Draft 4.74 585 280,270 103

KLG8 UK River Don Draft 4.59 586 198,583 76

KLG9 UK River Don Draft 461 58.7 180,084 74

CECT 4486 Germany Surface water Draft 441 589 90,706 66 [21]

CCM 7244 Germany Surface water Draft 442 589 185,495 74 7

A29 South Africa  Surface water Draft 448 588 165894 54

AK227 France Wastewater treatment plant Draft 440 58.7 105,208 67

WP2-S18-CRE-03 Japan Wastewater treatment plant Complete  4.94 586 N/A 4 3

WP3-W19-ESBL-03  Japan Wastewater treatment plant Complete 4.98 587 N/A 6 4

WP8-S18-ESBL-11 Japan Wastewater treatment plant Complete  4.91 587 N/A 4 3

WP8-W19-CRE-03 Japan Wastewater treatment plant Complete 4.79 585 N/A 6 4

WP9-W18-ESBL-04  Japan Wastewater treatment plant Complete 4.93 587 N/A 5 4

D South Africa  Water Draft 443 590 54,053 149

There are two different strains of which both named AVNIH1, the corresponding accession numbers are indicated in brackets. N/A not applicable
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plant in Japan. This strain had ANI values 91- 92% against
the other 167 A. veroniis strains.

Strains closely related to A. veronii strains isolated

from fecal samples of patients with gastrointestinal
diseases

Strains that are closed related to the 31 A. veronii strains
isolated from patients with gastrointestinal diseases were
identified based on the highest ANI values. Twenty-two
(71%, 22/31) closely related A. veronii strains were from
fecal samples of other human individuals, 19 of these
22 individuals had recorded gastrointestinal diseases.
Nine closely related A. veromnii strains (29%, 9/31) were
from freshwater fish or domestic animals (cattle and
pig) (Table 3). Of the 26 A. veronii strains isolated from
patients with gastrointestinal diseases in Australia, 16
strains (61.5%, 15/26) had closely related strains from
patients in Australia, four strains (15.4%, 4/26) had
closely related strains isolated from intestinal tract of
individuals in other countries (one patient had gastroen-
teritis and the clinical conditions of the remaining three
individuals were not known), the remaining six A. vero-
nii strains (23%) had closely related strains from vari-
ous sources including freshwater fish, domestic animals,
leech and surface water (Table 3).

Secretion systems

Secretion systems in the genomes of 168 A. veronii
strains were examined. Five types of secretion systems,
including Type I Secretion System (T1SS), T2SS, T3SS,
T4SS and T6SS were identified in A. veronii (Additional
file 1).

T1SS system was found in all A. veronii strains except
strain ERR1305902-bin.15. T2SS secretion system was
found in all 168 A. veronii strains.

T3SS was found in 106 of the 168 A. veronii strains
(63.1%). A. veronmii strains isolated from freshwater
fish, environmental samples, domestic animals (cat-
tle and pigs) and other animals had T3SS positivity of
84% (32/38), 60% (15/25), 100% (22/22) and 70% (7/10)
respectively. The ‘other animals’ group included A. vero-
nii strains isolated from mosquito gut, insect gut, hirudo
verbena digestive tract, grass carp, Heterelmis comalensis,
Xiphophorus helleri, frog, snail, Andrias advidianus and
alligator.

The T3SS positivity in A. veronii strains isolated from
patients with gastrointestinal diseases, bacteremia and
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other human samples was 48% (15/32), 83% (5/6) and
30% (9/30) respectively. The ‘other human sample’ group
included A. veronii strains isolated from sputum, wound
infection, bile of gallstone and fecal samples of individu-
als without clinical information. The T3SS positivity in A.
veronii strains isolated from patients with gastrointesti-
nal diseases was significantly lower than that in A. vero-
nii strains isolated from freshwater fish (p=0.002) and
domestic animals (» <0.0001). The other statistical analy-
sis data are shown in Fig. 2A. The negativity of T3SS was
confirmed by searching the franking genes in the T3SS
negative strains.

A number of T4SS components were found in several
A. veronii strains, mainly strains isolated from dairy cat-
tle in USA. T6SS was found in 55 of the 168 A. veronii
strains examined (32.7%) and it did not show a statisti-
cal significance in strains isolated from different sources
(Additional file 1).

T3SS in A. veronii is located in a genomic island

that is highly similar to plasmids in Aeromonas salmonicida
Comparison of the genomes of 23 complete A. vero-
nii genomes (11 T3SS positive and 12 T3SS negative)
revealed that T3SS in A. veronii is located on a genomic
island, which we named A. veromii genomic island-1
(AVI-1) (Fig. 2B). AVI-1 genomic island has a size of
26,064 bp and GC content of 60%. The AVI-1 island is
adjunct to a gene encoding crossover junction endode-
oxyribonuclease, an enzyme involving in homologous
recombination. The components of A. veronii T3SS were
shown in Fig. 2C.

Blast search against all bacterial genomes in public
databases showed that the AVI-1 genomic island was also
found in some A. hydrophilia and Aeromonas salmoni-
cida strains. For example, the AVI-1 island is in the chro-
mosome of A. hydrophila strains 23-C-23 and WCX23
(97% query coverage and 95.57% identity). In A. salmoni-
cida, the AVI-1 island is in plasmids, for example plasmid
pS44-3 in strain S44 and plasmid pS121-3 in strain S121
(97% query coverage and 94.85% identity).

Virulence factors

Two hundred and ninety-nine putative virulence fac-
tors were identified in the complete genome of A. veronii
strain A29V, including molecules involved in adherence,
colonization, invasion, secretion systems, mobility,
immune evasion, antiphagocytosis and others (Fig. 3).

(See figure on next page.)

Fig. 1 Phylogenetic tree generated based on Aeromonas veronii core genome. The phylogenetic tree was generated based on the core genome of
168 A. veronii strains isolated from different sources globally using maximum likelihood method by FastTree. The 168 A. veronii strains formed three
clusters. Cluster 1 (shaded light grey colour, bootstrap value 99) contained 149 A. veronii strains, Cluster 2 (shaded yellow colour, bootstrap value
100) contained 11 strains and Cluster 3 (shaded pink colour, bootstrap value 100) contained eight strains. Within Cluster 1, strains isolated from the
same environmental or animal sources often formed small groups. The genomes of A. veronii strains with blue colour were sequenced in this study
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Table 3 Strains that are most closely related to the 31
Aeromonas veronii  strains isolated from patients with
gastrointestinal diseases

A. veronii strains isolated from fecal samples Most closely related
of patients with gastrointestinal diseases strain (ANI value)

2020 HmM21(97.09)
3A20-10 A7 (96.769)
2A20-12 2A21-8 (96.74)
AA21-14 CECT 4257 (96.7)
aA20-17 3A21-13 (96.55)
3A20-5 A7 (96.79)
aA20-8 SCN17A0029 (96.84)
2721 2A21-5 (96.58)
3A21-10 A29 (96.60)
aA21-11 2A21-5 (96.7)
3A21-13 3A21-15 (96.66)
aA21-14 CECT 4257 (96.7)
3A21-15 3A21-13 (96.58)
aA21-16 A8-AHP (97.5)
3A21-19 A136 (96.69)
AA21-4 A9 (99.30)
aA21-5 aA21-11(96.7)
AA21-6 CAMC34 (97.85)
aA21-8 TTU2014-130AME (98.1)
226 2A21-11 (96.64)
2027 A7 (96.72)

A9V XH.VA.2 (99.48)
a7 4A20-5 (96.81)
ap7 aA20-5 (96.81)
29 2A21-4 (99.25)
3BC88 4A20-10 (96.56)
PFCY51 XU1 (96.55)
b121-14 XU1 (96.71)
b312M 161 (97.16)
bVBF557 aA21-8 (96.41)
PERR1305902-bin.15 A8 (96.84)

2 A. veronii strains isolated from feces of patients with gastrointestinal diseases
in Australia

b strains isolated from diarrheal feces of patients from other countries

¢ strains isolated from feces of human individuals without clear clinical
information

Toxins produced by the 31 A. veronii strains isolated
from patients with gastrointestinal diseases were further
examined. Two secreted toxins, aerolysin and microbial
collagenase, were found in all 31 strains (Fig. 4). The aer-
olysin proteins in different A. veronii strains were highly
similar, with the overall protein sequence identity being
75% among the 31 strains (Additional file 2). The protein
sequences of aerolysin in A. hydrophila showed some
variations, the sequence identity between A. veronii aer-
olysin and A. hydrophila aerolysin varied between 69 and
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98%. Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) were
not found in any of these strains. Zonula occludens toxin
(Zot) was found in 11 of the 31 strains (35.5%). The Zot
proteins in A. veronii and Vibrio cholerae shared 36% of
protein sequence identity.

Discussion

In this study, we sequenced and assembled 25 genomes of
A. veronii strains isolated from fecal samples of patients
with gastrointestinal infections in Australia and con-
ducted comparative genome analysis of 168 global A.
veronii strains, including the 25 A. veronii genomes that
we have sequenced and additional 143 A. veromnii strains
isolated from different sources in 18 countries in Asia,
Europe, Africa, Oceania, North and South America.

Twenty-five genomes, including one complete genome
and 24 draft genomes of A. veronii strains isolated from
patients with gastrointestinal diseases were successfully
obtained in this study (Table 1). Despite the increasing
importance of A. veronii in causing human gastrointes-
tinal diseases, only six genomes of A. veronii strains iso-
lated from patients with gastrointestinal diseases were
available in public databases prior to this study. Our 25
A. veronii genomes will provide a useful source for future
research on A. veronii.

Global A. veronii strains including 168 strains from 18
countries were used for phylogenetic analysis (Table 2).
These 168 A. veronii strains formed three phylogenetic
clusters based on the core genome (Fig. 1). Each cluster
had A. veronii strains from different sources, showing the
ancestors of these three clusters were not determined by
the isolation sites. Most of the A. veronii strains (88.7%)
from various sources in different countries were in Clus-
ter 1, showing that the majority of A. veromii strains
globally were derived from a common ancestor. Strains
isolated from the same environmental or animal sources
often formed small groups within Cluster 1, most likely
reflecting variations in A. veronii isolates obtained from
a single site.

The majority of the 31 A. veronii strains (71%) isolated
from fecal samples of patients with gastrointestinal dis-
eases were closely related to strains isolated from fecal
samples of the other human individuals, most of whom
had gastrointestinal diseases (Table 3). Only 29% of A.
veronii strains isolated from fecal samples of patients with
gastrointestinal diseases were closely related to strains
isolated from freshwater fish and domestic animals. This
interesting finding suggests that the main source for
human gastrointestinal infections of A. veronii was not
from freshwater fish or domestic animals, although they
can serve as potential sources of infection. In addition
to freshwater fish, domestic animals and environmental
samples, A. veronii has also been frequently isolated from
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A Prevalence of T3SS in Aeromonas veronii strains
isolated from different sources
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Fig. 2 The Aeromonas veronii genomic island AVI-1 containing the T3SS system. The AVI-1 genomic island identified in this study contains genes
encoding T3SS, which is found in 106 of the 168 strains examined in this study. A The prevalence of T3SS in strains isolated from patients with
gastrointestinal diseases was significantly lower than that in A. veronii strains isolated from freshwater fish (p=0.0125) and domestic animals
(p<0.0001). B Comparison of the A. veronii genomes with T3SS (representative strain A29V) and without T3SS (representative strain FC951) shows
that the AVI-1 genomic island is located adjacent to a gene encoding crossover junction endodeoxyribonuclease (red). The identical proteins

in these two strains are shaded in grey. C Genes in the AVI-1 genomic island that encodes T3SS components. *Indicates statistical significance
(*p<0.05; **p<0.01; ***p <0.001; ****p <0.0001). Other human samples include A. veronii strains isolated from sputum, wound infection,
cholangiolithiasis bile and fecal samples of individuals without clinical information. Other animals include A. veronii strains isolated from mosquito
gut, insect gut, Hirudo verbena digestive tract, grass carp, Heterelmis comalensis, Xiphophorus helleri, frog, snail, Andrias advidianus and alligator. The
food group included strains isolated from various food
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Fig. 3 Putative virulence factors in Aeromonas veronii strain A29V. Putative virulence factors in the complete genome of A. veronii strain A29V, a
strain isolated from fecal sample of a patient with gastroenteritis, was identified through searches of the Virulence Factors Database. A total of 299
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drinking water and fresh water [2—6]. Human Aeromonas
gastrointestinal infections most often occur in warm
weather [1, 10]. Aeromonas species and their load in dif-
ferent types of drinking water and fresh water that is used
for preparation of food should be monitored during dif-
ferent seasons, which will provide further information on
the main sources that cause human Aeromonas gastroin-
testinal infections.

More than half of the 168 A. veronii strains (63.1%)
examined in this study had T3SS. T3SS is used by path-
ogenic bacteria to directly inject effector proteins into
eukaryotic host cells, which facilitates bacterial infection
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of host cells or causes host cell apoptosis [23]. T3SS in
A. veronii is located in the AVI-1 genomic island (Fig. 2).
The AVI-1 genomic island is also present in the chromo-
some of A. hydrophila strains and plasmids in A. salmo-
nicida, suggesting that A. veronii most likely has acquired
T3SS via horizontal gene transfer from other Aeromonas
species. An additional interesting finding from this study
was that T3SS was significantly less present in A. vero-
nii strains isolated from fecal samples of patients with
gastrointestinal diseases as compared to strains isolated
from freshwater fish and domestic animals (Fig. 2). This
further supports the view that most of the A. veronii
strains causing infections in human gastrointestinal tract
were from a different source.

Nearly 300 putative virulence factors were identified in
the complete genome of A. veronii strain A29V (Fig. 3).
This shows that multiple virulence factors contribute to
the pathogenesis of gastrointestinal diseases caused by A.
veronii. We further examined toxins in the 31 A. veronii
strains isolated from patients with gastrointestinal dis-
eases. Aerolysin, a secreted toxin, is a common virulence
factor presenting in all A. veronii strains (Fig. 4). Aer-
olysin is a pore-forming toxin promoting osmotic lysis
of host cells. Aerolysin in A. hydrophila was shown to
perturb human intestinal epithelial tight junction integ-
rity and cell lesion repair [24]. The second secreted toxin,
microbial collagenase, was also found in all 31 A. veronii
strains isolated from patients with gastrointestinal dis-
eases (Fig. 4). Bacterial collagenases degrade collagen in
animal cell extracellular matrix and are important bacte-
rial virulence factors. Microbial collagenase in A. vero-
nii is involved in the pathogenesis of diseases caused by
this bacterium in fish[25]. Its pathogenic role in human
diseases requires further characterization. A previous
study reported detection of Stx1 and Stx2 toxin genes in
some human Aeromonas isolates [25]. However, we did
not find these toxin genes in any of the 31 strains isolated
from patients with gastrointestinal diseases. Zot protein
was found in 35.5% A. veronii strains. V. cholerae Zot pro-
tein damages intestinal epithelial barrier tight junctions
and Campylobacter concisus Zot protein causes intestinal
epithelial cell death [26, 27]. Multiple hemolysins in A.
veronii were identified, which were demonstrated to be
virulent to host cells in other bacterial species. The levels
of toxins produced by different A. veronii strains remain
to be further examined, which may contribute to their
ability in causing human gastrointestinal diseases of dif-
ferent severity.

Conclusions

In summary, we report 25 genomes of A. veronii strains
isolated from fecal samples of patients with gastroin-
testinal diseases, including one complete genome and
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24 draft genomes. Analysis of 168 global A. veronii
genomes including those we have sequenced show that
the global A. veronii strains formed three clusters and
the majority of A. veronii strains from various sources
were from a common ancestor. Most of the A. vero-
nii strains isolated from patients with gastrointestinal
diseases were closely related to each other, with only a
small percentage of these strains were closely related to
A. veronii strains isolated from freshwater fish, domes-
tic animals or environmental samples. Nearly 300
putative virulence factors were identified. Aerolysin,
microbial collagenase and multiple hemolysins were
present in all strains isolated from patients with gastro-
intestinal diseases. Zot toxin was only present in some
strains. T3SS in A. veronii was in the AVI-1 genomic
island identified in this study, and most likely acquired
via horizontal transfer from other Aeromonas species
and was significantly less present in A. veronii strains
isolated from patients with gastrointestinal diseases as
compared to strains isolated from freshwater fish and
domestic animals. These findings provide novel infor-
mation on source of infection and virulence of A. vero-
nii in human gastrointestinal diseases.

Materials and methods

A. veronii genomes used in this study

A total of 168 A. veronii genomes were analysed in this
study, including 25 genomes sequenced in this study and
143 genomes publicly available. Currently, there are 156
A. veronii genomes available in the public databases, 13
genomes were excluded from this study due to lack of
information on isolation hosts or country of isolation.
The 25 A. veronii strains sequenced in this study were
isolated from fecal samples of patients with gastroin-
testinal diseases at the Douglass Hanly Moir Pathology
laboratory in Sydney, Australia, during routine diagnostic
procedure.

Draft genome sequencing of 25 A. veronii strains
Sequencing and assembly of draft genomes of 25 A. vero-
nii strains were conducted as described in our previous
study [28]. Briefly, bacterial DNA was extracted using
Gentra Puregene Yeast/Bacteria Kit (Qiagen, Chad-
stone, Victoria, Australia). Briefly, the DNA libraries were
sequenced via the 150 bp or 250 bp paired-end sequenc-
ing chemistry on the MiSeq Personal Sequencer [29].
Reads were assembled using Shovill (v 1.0.5), and genome
coverage was calculated using qualimap (v 2.2.1) [30].
Sequencing of the draft genome was performed in the
Marshall Centre for Infectious Diseases Research at the
University of Western Australia.
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Complete genome sequencing of A. veronii strain A29V

A. veromii strain A29V was also subjected to genome
sequencing using Oxford Nanopore sequencing tech-
nique. Bacterial DNA used for this part of genome
sequencing was extracted with phenol-chloroform.
Libraries were prepared using the Native Barcoding
Expansion kit (EXP-NBD104, Nanopore) and the Liga-
tion Sequencing Kit (SQK-LSK109, Nanopore). The
libraries were then loaded onto a R9.4 flow cell (FLO-
MIN106) and sequenced on the GridION sequenc-
ing device (Nanopore). The nanopore sequencing of
A. veronmii strain A29V genome was performed at the
Ramaciotti Centre for Genomics at the University of
New South Wales. Basecalling were performed using
Guppy (v 4.0.14). Statistics of the reads were generated
using Nanostat (v 1.5.0) and genome coverage was esti-
mated using Minimap2 (v 2.17) and qualimap (v 2.2.1)
[30].

To obtain the complete genome of A. veromii strain
A29V, the reads of A. veronii generated by nanopore and
Ilumina MiSeq were used for hybrid assembly using
Unicycler (v 0.4.7). The details of hybrid assembly were
described in our previous study [31].

Annotation of the A. veronii genomes sequenced in this
study

The complete genome of A. veronii strain A29V and 24
draft A. veromii genomes sequenced in this study were
annotated using the NCBI Prokaryotic Genome Annota-
tion Pipeline, Rapid Annotation using Subsystem Tech-
nology, and Prokka (v 1.14.5) [32—34].

Phylogenetic analysis

Core genome was generated using Roary (v3.12.0) [35].
The maximum likelihood phylogenetic tree based on core
genome was generated using FastTree (v 2.1.11) [36].
The ANI values of each A. veronii genome against the
genomes remaining 167 A. veronii strains were calculated
using FastANI (v 1.32) [37].

Secretion systems

Secretion systems were examined in the genomes of 168
A. veronii strains. Prokka annotated protein files of the
168 A. veronii strains were submitted to MacSyFinder, all
available protein secretion systems were searched using
the default settings [38]. Visualisation of T3SS was gen-
erated using EasyFig [39]. The nucleotide sequences of
A. veronii T3SS were searched against the genomes of
all bacterial strains in NCBI non-redundant nucleotide
database using BLASTn [40].
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Identification of A. veronii strains that were closely related
to A. veronii strains isolated from fecal samples of patients
with gastrointestinal diseases
In this study, 31 A. veronii strains that were isolated
from fecal samples of patients with gastrointestinal dis-
eases, including the 25 A. veronii strains that we have
sequenced and additional six A. veronii strains in the
public databases. The six A. veronuii strains from public
databases were strain ERR1305902-bin.15 from Den-
mark, strain 126—14 from China, two strains (FC951
and VBF557) from India, strain 312 M from Brazil, and
a previously reported strain (BC88) from Australia.
Among the 168 A.veronii strains, the strain that had
the highest ANI value against each of the 31 A. veronii
strains isolated from fecal samples of patients with gas-
trointestinal diseases was identified as the most closely
related strain.

Putative virulence factor in A. veronii strains isolated

from patients with gastrointestinal diseases

Putative virulence factors in the complete genome of A.
veronii strain isolated from a patient with gastroenteri-
tis that was sequenced in this study were firstly identi-
fied through searches of the Virulence Factors Database
(VEDB) [17, 41]. The presence of toxins in the 31 A.
veronii strains isolated from patients with gastrointesti-
nal diseases was then searched using BLASTp, and con-
served protein motifs were confirmed using pfam [40,
42].

Statistical analysis

Fisher’s exact test (two-tailed) was used for analysis of
the presence of T3SS in A. veronii strains isolated from
different sources. p <0.05 was considered to be statis-
tically significant. Statistical analysis was performed
using GraphPad Prism 7.
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