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Abstract 

Background:  Cryptocaryonosis caused by Cryptocaryon irritans is one of the major diseases of large yellow croaker 
(Larimichthys crocea), which lead to massive economic losses annually to the aquaculture industry of L. crocea. 
Although there have been some studies on the pathogenesis for cryptocaryonosis, little is known about the innate 
defense mechanism of different immune organs of large yellow croaker.

Results:  In order to analyze the roles of long non-coding RNAs and genes specifically expressed between immune 
organs during the infection of C. irritans, in this study, by comparing transcriptome data from different tissues of L. 
crocea, we identified tissue-specific transcripts in the gills and skin, including 507 DE lncRNAs and 1592 DEGs identified 
in the gills, and 110 DE lncRNAs and 1160 DEGs identified in the skin. Furthermore, we constructed transcriptome co-
expression profiles of L. crocea gill and skin, including 7,503 long noncoding RNAs (lncRNAs) and 23,172 protein-coding 
genes. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses 
showed that the DEGs and the target genes of the DE lncRNAs in the gill were specifically enriched in several pathways 
related to immune such as HIF-1 signaling pathway. The target genes of DE lncRNAs and DEGs in the skin are specifi-
cally enriched in the complement and coagulation cascade pathways. Protein–protein interaction (PPI) network analy-
sis identified 3 hub genes including NFKBIA, TNFAIP3 and CEBPB, and 5 important DE lncRNAs including MSTRG.24134.4, 
MSTRG.3038.5, MSTRG.27019.3, MSTRG.26559.1, and MSTRG.10983.1. The expression patterns of 6 randomly selected 
differentially expressed immune-related genes were validated using the quantitative real-time PCR method.

Conclusions:  In short, our study is helpful to explore the potential interplay between lncRNAs and protein 
coding genes in different tissues of L. crocea post C. irritans and the molecular mechanism of pathogenesis for 
cryptocaryonosis.
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Background
Large yellow croaker (Larimichthys crocea) is one of the 
most important marine economic fish in China, with a 
cultured output of 197,000 tons, accounting for about 
25% of the global sea bony fish trade volume [1]. Because 
of its golden color, delicious taste and high protein con-
tent, it is very popular among people. However, with 
the expansion of the aquaculture industry of L. crocea, 
the outbreak of infectious diseases has brought great 
challenges to the cultivation and breeding of L. crocea. 
Cryptocaryonosis caused by Cryptocaryon irritans is 
one of the most serious diseases that cause inflammation 
and death of L. crocea [2]. C. irritansis is a marine cili-
ated protozoan parasite that can infect the gills and skin 
of almost all marine teleost hosts, resulting in the loss of 
physiological functions of these organs. Although strat-
egies for controlling cryptokaryosis, such as antibiotics, 
vaccines and metal ions, have been reported, they have 
only shown weak efficacy under field conditions [3, 4]. 
Therefore, studying the pathogenesis of cryptogenic dis-
eases is of great significance for improving the disease 
resistance and breeding level of large yellow croaker.

Parasitic infection is one of the important issues affect-
ing the sustainable development of the marine aqua-
culture industry (Zhao et  al., 2021). In spite of limited 
pathogen recognition processes, the innate immune sys-
tem can rapidly discover non-self-recognizing pathogen 
molecular patterns and send out danger signals to the 
immune system [5]. At the same time, in teleost, there 
is still a certain degree of adaptive immunity, including 
the specific antibody IgT, which binds to the parasite 
cilia on the surface of the infected fish body to alter para-
site behavior and induce an escape reaction [6]. Innate 
immunity and adaptive immunity work synergistically to 
maintain the fish’s homeostasis [7]. To reduce the impact 
of diseases on the industry, it is essential to understand 
the immune mechanisms in fish during pathogenic 
infections.

Previous studies have shown that fish are able to mount 
an immune response against parasite infections to inhibit 
the biological activity of parasites [8–10]. The fish skin 
is the first line of defense of the immune system and 

plays various vital functions especially in immunity and 
defense against invading pathogens and environmental 
stressors [11, 12]. And the gill is not only involved in gas 
exchange, but also are major sites for osmoregulation, pH 
regulation and hormone production [13]. For instance, 
the Th2 skew environment represented by the enrich-
ment of pro-inflammatory cytokines in salmon gills and 
skin can protect fish from parasites and inflammation 
[14], indicating the importance of differential expression 
between tissues in innate immunity. The gills and skin are 
also the primary sites of infection by C. irritans displays 
an extensive cellular response to the pathogen. Recently, 
the immune functions of fish skin and gill have attracted 
intensive interests of the research community, and many 
antimicrobial and bioactive substances have been identi-
fied in the tissue mucus [15, 16]. However, there is few 
transcriptome studies on the tissue-specific immune 
response of L. crocea.

To reduce the impact of parasitic infections on fish 
industry, in recent years, transcriptome sequencing has 
been widely used to explore the interactions between 
host and pathogen. It can not only analyze the struc-
ture and expression level of transcripts, but also iden-
tify unknown transcriptional isoforms and transcription 
patterns to accurately analyze valuable issues in life sci-
ences. For instance, the transcriptome analyzed the anti-
bacterial regulation mechanism of the spleen of black 
carp after infection with Aeromonas hydrophila, and 
identified the response pathways and key genes related 
to innate immune [17]. The complex and comprehen-
sive of Brassica napus were revealed by using Isoform-
sequencing (ISO-seq) technique, and 220,000 alternative 
splicing events were identified from the genome‐wide 
full‐length transcripts, which provide a valuable resource 
for exploring complex transcription patterns, update 
gene annotation and drive further research on biologi-
cal gene regulation mechanism [18]. Studies have shown 
that transcriptome is dominated by one transcript per 
protein-coding gene, which hinted that not all the tran-
scripts contributing to transcriptome diversity are 
equally likely to contribute to protein diversity [19]. In 
addition to protein-coding genes, long noncoding RNAs 

Highlights:  •	 Skin and gills are important sources of pro-inflammatory molecules,and their gene expression pat-
terns are tissue-specific after C. irritans infection.
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(lncRNAs) are a class of noncoding RNAs that do not 
encode proteins. lncRNAs are transcribed from most 
genomic regions and have important roles in regulating 
gene expression. More than 1,280 differentially expressed 
lncRNAs (DE lncRNAs) were identified from ∼2 billion 
RNA-seq reads in 22 fish families [20]. Using a de novo 
transcriptome assembly method, Gustavo et al. identified 
tens of thousands more putative lncRNAs in the Rainbow 
Trout (Oncorhynchus mykiss) transcriptome [21]. There-
fore, transcriptome studies including mRNAs and lncR-
NAs analysis play key roles in the dissecting of molecular 
mechanisms of important economic traits.

Although previous studies have sequenced transcrip-
tomes of many L. crocea tissues, most of them are sin-
gle organization expression analysis [22, 23]. In order to 
gain insights into the transcriptome diversity of L. cro-
cea tissues, transcriptome association analysis of multi-
ple tissues still need to be addressed. Fish skin and gills 
are organs that are directly exposed to external environ-
ment, play an important role in protecting the body from 
pathogen infection [23, 24]. They are also the primary 
targeting organ and major parasitic site of the C. irri-
tans infection, which causes fish hypoxia and bacterial 
secondary inflammation, and even death [2, 23]. In this 
study, we reported a comparative transcriptome analysis 
of gill and skin samples of L. crocea. Our main aim was 
to identify the gills and skin specific transcripts, both 
protein-coding genes and lncRNAs. We sequenced the 
whole repertoire of both protein-coding transcripts and 
lncRNAs from the gills of diseased L. crocea at differ-
ent time points (0  h, 24  h, 48  h, 72  h, and 96  h). Next, 
we compared the previously reported skin transcriptome 
data [23] and identified tissue specific protein-coding 
genes and lncRNAs. It is worth noting that the skin and 
gill tissue samples are from the same batch of experi-
ments to ensure the comparability of the data. We further 
analyzed the differentially expressed genes (DEGs), DE 
lncRNAs and signaling pathway that existed in multiple 
time points between gills and skin, and considering that 
they are key members in the immune response to stimu-
late C. irritans infection. The identification of non-tissue-
specific hub genes will also support the development 
of vaccines and environmentally friendly antibacterial 
agents. Therefore, mRNA and lncRNA comparative tran-
scriptome study will be of great value for the immune 
mechanism of pathogenic infection, breeding and disease 
control of L. crocea.

Results
Overview of sequencing Data and lncRNA Identification
We constructed ribo-depleted libraries of mRNAs and 
lncRNAs from the L. crocea gill infected with C. irri-
tans for 0  h, 24  h, 48  h, 72  h, and 96  h and sequenced 

on Illumina NovaSeq platform. About 43 million pair end 
high quality reads were collected for each sample respec-
tively (Table S2). The raw RNA-seq data were deposited 
in Gene Expression Omnibus (GEO) database with acces-
sion number GSE174221. To construct a repertoire of L. 
crocea transcripts and compare transcriptome between 
gill and skin tissues, we also used the skin RNA-seq data 
reported in previous studies. RNA-seq data from both 
gill and skin tissues were used for downstream bioinfor-
matic analysis. For each RNA-seq data, we mapped short 
reads to the L. crocea genome by using HISAT2. Based on 
mapping results, we quantified the expression of known 
protein-coding genes and lncRNAs using in-house pipe-
line. Finally, we constructed a stringent set of L. crocea 
RNA transcripts, including 23,172 annotated protein-
coding genes and 7,503 lncRNAs.

Transcriptome variation of L. crocea gill and skin after C. 
irritans infection
Pairwise comparisons of five analyzed sample groups 
(0 h, 24 h, 48 h, 72 h, and 96 h) identified a total of 2,706 
redundant DEGs in the gill of L. crocea, including 1,363 
up-regulated DEGs and 1,343 down-regulated DEGs 
(Figure S1A). Compared with the control group, a set of 
570, 508, 739 and 889 DEGs in the gill were identified at 
24 h, 48 h, 72 h, and 96 h post L. crocea infection, which 
shows time-dependent DEG increasing (Figure S1A). It 
is worth noting that after infection with C. irritans, the 
number of up-regulated genes remained stable in the 
early stage and increased rapidly during 72–96  h, while 
the number of down-regulated genes increased first and 
then decreased, reaching a peak at 72 h (Figure S1A). In 
order to further analyze the interactions among differ-
ent time points, we constructed a Venn diagram using 
the DEGs that were differentially expressed in compari-
sons of G24 h_0 h, G48 h_0 h, G72 h_0 h, and G96 h_0 h, 
respectively. A total of 536 co-existing DEGs were identi-
fied at multiple time points after infection (Fig. 1A). The 
Heat map showed the different expression patterns of 
genes in the gill tissue of L. crocea after C. irritans infec-
tion, which were divided into 4 clusters (Fig. 1C).

Similarly, a total of 2,240 redundant DEGs were 
detected in the skin post L. crocea infection, including 
1,445 up-regulated DEGs and 795 down-regulated DEGs 
(Figure S1B). Meanwhile, 273, 431, 691 and 845 DEGs in 
the skin were identified at 24 h, 48 h, 72 h, and 96 h post 
L. crocea infection (Figure S1B). A total of 539 co-existing 
DEGs were identified at multiple time points after infec-
tion (Fig. 1B). Meanwhile, Heat map showed the different 
expression patterns of genes in the skin tissue of L. crocea 
after C. irritans infection, which were divided into 4 clus-
ters (Fig. 1D).
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Tissue‑specific analysis of L. crocea transcriptome 
at the gene level
We quantified the expression of protein-coding genes 
from each RNA-seq data and compared gene expres-
sion profiles between the two L. crocea tissues. Principal 

component analysis showed that the samples from the 
same tissues clustered together, indicating that the pro-
tein-coding gene expression values in same tissue showed 
similar pattern (Figure S3A). Differential expression 
analysis showed that among the 23,172 protein-coding 
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genes, 3003 non-redundant DEGs have specific expres-
sion patterns between gill and skin tissues, including 251 
overlapping sequences were also identified both in two 
tissues, and 1,592 DEGs and 1,160 DEGs were specifically 
expressed in gill and skin tissues, respectively (Fig.  1E). 
We also further compared the DEGs of the two tissues at 
24 h, 48 h, 72 h and 96 h after infection, and the results 
showed that a total of 551, 483, 689 and 823 gill tissue-
specific DEGs were identified, while the number of skin 
tissue-specific DEGs at different time points was 254, 
406, 641 and 779. (Fig. 1F). We also found that the num-
ber of DEGs is increasing with the passage of time post-
infection, indicating that their expression patterns were 
not only tissues-specific but also time-specific (Fig. 1F).

Function enrichment of differentially expressed mRNAs
To further explore the potential functions of tissue speci-
ficity and co-expression of DEGs, we performed GO and 
KEGG analyses respectively. The non-redundant DEGs 
were clustered into 4 profiles according to their expres-
sion patterns in gills and skin, respectively (Fig.  1C, D). 
Expression levels of most DEGs in profile 1 (gill and skin) 
increased continuously until 24  h post-infection, then 
decreased slightly. KEGG results showed that these genes 
were mainly enriched in immune pathways including 
Leukocyte transendothelial migration, IL-17 signaling 
pathway and HIF-1 signaling pathway in gills, while the 
main enriched immune pathway in skin was Complement 
and coagulation cascades pathway. Expression levels of 
most DEGs in profile 2 (gill and skin) decreased continu-
ously until 24  h post-infection and then remained sta-
ble. KEGG results showed that these genes were mainly 
enriched in immune pathways including Chemokine 
signaling pathway, NOD-like receptor signaling path-
way and Intestinal immune network for IgA production 
pathway in gills, while the main enriched immune path-
way in skin was MAPK signaling pathway. Expression 
levels of most DEGs in profile 3 (gill) and profile 4 (skin) 
were consistently up-regulated from 72 to 96  h post-
infection. KEGG results showed that these genes were 
mainly enriched in HIF-1 signaling pathway and meta-
bolic pathway in gills, while the main enriched immune 
pathways in skin were Complement and coagulation cas-
cades pathway, TNF signaling pathway, IL-17 signaling 
pathway, NF-kappa B signaling pathway, Toll-like recep-
tor signaling pathway, B cell receptor signaling pathway 
and C-type lectin receptor signaling pathway. Expression 
levels of most DEGs in profile 4 (gill) and profile 3 (skin) 
peaked at 48 or 72  h after infection. The KEGG results 
showed that these genes were mainly enriched in some 
metabolic pathways rather than in immune pathways in 
gills, while the main enriched immune pathway in skin 
was Antigen processing and presentation pathway.

In addition, GO enrichment analysis found that com-
pared with skin, gill tissue-specific DEG is mainly 
enriched in immune system process, G-protein coupled 
receptor activity, translation elongation factor activity 
and cell killing (Fig.  2A, B, Table S3). In addition, GO 
analysis showed that the overlapped 251 DEGs were clas-
sified into 59 sub-categories, of which, 25 in biological 
process category, 14 in molecular function category, and 
20 in cellular component category (Fig. 2C). Based on the 
above research, we found that multiple immune-related 
GO terms are enriched, such as the immune system pro-
cess, immune response, regulation of innate immune 
response, activation of innate immune response, innate 
immune response-activating signal transduction, posi-
tive regulation of defense response, response to stimulus, 
MyD88-dependent toll-like receptor signaling pathway. It 
is worth noting that we have identified multiple immune-
related genes, including toll-like receptor 5 (TLR5), cili-
ary neurotrophic factor (CNTF), C–C motif chemokine 
4 (CCL4), tumor necrosis factor alpha-induced protein 
3 (TNFAIP3), prostaglandin-endoperoxide synthase 2 
(PTGS2).

KEGG enrichment analysis revealed that HIF-1 sign-
aling pathway and Natural killer cell mediated cytotox-
icity were significantly enriched in specific DEGs of gill 
tissue, while complement and coagulation cascades and 
Toll-like receptor signaling pathway were significantly 
enriched in specific DEGs of skin tissue (Fig. 2D, E, Table 
S3). In addition, 251 DEGs co-existed in gill and skin, 
mainly enriched in NF-kappa B signaling pathway, TNF 
signaling pathway and Toll-like receptor signaling path-
way, Antigen processing and presentation, IL-17 signal-
ing pathway, immune pathways metabolic pathways, 
and cytokine and cytokine receptor interactions (Fig. 2F, 
Table S3). Finally, a total of 15 DEGs were identified as 
important gene set, including growth arrest and DNA-
damage-inducible protein (GADD45), NF-kappa-B 
inhibitor alpha (NFKBIA), tumor necrosis factor alpha-
induced protein 3 (TNFAIP3), prostaglandin-endoper-
oxide synthase 2 (PTGS2), CCL4 TLR5, target of egr1 
protein 1 (TOE1), zinc finger protein 710 (Zn710), lep-
tin (LEP), DNA damage-inducible transcript 4 protein 
(DDIT4), sideroflexin-5 (SFXN5), SPARC-related modu-
lar calcium-binding protein 1 (SMOC1), transmembrane 
protein 181 (TM181), haptoglobin (HPT) and uncharac-
terized protein LOC104924406 isoform X1 (Table 1).

Tissue‑specific analysis of lncRNAs in L. crocea tissues
In addition to protein-coding genes, lncRNAs are 
another abundant transcript expressed in L. crocea tis-
sues. In comparison to protein-coding genes, lncRNAs 
had smaller number of exons and shorter transcript 
length (Figure S2A, B). After C. irritans challenge, a 
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total of 880 and 278 DE lncRNAs in the gills and skin, 
respectively, showed differential expressions at the 4 
time points (Figure S1C, D). Principal component anal-
ysis of expression values of lncRNAs in these L. crocea 
tissues showed a similar pattern as the protein-coding 

gene (Figure S3B). To further analyze the interactions 
among different time points, we respectively con-
structed a Venn diagram comparing DE lncRNA at dif-
ferent time points of gill and skin infection. A total of 
227 overlapping DE lncRNAs in gill and 80 overlapping 
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Table 1  Non-tissue-specific hub genes identified from DEGs

Transcript ID Gene ID Description

evm.model.LG15.609 TOE1 Target of EGR1 protein 1

evm.model.LG20.240 ZN710 Zinc finger protein 710

evm.model.LG20.656 CCL4 C–C motif chemokine 4

evm.model.LG20.316 LEP Leptin

evm.model.LG21.586 DDIT4 DNA damage-inducible transcript 4 protein

evm.model.LG3.919 SFXN5 Sideroflexin-5

evm.model.LG3.854.2 SMOC1 SPARC-related modular calcium-binding protein 1

evm.model.LG12.268.1 TM181 Transmembrane protein 181

evm.model.LG11.852 HPT Haptoglobin

evm.model.LG12.590 NFKBIA NF-kappa-B inhibitor alpha

evm.model.LG4.304 GADD45 growth arrest and DNA-damage-inducible protein

evm.model.LG4.135 PTGS2 prostaglandin-endoperoxide synthase 2

evm.model.LG21.736 TNFAIP3 tumor necrosis factor, alpha-induced protein 3

evm.model.LG8.1172 CEBPB CCAAT/enhancer binding protein (C/EBP), beta

evm.model.LG12.194 TLR5 toll-like receptor 5

evm.model.LG6.55 Unknown PREDICTED: uncharacterized protein LOC104924406 isoform X1
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DE lncRNAs were identified among all the 4 compari-
sons (Fig.  3A, B). The heatmap of DE-lncRNA both 
in gill and skin showed each group clustered together 
indicating differences in the regulatory effects between 
the two tissues (Fig. 3C, D). Similarly, we calculated the 
number of tissue-specific DE lncRNAs in L. crocea tis-
sues. And the results show that, between gill and skin 
tissues, there were 507 and 110 tissue-specific DE lncR-
NAs, respectively (Fig.  3E). In addition, we also the 
comparison of DE lncRNAs between the gill and skin 
tissues of L. crocea after different infection times of C. 
irritans, indicating that DE lncRNAs are also not only 
tissue-specific but also time-specific. (Fig. 3F).

Target gene identification and functional analysis of DE 
lncRNAs
To identify target genes for DE lncRNAs, we calculated 
the Pearson’s correlation coefficients between tissue-spe-
cific DE lncRNAs and DEGs. A total of 10,433 pairs with 
high correlation coefficient (|r|> 0.99, p-value < 0.001) 
including 471 unique DE lncRNAs and 1200 unique 
DEGs were identified. Most of DE lncRNAs were posi-
tively correlated with the expression pattern of target 
genes. The number of target genes ranged from 1 to 230, 
with an average of 22.

Similarly, we analyzed the enrichment function of tar-
get genes of specific DE lncRNAs in gill and skin tissues 
(Fig.  4A, B). The significant GO terms of the gill tissue 
specific DE lncRNAs were mainly associated with “DNA 
methylation, immune system process”, while the signifi-
cant GO term of the skin tissue specific DE lncRNAs was 
related to the regulation of immune response, innate acti-
vation of immune response and positive regulation of 
defense response (Fig. 4A, B). KEGG enrichment results 
showed that HIF-1 signaling pathway, toxoplasmosis and 
chemokine signaling pathway were significantly enriched 
in the target gene of lncRNAs in gill tissue, while com-
plement and coagulation cascades and cytokine-cytokine 
receptor interaction were significantly enriched in the 
target gene of DE lncRNAs in skin tissue (Fig. 4D, E). In 
addition, we enriched the target genes of DE lncRNAs 
shared in gill and skin, and the results showed that the 
target genes of DE lncRNAs were Mainly engaged in 
activation of innate immune response, toll-like receptor 
signaling pathway, MyD88-dependent toll-like receptor 
signaling pathway, innate immune response-activating 
signal transduction, regulation of defense response, posi-
tive regulation of defense response, toll-like receptor 5 
signaling pathway, regulation of innate immune response 
(Fig. 4C, F). Moreover, the top 20 enriched pathways of 
co-exited DE lncRNAs target genes are presented in 
Table S4.

PPI and validation of genes related to immune response
To further analyze the relationships among some candi-
date genes, protein–protein interaction (PPI) network 
was constructed, including immune-related genes such 
as NFKBIA, GADD45, PTGS2, TNFAIP3, CEBPB, TLR5, 
TOE1, Zn710, CCL4, LEP, DDIT4, SFXN5, SMOC1, 
TM181 and HPT (Fig. 5). The network included 28 pro-
tein interactions with combined scores that bigger than 
0.7 (Max interactors of 1st shell is 6. Max interactors 
of 2nd shell is 6.). The 3 hub genes including NFKBIA, 
TNFAIP3 and CEBPB with a high level of connectivity 
were identified.

To verify the accuracy of the gene expression profile 
identified by RNA-seq analysis, the relative mRNA lev-
els of the following six genes (CCL4, DDIT4, LEP, HPT, 
SFXN5, ZN710) were analyzed by qRT-PCR (Fig. 6). As 
shown in Fig.  7, the expression pattern of the six genes 
identified by qRT-PCR was similar to that obtained in 
the RNA-seq analysis. Therefore, the results of qRT-PCR 
confirmed the reliability and accuracy of RNA-seq data.

Discussion
Large yellow croaker is one of the most important marine 
economic fishes in China [1]. With the increase in mar-
ket demand and the continuous expansion of large yellow 
croaker aquaculture, the improvement of large yellow 
croaker production has received close attention. How-
ever, due to its perennial infestation by parasites and 
pathogens such as C. irritans, it has caused huge eco-
nomic losses. Therefore, in an effort to better understand 
its pathogenesis, in the present study, we performed tran-
scriptome sequencing on gill tissue samples at 0 h, 24 h, 
48 h, 72 h, and 96 h after infection with C. irritans in large 
yellow croaker. And compared the transcriptome data of 
skin tissue in the same batch of experiments for correla-
tion analysis to reveal the gene tissue-specific expression. 
A total of 1592 and 1160 tissue-specific DEGs tissue-spe-
cific were identified in gills and skin, respectively. We fur-
ther compared the DEGs of the two tissues at 24 h, 48 h, 
72 h and 96 h after infection, and the results showed that 
a total of 551, 483, 689 and 823 gill tissue-specific DEGs 
were identified, while the number of skin tissue-specific 
DEGs at different time points was 254, 406, 641 and 779. 
These results suggest that the skin and gill tissues of large 
yellow croaker simultaneously activate the same or dif-
ferent innate immune genes at different time points to 
defend against C. irritans infection. And we also found 
that the number of DEGs is increasing with the passage of 
time post-infection. This indicates that with the increase 
of infection time, more and more immune-related genes 
of large yellow croaker are involved in the defense mech-
anism. Similar results were also found in Sebastiscus 
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Fig. 3  Differential expression of long non-coding RNA. Venn diagram showing overlapping DE lncRNAs among four comparisons in the L. crocea 
gill (A) and skin (B) post C. irritans infection; Heat maps of DE lncRNAs in gill (C) and skin (D) at different infection time points; Venn plot of DE 
lncRNAs in gill and skin at different infection time points (E, F)
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marmoratus and Epinephelus coioides [26]; Grouper (E. 
coioides) CXCR4 is expressed in response to pathogens 
infection and early stage of development. After stimula-
tion by LPS and necrosis virus, E. coioides innate immune 
genes are differentially expressed in the spleen and eyes 
[27]. These results indicate that DEGs not only exhibit 
a high degree of specificity in different tissues, but also 
have time specificity.

It is noteworthy that the important immune-related 
genes CCL4 and DDIT4, which are highly associated with 
C. irritans infection, are involved in multiple immune 
pathways and may play an important role in the regula-
tion of inflammation. As an inflammatory protein, CCL4 
coordinates the immune response to infection or inflam-
mation and promotes the expression of pro-inflamma-
tory cytokines including TNF—α, IL-6 and IL-1 β in 
activated macrophages and fibroblasts during inflam-
mation [28]. Sardar et  al. reported that the coopera-
tive induction of CCL4 is TLR4-MyD88 dependent and 
involves NFκB-MAPK-mediated signaling [29]. DDIT4 
is induced by numerous stress stimuli, including patho-
gen-associated molecular patterns (PAMPs) and hypoxia. 
DDIT4 has various biological functions in the oxidative 
stress and inflammation response process, and mediates 
immune pathway network to maintain homeostasis [30, 
31]. Recent studies have also demonstrated that DDIT4 

is involved in the inflammatory response induced by 
lipopolysaccharide (LPS) [32]. Though the importance of 
CCL4 and DDIT4 in immune response has been known, 
their function in L. crocea is relatively rarely reported, 
especially after parasite infection. More basic research is 
needed to support this result.

In order to understand the interactions of common 
DEGs in amongst all contrast, GO and KEGG pathway 
and PPI analyses were performed. GO term analysis of 
the common DEGs in amongst all contrast was enriched 
in biological processes (BP), including the immune sys-
tem process. KEGG enrichment results are consist-
ent with GO annotation results. The common DEGs in 
amongst all contrast were mainly enriched in immune 
pathways such as NF-kappa B signaling pathway, IL-17 
signaling pathway, and TNF signaling pathway. It has 
been reported that IL-17 is elevated in a variety of inflam-
matory conditions, which can induce the activation of the 
NF-kappa B pathway and promote the production of pro-
inflammatory cytokines such as IL-1β and TNF-α [33]. 
Meanwhile, the gene expression profiles of gills and skin 
showed that DEGs continued to increase after infection, 
indicating that the fish body has been involved in stimu-
lating the inflammatory response caused by C. irritans.

In addition, it has been shown that lncRNA is involved 
in the immune regulation of teleost fish [34]. For 
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example, of the 5,636 specific lncRNA identified, 3,325 
are differentially expressed and most lncRNA associ-
ated with innate immune gene during ISA virus (ISAV) 
infection in the liver of Atlantic salmon [34]. There are 
993 DE lncRNAs identified in the liver of Atlantic salmon 
infected with Piscirickettsia salmonis [35]. Similar to cod-
ing genes, lncRNAs have high tissue specificity [34, 36]. 
Consistently, in the present study, a total of 880 and 278 
DE lncRNAs in the gills and skin at the 4 time points post 
C. irritans challenge, respectively. In addition, we also the 
comparison of DE lncRNAs between the gill and skin tis-
sues of L. crocea after different infection times of C. irri-
tans. The above results indicate that the tissue-specific 
DE lncRNAs in gills and skin have diversified expression 
patterns after C. irritans infection. The pre-transcrip-
tional regulation of gene expression is quite complicated 
[37]. As a functional component of post-transcriptional 
regulation, lncRNA may also act as the main regulator 
against this stimulus, resulting in a more diverse expres-
sion pattern of mRNA and lncRNA [38]. In the process 
of regulating against exogenous stimulus such as patho-
gens, lncRNA is induced to have a specific expression 

pattern compared with mRNA under the same infection 
state [39]. And the unique expression pattern of some 
functional lncRNAs may contribute to the accurate and 
rapid immune response to pathogen stimulation [40]. 
Our analysis indicated that lncRNAs exhibit specific 
topological characteristics, and 23 lncRNAs have been 
identified as being associated with more than 200 target 
genes, which implies that these lncRNAs may be hubs 
and control the communication of different network 
components. In addition, we uncovered five key lncR-
NAs, MSTRG.24134.4, MSTRG.3038.5, MSTRG.27019.3, 
MSTRG.26559.1, and MSTRG.10983.1, that were asso-
ciated with most DEGs including hub genes that have 
been identified, and may thus be involved in the immune 
response to stimulating C. irritans infection. The above 
findings reveal the discovery of DE lncRNAs in the L. 
crocea post C. irritans, suggesting that lncRNAs might 
participate in the regulation of host response to parasitic 
infection, enriching the information of lncRNAs in tele-
ost and providing a resources basis for further studies on 
the immune function of lncRNAs.

Importantly, the consistency of the enrichment analysis 
results of DEGs and DE lncRNAs indicates that they may 

Fig. 5  PPI networks of the candidate genes and its interacting protein partners. PPI network constructed using the STRING database shows the 
immune-related genes and the immune-related genes interacting proteins. The line thickness indicates strength of interaction between any two 
proteins, and the different colors represent different protein. The colored nodes represent query proteins and first shell of interactors, whereas, 
white nodes represent second shell of interactors. Max interactors of 1st shell is 6. Max interactors of 2nd shell is 6
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have a certain synergistic relationship in immune regu-
lation and maintenance of body homeostasis. The HIF-1 
signaling pathway was identified as the only pathway 
significantly enriched between DEGs and DE lncRNAs 
in gill, and play an important role in hypoxia stress, glu-
cose metabolism and autophagy [41, 42]. It is speculated 
that it may be related to the physical damage caused by 
stimulation of C. irritans to infect gill tissue. It has been 

reported that mitogen-activated protein kinase (MAPK) 
pathway can increase HIF-1α expression by inducing 
extracellular regulated protein kinases (ERK) phospho-
rylation [43]. In recent years, the MAPK pathway has 
attracted the attention of researchers as a key immune 
pathway, and its functions have been reported to be 
involved in the inflammation regulation and inhibition of 
apoptosis [44]. It suggests that there may be a MAPK / 
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ERK / HIF-1α cascade immune regulation pathway in gill 
tissue of L. crocea, which plays an important role in the 
regulation of hypoxia and inflammation caused by C. irri-
tans infection. The complement system is a highly com-
plex innate immune pathway, which plays a pivotal role 
in resisting pathogen infection [45], and the DEGs in skin 
tissue are significantly enriched in this pathway. The com-
plement system is activated by three pathways: classical, 
alternative and lectin pathway. And complement compo-
nent 3 (C3) is the key gene of these pathways, which can 
drive complement effector function to eliminate patho-
gens and regulate adaptive immunity [46]. We investi-
gated the expression of C3 in the skin of L. crocea, and 
the expression pattern was up-regulated in 0–48 h, down 
regulated rapidly in 48–72  h, and gradually returned to 
normal level in 72–96 h. The up-regulated expression in 
early stage of infection may be related to the activation 
of complement system. However, excessive C3 will pro-
duce excessive anaphylactic peptides, which can mediate 
the aggregation of macrophages and lead to inflamma-
tory response [47]. Therefore, the skin down regulates the 
level of C3 transcription to prevent excessive inflamma-
tory responses from damaging self-cells.

To further analyze the relationships among these 
immune-related DEGs and target genes of DE lncRNAs 
which were involved in the immune regulation, pro-
tein–protein interaction (PPI) network was constructed, 
including immune-related proteins such as NFKBIA, 
GADD45, PTGS2, TNFAIP3, CEBPB, TLR5, TOE1, 
Zn710, CCL4, LEP, DDIT4, SFXN5, SMOC1, TM181 
and HPT. The 3 hub genes with a high level of connec-
tivity were identified. The PPI analysis results show that 
NFKBIA, TNFAIP3 and CEBPB were important nodal 
proteins, which plays an important role in immune 
regulation.

Interestingly, the results of differential analysis between 
protein coding genes and lncRNAs showed that the num-
ber of transcripts in gills was greater than that in skin at 
any time point after C. irritans infection. It seems that 
the majority of transcriptional activation occurs within 
the gills of L. crocea compared with the skin. It suggests 
that the skin had fewer DEGs highlights the localized 
nature of the host–pathogen interaction. During the 
experiment, it was observed that the "white spots" on 
the skin of L. crocea were more obviously than the gills 
after C. irritans infection. Studies have shown that once 
individuals become highly infected with parasite and thus 
approach the terminal stages of disease, the function of 
phagocytes is reduced and a down-regulation of many 
genes occurs [48, 49]. It is speculated that the decrease 
of DEGs in skin may be related to gene-suppression. In 
addition, it has also been reported that this gene-sup-
pression may be mediated by the parasite in an attempt 

to restrict the immune response and thus increase para-
site survival [50]. Gene-suppression caused by parasitism 
is considered to be an important process of interaction 
and coevolution between parasite and its host [51]. In our 
study, there may also be some gene-suppression caused 
by C. irritans in the skin tissue of L. crocea.

Conclusions
In summary, the present study first elucidates the immu-
noregulatory pattern of lncRNA-mRNA in rhubarb on C. 
irritans infection by comparative transcriptome analy-
sis. The results suggest that skin and gills are important 
sources of pro-inflammatory molecules, and the innate 
immunity-related genes they mobilize in defense against 
parasitic infection are not only tissue-specific but also 
spatiotemporally specific. In particular, three hub pro-
tein-coding genes and five hub lncRNAs associated with 
parasite infection were identified through comparative 
transcriptome analysis, and their functions involve mul-
tiple immune pathways. Importantly, we have identi-
fied candidate innate immunity-related genes, including 
CCL4 and DDIT4, that may play key roles in the anti-
inflammatory response during parasite infections. In 
addition, this study will help to better understand the 
role of lncRNAs in the immune response of large yel-
low croaker. Finally, our findings provide an insight into 
the dynamic characterization of the immune response 
of large yellow croaker infected with C. irritans, This 
study contributes to a better understanding of the genetic 
mechanisms underlying the disease resistance traits of 
large yellow croaker. However, more experimental work 
is needed to increase our knowledge on the parasite-host 
model that may help to understand the exact nature of 
the regulation of immune and other biological processes.

Materials and methods
Fish treatment and sample collection
Collection and propagation of the tomonts and theronts 
of C. irritans were conducted using a method described 
by Dan et  al. (2006) [52]. The L. crocea (25 ± 10.0  g, 
n = 200) were cultured at Fufa Aquatic Products Co., 
Ltd. (Ningde, Fujian) and acclimated for 15  days in a 
cement tank (26 ± 0.5  °C) before challenge. Before the 
fish were placed in temporary experimental tank, the 
water in the tank was fully aerated and exposed to the 
environment to provide a suitable growth environment 
for fish. After acclimation, 20 of them were randomly 
selected and transferred to a temporary tank as control 
group. The remaining fish averaged into 4 tanks (1 tons) 
as infected group. Each tank maintains 1000L of water, 
and only maintains a low water level (200L) during the 
infection. The fish of infected group were infected with 
theronts at a dose of 17,000 per fish, and the status of fish 
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was continuously observed for 96 h. During the observa-
tion, the fish stopped feeding and the gill tissues of four 
fish with obvious pathological characteristics were col-
lected from different infection groups at 0 h, 24 h, 48 h, 
72 h, and 96 h post-infection. All the sampled fish were 
anaesthetized by using tricaine methanesulfonate (MS-
222; Sigma, St. Louis, MO, USA), and the gill and skin 
from the same fish were collected simultaneously at each 
time point, snap frozen in the liquid nitrogen and stored 
at − 80 °C for subsequent RNA-seq analysis.

RNA isolation, library preparation and sequencing
Total RNA was isolated using TRIzol reagent (Invit-
rogen, USA), according to the manufacturer’s instruc-
tions. Genomic DNA was removed using DNase (New 
England Biolabs), and RNA purity was assessed using 
the NanoDrop 2000 (NanoDrop Technologies, USA). 
The integrity of each RNA sample was detected by aga-
rose gel electrophoresis and had an A260:A280 ratio and 
A260:A230 ratio and a Qubit 2.0 Fluorometer. The RNA 
samples were used for the subsequent library construc-
tion. Each library was loaded into one lane of the Illu-
mina NovaSeq for 2 × 150 bps pair-end (PE) sequencing.

Construction of L. crocea transcriptome from RNA‑seq data
TrimGalore (https://​github.​com/​Felix​Krueg​er/​TrimG​
alore) and FastQC were used to control the quality of 
sequencing data. At the filtering step, reads that have 
adaptors, length of reads less than 50, reads quality score 
less than 20 are regarded as low-quality data and were fil-
tered. The clean reads were aligned to a reference genome 
of L. crocea by Hisat2 (v. 4.8.5). Then, samtools (v. 1.10) 
was used to filter out the mapping reads which were de-
novo assembled separately for each sample by StringTie 
(v. 2.1.4). Finally, the assembled transcriptomes of each 
sample were merged to an integrated transcriptome of all 
tissues by StringTie (v. 2.1.4) using “–merge” option. Gff-
compare (v. 0.12.1) was used to compared with known L. 
crocea gene annotation to construct a transcriptome rep-
ertoire in L. crocea tissues.

The identification of lncRNAs from transcripts follows 
a strict step-wise pipeline. (i) we used in-house scripts to 
exclude transcripts smaller than 200 bps; (ii) three dif-
ferent softwares (CPC2, CNCI, and PLEK) were used to 
estimate the coding potential, and the transcripts iden-
tified as coding RNAs by any of the three software were 
removed; (iii) we used TransDecoder (http://​trans​decod​
er.​sourc​eforge.​net/) to identify putative open reading 
frame (ORF) in each transcript, and removed transcripts 
have putative ORFs longer than 300 bps; (iv) the remain-
ing transcripts were aligned to the open databases includ-
ing Pfam, Rfam, Uniprot, NR, and miRBase using the 
program pfamscan, Infernal, and BLAST. All transcripts 

with alignment E-value < 1e-6 were removed. The set of 
remaining transcripts were considered as candidate lncR-
NAs in this study and used for the further analysis. The 
flow chart of transcriptome construction is shown in 
Fig. 7.

Expression quantification and normalization of transcripts 
in all tissue samples
Based on the Hisat2 alignment BAM file, StringTie and 
Deseq2 were used to estimate and quantify gene expres-
sion separately for each RNA-seq data with default 
parameters, yielding raw read count and expression 
abundance for each of the protein-coding genes and 
lncRNAs across all samples. Gene expression measure-
ments were normalized, we could estimate the fragments 
per kilobase of exon per million reads mapped (FPKM) 
using equations:

In these equations, nf is the number of inserts aligned 
to the gene, L is the sum of the exon lengths of the gene 
divided by 1000; N is the total effective read counts 
aligned to the genome.Transcripts expressing differ-
ently between any two groups and fulfilling with statis-
tical significance criteria (|log2[foldchange]|≥ 2 and 
p-value < 0.05) were regarded as DE lncRNAs and DEGs.

Target gene prediction of DE lncRNAs
The Pearson’s correlation coefficients (r) between each 
pair of DE lncRNAs and DEGs in L. crocea genome were 
calculated via in-house R scripts (v. 3.6.0). The DEGs with 
|r|> 0.99 and p-value < 0.001 were considered as the tar-
get gene of the paired DE lncRNA.

Gene expression pattern analysis, functional enrichment 
of DEGs and PPI network Analyses
Time-course sequencing data analysis (TCseq) was used 
to assess the expression patterns of non-redundant DEGs 
over time. By clustering DEGs with similar expression 
patterns into the same cluster, 4 clusters were obtained in 
skin and gill tissue respectively.

The functional annotation of genes is based on the 
reference genome of L. crocea. Interprocan (v. 5.0) was 
used for GO terms annotation. KO terms for each gene 
are annoted by an online website (KAAS, https://​www.​
genome.​jp/​tools/​kaas/). OmicShare tools (www.​omics​
hare.​com/​tools) were used to analyze the GO function 
and KEGG pathway of DEGs, and to explore the cor-
responding biological functions and related pathways. 
PPI network construction was performed in STRING 
(https://​string-​db.​org/), the Search Tool for the Retrieval 

FPKM =

(

10
6
× nf

)

/(L×N)

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
http://transdecoder.sourceforge.net/
http://transdecoder.sourceforge.net/
https://www.genome.jp/tools/kaas/
https://www.genome.jp/tools/kaas/
http://www.omicshare.com/tools
http://www.omicshare.com/tools
https://string-db.org/
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of Interacting Genes/proteins, referred to the protein 
interaction result reported in Homo sapiens.

Quantitative real‑time PCR validation
The cDNA was reverse-transcribed with the RNase-free 
gDNA Eraser kit (TaKaRa, Japan). The five-fold diluted cDNA 
and SYBR ® Premix Ex Taq™ II (TaKaRa, Japan) were used to 
perform qRT-PCR with CFX96™ (Bio-Rad, USA). The prim-
ers used for the qRT-PCR analyses are listed in Table S1. The 
PCR cycling conditions used were as follows: 95 °C for 30 s; 
40 cycles at 95 °C for 5 s, 60 °C for 30 s and 72 °C for 10 s; and 
72 °C for 10 s. The reference gene β-actin was used to nor-
malize the expression values. This was followed by a dissocia-
tion curve analysis, at 95 °C for 10 s, 60 °C for 1 min and 97 °C 
for 1 s, to verify the specificity of product amplification. Each 
experiment group was performed in triplicate.

Data from the qRT-PCR was calculated using the 2 −
ΔΔCt relative quantification method [53]. All data were 
expressed as the means ± SE. Difference among groups 
were analyzed by a one-way ANOVA with post-hoc Dun-
nett’s T3 test. P < 0.05 was considered to indicate statisti-
cal significance.
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