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Abstract 

Background:  Chicken intramuscular fat (IMF) content is closely related to meat quality and performance, such as 
tenderness and flavor. Abdominal fat (AF) in chickens is one of the main waste products at slaughter. Excessive AF 
reduces feed efficiency and carcass quality.

Results:  To analyze the differential deposition of IMF and AF in chickens, gene expression profiles in the breast mus-
cle (BM) and AF tissues of 18 animals were analyzed by differential expression analysis and weighted co-expression 
network analysis. The results showed that IMF deposition in BM was associated with pyruvate and citric acid metabo-
lism through GAPDH, LDHA, GPX1, GBE1, and other genes. In contrast, AF deposition was related to acetyl CoA and 
glycerol metabolism through FABP1, ELOVL6, SCD, ADIPOQ, and other genes. Carbohydrate metabolism plays an essen-
tial role in IMF deposition, and fatty acid and glycerol metabolism regulate AF deposition.

Conclusion:  This study elucidated the molecular mechanism governing IMF and AF deposition through crucial 
genes and signaling pathways and provided a theoretical basis for producing high-quality broilers.
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Introduction
Fat deposition in broilers is affected by genetic factors 
(breed, sex, and genotype) and nongenetic factors (nutri-
tion, age, and environmental factors). The rate of fat 
deposition varies across tissues in broilers. In addition, 
glucose and lipid metabolism and hormone sensitivity 
vary in adipocytes from different tissues [1–4]. The depo-
sition of abdominal fat (AF) and intramuscular fat (IMF) 
is regulated by different mechanisms in chickens [5], and 
this characteristic allows the genetic selection of broilers 
with high IMF and low AF [6].

Previous studies showed a significant and positive cor-
relation between IMF and AF [7, 8]. In contrast, a study 
found that the chicken with lower AF had higher IMF. The 

discrepancy may be caused by breeding characteristics, 
environmental factors, genetic selection, and sampling 
methods [6]. A balanced selection population (increasing 
IMF, decreasing AF percentage (AFP)) was more effective 
than selecting for IMF alone in Jing-xing yellow chicken 
[9]. Various genetic mechanisms regulate lipid deposi-
tion in tissues. Genes encoding perilipin and long-chain 
acyl CoA dehydrogenase are highly expressed in subcu-
taneous adipocytes, whereas genes encoding bone mor-
phogenetic proteins 4 and 7 are abundantly expressed in 
intramuscular adipocytes [10]. With the development of 
cost-effective sequencing technologies, a large amount of 
transcriptome data has been generated under different 
biological back scenes. Currently, based on these high-
throughput sequencing data, Weighted correlation net-
work analysis (WGCNA) has been successfully applied 
to identify gene expression networks and biomarkers of 
interest in various biological domains [11–16]. Studies 
have shown that the transcription factor CREB3L1 was 
associated with low AF, whereas the transcription factor 
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L3MBTL1 and the cofactor TNIP1 were related to high 
IMF and low AF in the Jing-xing Huang chicken line [17]. 
These results underscore the need to study the genetic 
mechanisms regulating fat deposition in broiler chick-
ens. Wenchang breed is mainly distributed in Hainan, 
the lowest altitude in south China. It is an excellent local 
breed with more than 400  years of breeding history. 
Wenchang chicken is usually marketed in 100–110 days 
and weighs about 1.4–1.8 kg. Wenchang chicken has the 
characteristics of thin and tender skin, fragrant meat, and 
high IMF. However, the AF content of Wenchang chicken 
is also high, which will cause waste in production and 
reduce the uniformity of population. Therefore, it is nec-
essary to understand the characteristics of fat deposition 
in Wenchang chickens, which is beneficial to improve 
Wenchang chickens’ quality and production efficiency. 
Few studies jointly evaluated IMF and AF in broilers. 
This study evaluates differential fat  deposition in breast 
muscle (BM) and AF tissues of Wenchang chicken, gene 
expression profiles these tissues based on transcriptome 
data, and genes and signaling pathways involved in IMF 
and AF deposition in chicken to reveal the difference of 
molecular regulation mechanisms.

Results
Evaluation of sequencing data
Transcriptomic data were obtained from the BM and AF 
of 18 Wenchang chickens. Thirty-six RNA-sequencing 
(RNA-seq) libraries were constructed and sequenced 
(Additional file: Table S1). A total of 23,910 genes were 
detected, of which 17,179 genes were expressed in BM, 
and 18,912 genes were expressed in AF. In addition, 
72.24% (16,753/23,910) of the genes were expressed 

in both BM and AF (Fig. 1). Raw sequence reads from 
each library are shown in Additional files: Tables S2 
and S3. The most genes abundantly expressed in BM 
and AF were glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) and fatty acid-binding protein (FABP4), 
respectively.

To explore differences in IMF and AF deposition 
(Table 1), Principal component analysis (PCA) of fatty 
acid composition was performed to assess differences 
in fat deposition in BM and AF tissue (Fig. 2A) [18].

PCA analysis was performed on 16,753 genes co-
expressed in BM and AF (Fig.  2B). PCA analysis was 
performed on all expressed genes in BM and AF, 
respectively (Fig. 2C and 2D).

Fig. 1  Venn diagrams of genes differentially expressed in the breast 
muscle and abdominal fat of broiler chickens

Table 1  Phenotypes of Wenchang chicken in different tissues 

Note: Means differences of fatty acids among treatments were determined 
with Duncan’s multiple range test. a, b Means in the same rows with different 
superscripts differ (P < 0.05) (n = 18). ND means not detected

Phenotypes Breast Muscle Abdominal Fat

IMF/AFP 1.2944 ± 0.1089a 4.7266 ± 0.3988b

TG 4.9691 ± 0.5710a 23.5572 ± 1.8791b

C10:0 ND 0.0093 ± 0.0005

C12:0 0.0364 ± 0.0023 0.0280 ± 0.0009

C14:0 0.4470 ± 0.0145 0.6762 ± 0.0117

C14:1 0.0788 ± 0.0052 0.1531 ± 0.0075

C15:0 0.0706 ± 0.0016a 0.08967 ± 0.0033

C16:0 26.1824 ± 0.1856a 27.2354 ± 0.3255b

C16:1 2.8540 ± 0.1824 5.1318 ± 0.2777

C17:0 0.1328 ± 0.0062 0.1417 ± 0.0060

C18:0 11.5981 ± 0.2874 6.9239 ± 0.2392

C18:1n9c 28.9134 ± 0.7301a 39.0340 ± 0.3500b

C18:2n6c 17.6387 ± 0.1924a 18.7408 ± 0.4955b

C18:3n3 0.4663 ± 0.0158 0.8446 ± 0.0158

C20:0 0.1898 ± 0.0083 0.1227 ± 0.0056

C20:1 0.2493 ± 0.0079 0.3452 ± 0.0129

C20:2 ND 0.0132 ± 0.0007

C20:3n3 0.1106 ± 0.0080a 0.0082 ± 0.0007b

C20:3n6 0.9901 ± 0.0583a 0.0846 ± 0.0042b

C20:4n6 7.8473 ± 0.4910a 0.1625 ± 0.0135b

C20:5n3 0.1186 ± 0.0073a 0.0082 ± 0.0009b

C21:0 0.4080 ± 0.0460a 0.1433 ± 0.0074b

C22:0 0.1949 ± 0.0152a 0.0254 ± 0.0015b

C22:1n9 0.1233 ± 0.0098a 0.0214 ± 0.0008b

C22:2 ND 0.0039 ± 0.0009

C22:6n3 0.8751 ± 0.0648a 0.0139 ± 0.0016b

C23:0 0.0872 ± 0.0053a 0.0233 ± 0.0009b

C24:0 0.1540 ± 0.0084a 0.0131 ± 0.0013b

C24:1 0.2333 ± 0.0130a 0.0027 ± 0.0008b
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WGCNA identified module genes significantly related 
to phenotypes
Genes with fragments per kilobase of transcript per 
million fragments mapped values of less than one were 
excluded. Gene co-expression networks were con-
structed using 18,295 expressed genes from BM and 
19,778 expressed genes from AF, and the coordination 
matrix was converted to a topology matrix. The similar-
ity in gene co-expression between modules was quanti-
fied using a dynamic tree-cutting algorithm, and modules 
with height values of less than 0.25 were merged (the 
minimum number of genes in the module was set to 30) 
(Fig. 3).

Twenty and twenty-seven expression modules were 
detected in BM (Additional file: Table S4) and AF (Addi-
tional file: Table S5), respectively (Fig. 4), and the number 
of genes in each network module was counted. The larg-
est module in BM (blue) and AF (turquoise) contained 
6972 and 5755 genes, respectively, and the smallest mod-
ule in BM (dark brown) and AF (white) contained 113 
and 47 genes, respectively.

Gene modules significantly associated with genetic 
traits were identified. Absolute values of 0 and 1 indi-
cated weak and strong correlation between the mod-
ule and the trait, respectively. Among the evaluated 
traits, IMF was significantly and positively correlated 
with the blue module (r = 0.51, P = 0.04), triglycerides 
(TG) was significantly and positively associated with 
the darkred module (r = 0.72, P = 0.002), total choles-
terol (TCHO) was significantly and positively related to 
the darkorange module (r = 0.63, P = 0.008), phospho-
lipids (PLIP) was significantly and positively associated 
with the orange and blue modules (r = -0.64, P = 0.007; 
r = -0.51, P = 0.04) and traits such as fatty acids com-
position showed significant correlations with related 
modules. AF weight showed a significant and positive 
correlation with the darkgreen and lightgreen modules 
(r = 0.65, P = 0.009; r = 0.71, P = 0.003), and AFP showed 
a significant and positive association with the lightgreen 
and yellow modules (r = 0.64, P = 0.01; r = 0.54, P = 0.04). 
In AF tissue, TG was significantly and positively corre-
lated with the darkred and turquoise modules (r = 0.55, 

Fig. 2  Principal component analysis (PCA) results of BM and AF tissue. A. PCA of phenotypes in BM and AF. B. PCA of genes expressed in both BM 
and AF. C. PCA of genes expressed in BM. D. PCA of genes expressed in AF
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Fig. 3  Clustering of gene modules. A. Breast muscle tissue microarray. B. Abdominal fat tissue microarray. Upper panel: genes were clustered into 
different groups. Lower panel: genes were assigned to modules after dynamic tree-cutting and merging
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Fig. 4  Relationship between gene modules and traits in breast muscle tissue (A) and abdominal fat tissue (B). Note: The upper value in each 
module is the correlation coefficient between the module and the lower character, and the lower value is the p-value of the coefficient
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P = 0.03; r = 0.57, P = 0.03). TCHO showed a significant 
and positive association with the brown and blue mod-
ules (r = 0.87, P = 3e-05; r = 0.64, P = 0.01). PLIP was 
significantly and positively related to the grey60 module 
(r = 0.91, P = 3e-06), and traits such as fatty acids compo-
sition showed a significant and positive correlations with 
related modules.

Identification of DEGs in BM and AF
We selected three individuals with high IMF content 
and three individuals with low IMF content for BM tis-
sue’s difference analysis. And we selected three individu-
als with high AFP and three individuals with low AFP for 
AF tissue’s difference analysis (Additional file: Table S6). 
Analysis using Deseq2 detected 461 DEGs (163 upregu-
lated and 298 downregulated) in the high and low IMF 
groups (Additional file: Table S7). Pathway enrichment 
analysis revealed that these genes were enriched in 29 
pathways, mainly including metabolic pathways, MAPK 
signaling pathways, arachidonic acid metabolism, gly-
colysis/gluconeogenesis, starch, and sucrose metabolism, 
fructose and mannose metabolism, and other signaling 
pathways (Additional file: Table S8). GO analysis showed 
that DEGs in this group were enriched in 27 biologi-
cal processes, 16 cellular components, and 12 molecu-
lar functions (Additional file: Table S9). A total of 2010 
genes (1301 upregulated and 700-downregulated) were 
detected in the high and low AF groups (Additional 
file: Table S10). These genes were enriched in 59 KEGG 
pathways, mainly including metabolic pathways, PPAR 
signaling pathway, MAPK signaling pathway, tyrosine 
metabolism, glycerolipid metabolism, phenylalanine 
metabolism, glycerophospholipid metabolism, pyruvate 
metabolism, unsaturated fatty acid biosynthesis, fatty 
acid metabolism, and other signaling pathways (Addi-
tional file: Table S11). GO analysis showed that DEGs in 
this group were enriched in 66 biological processes, 21 
cellular components, and 18 molecular functions (Addi-
tional file: Table S12).

Identification of pathways in BM and AF
The genes expressed in the modules significantly associ-
ated with all phenotypes were selected from BM and AF 
tissues, respectively. The significantly expressed genes in 
the modules significantly associated with the traits were 
pooled, and a total of 3818 expressed genes were identi-
fied in BM tissue, while a total of 5826 expressed genes 
were identified in AF tissue.

These genes were analyzed separately in association 
with differentially expressed genes, in which 114 co-
expressed genes were obtained in BM tissue (Fig.  5A), 
while a total of 1229 co-expressed genes were obtained in 
AF tissue (Fig. 5B).

The differential module genes obtained from the 
two tissues were analyzed separately for KEGG path-
way enrichment. In BM tissue, 114 genes were assigned 
to 5 KEGG pathways (P < 0.05) (Fig.  6A), and genes 
were enriched in MAPK signaling pathway, ECM-
receptor interaction, Gap junction, Tight junction, 
Vascular smooth muscle contraction, GnRH signaling 
pathway, and Focal adhesion. In AF tissue, 1229 genes 
were assigned to 41 KEGG pathways (P < 0.05) (Fig. 6B), 
and genes were mainly enriched in biological processes, 
including Oxidative phosphorylation, ABC transporters, 
C-type lectin receptor signaling pathway, Phosphatidylin-
ositol signaling system.

Identification of co‑expressed genes
The molecular expression networks between pathway 
and co-expressed genes in BM (Fig. 7A) and AF (Fig. 7B) 
were performed, respectively. The genes more abun-
dantly expressed in BM with high IMF were related to 
muscle development (TPM2, MTMR7) and glycolipid 
metabolism (LDHA, AMY1A, ST3GAL6, GBE1, SGPL1, 
GPX1, COX5A, ALDH5A1). The genes more significantly 
expressed in the high AF group were related to fatty acid 
metabolism (ELOVL6, SCD, FABP1, ME3, ADIPOQ, 
HMGCS2, PDGFA, ACAT2).

Fig. 5  Venn of module characteristic genes and differential expression genes. A. Breast muscle tissue. B. Abdominal fat tissue
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Fig. 6  Pathway enrichment analysis of co-expression genes in breast muscle (A) and abdominal fat (B)
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Fig. 7  Network of pathways and genes in breast muscle tissue (A) and abdominal fat tissue (B)



Page 9 of 13Luo et al. BMC Genomics          (2022) 23:308 	

Discussion
Yellow feather broiler chickens are widely consumed in 
China, and chicken meat production has increased in 
recent years. IMF and AF contents strongly affect the 
quality of chicken meat. Fasting before slaughter is essen-
tial in the experimental sampling process [19]. The fast-
ing method can reduce the volume of stomach contents 
and the risk of visceral microbial contamination during 
slaughter [20]. In general, moderate fasting (no more 
than 24 h) is suitable for meat quality because it acceler-
ates glycogen consumption [21, 22]. Especially in poultry, 
fasting can decrease breast muscle glycogen and increase 
initial pH [23–25]. Studies have shown that fasting for 
a certain period before slaughter can control the mus-
cle glycogen content of beef cattle without affecting the 
marbling score [26–28]. Studies have shown that fast-
ing for 12 h has less influence on the structural changes 
and plasma corticosterone level and less on the energy 
metabolism level of chest muscle tissue [29]. Therefore, 
fasting for 12 h before slaughter would not significantly 
impact subsequent meat quality and energy metabolism 
levels, and the effect of glucose metabolism in food on 
the chicken could be ruled out.

Although the mechanisms underlying fat deposition 
in broiler chickens are well known, differences in the 
rate of fat deposition in BM and AF tissues have not 
been determined.

PCA results based on phenotypes showed a strong 
separation of breast muscle tissue from abdominal fat 
tissue, as expected. This suggests that BM tissue and 
AF tissue have different regulatory roles in phenotype. 
Many DEGs can be identified by RNA-seq analysis, 
however, the characterization of gene expression pat-
terns and correlation with phenotypes are challenging, 
underscoring the need to perform weighted co-expres-
sion network analyses. In the study, DEGs were iden-
tified in BM and AF by RNA-seq analysis and joint 
analysis with WGCNA to identify specifically expressed 
genes and signaling pathways for IMF and AF depo-
sition. The molecular regulatory mechanisms of fat 
deposition in different tissues at the same age were elu-
cidated in chicken.

Based on the differentially expressed genes, the 
results of KEGG signaling pathway analysis showed that 
DEGs from BM and AF tissues were jointly enriched in 
the AGE-RAGE signaling pathway, amino acid biosyn-
thesis, cytokine-cytokine receptor interactions, local 
adhesion, GnRH signaling pathway, MAPK signaling 
pathway, metabolic pathway, in diabetic complications. 
Tight junctions and other signaling pathways. Studies 
have shown that MAPK signaling pathway is involved 
in lipid deposition [30, 31], which can regulate PPAR 

pathway [32]. Moreover, PPAR signaling pathway also 
has the function of regulating lipid metabolism [33, 34].

In contrast, DEGs in BM tissue were specifically 
enriched in pathways related to gluconeogenesis (gly-
colysis/gluconeogenesis, starch, sucrose metabolism, 
fructose, mannose metabolism, pentose, and glucu-
ronide). LDHA and LDHB in the glycolysis/gluco-
neogenesis signaling pathway are involved in pyruvate 
metabolism and tricarboxylic acid cycle, facilitating 
the glycolytic process by converting pyruvate to lac-
tate [35]. In addition, GBE1 is essential in starch and 
glycogen formation metabolism, and there is a strong 
link between the hexokinase family genes HK1, HK2, 
HK3 in this pathway and the metabolic process of glu-
cose. These data suggest that IMF deposition in BM tis-
sue mainly depends on glucose metabolism, with some 
energy metabolism involved in the process.

DEGs in BM tissue were specifically enriched in path-
ways related to fatty acid syntheses (PPAR signaling, gly-
colipid metabolism, glycerophospholipid metabolism, 
and unsaturated fatty acid biosynthesis). Sixteen genes 
were enriched in the PPAR signaling pathway, including 
HMGCS2 (catalyze ketogenesis) [36, 37], ACOX1 (lipid 
degradation) [38], ADIPOQ (adipocyte differentiation) 
[39], APOA1 and ME3 (cholesterol metabolism) [40], 
SCD (fatty acid transporter proteins) [41], PLIN1 and 
PLIN2 (lipid droplet protection) [42–44], ACSL1 [45], 
FABP7, FABP1, FADS2. The formation of intracellular 
lipid droplets is a highly conserved process, including 
fatty acid transport and activation, neutral lipid synthe-
sis, and lipid droplet formation, regulated by many fac-
tors and pathways [46]. These results suggest that AF 
deposition is dependent on fatty acid synthesis and trans-
port and lipid droplet formation.

WGCNA was performed using RNA-seq data to iden-
tify expressed genes in different modules and predict the 
role of genes in lipid deposition. Several modules were 
significantly associated with IMF/AFW/AFP, lipid com-
position, and fatty acids metabolism in BM and AF, and 
the expressed genes significantly associated with the 
phenotypes in the modules were aggregated together 
and analyzed jointly with DEGs, which could further 
identify the functional genes that play essential roles in 
the IMF and AF deposition. Among all expressed genes, 
GAPDH has the highest expression level in breast mus-
cle tissue. GAPDH is a key enzyme in glycolysis. It plays 
an important role in glycolysis by catalyzing the first step 
of this pathway by converting D-glyceraldehyde 3-phos-
phate (G3P) to 3-phospho-d-glyceroylphosphate [47, 48]. 
FABP4 gene in the lipid-binding protein family regulates 
fatty acid uptake and transport [41].

We identified 114 expressed genes associated with 
Metabolic pathways, Starch and sucrose metabolism, 
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Intestinal immune network for IgA production, Adren-
ergic signaling in cardiomyocytes, and Glycolysis/Glu-
coneogenesis in BM. These pathways are regulated by 
genes such as ALDH5A1, LDHA, GAPDH, GBE1, and 
GPX1 and may play roles in IMF deposition. A total of 
1229 expressed genes associated with 41 signaling path-
ways were identified in AF, of which 20 pathways that 
may play roles in AF deposition via PPAR signaling path-
way, amino acid biosynthesis, oxidative phosphorylation, 
may be controlled by several genes, including ADIPOQ, 
ELOVL6, HMGCS2, ME3, DGKE, AOX1, UBB, SCD, 
APOC3, and FABP1. The results revealed that IMF dep-
osition in BM tissue was regulated by gluconeogenesis-
related pathways (glycolysis/gluconeogenesis, starch and 
sucrose metabolism signaling pathways), and by several 
genes, including GAPDH, LDHA, GPX1, ALDH5A1, and 
GBE1, among which, the key differential gene ALDH5A1 
can catalyze a step in the degradation of the inhibitory 
neurotransmitter γ-aminobutyric acid [49]. The protein 
encoded by LDHA is involved in pyruvate metabolism 
by catalyzing the conversion of lactate to pyruvate in 
anaerobic glycolysis. GAPDH plays an important role in 
glycerol metabolism. These data further suggest that IMF 
deposition in BM is dependent on gluconeogenesis and 
energy metabolism.

While expressed genes in AF tissue are enriched to 
PPAR signaling pathway, oxidative phosphorylation, 
amino acid biosynthesis, and other signaling pathways, 
acting through genes such as FABP1, ELOVL6, SCD, and 
ADIPOQ. A PPAR signaling pathway is involved in lipid 
droplets formation and mitochondrial metabolism, and 
fatty acid oxidation and lipid synthesis are necessary for 
cellular signaling [50]. FABP1 plays a crucial role in the 
PPAR pathway, PPARG​ expression, and fatty acid uptake, 
transport, and metabolism in  vivo [51]. In addition, 
PPARϒ can be regulated by modulating SCD1 expression 
to control fatty acid synthesis in adipocytes [52]. ELOVLs, 
which encode long-chain and extra-long-chain fatty acid 
elongases, play an important role in synthesizing fatty 
acids and can limit elongation. ELOVL6 is involved in 
synthesizing fatty acid enzymes in vivo, promoting fatty 
acid elongation [53]. ACAT2 encodes acetyl-coenzyme A 
acetyltransferase 2, which is involved in acetyl-coenzyme 
A metabolism [54]. These results suggest that AF depo-
sition may result from changes in fatty acid synthesis 
through mitochondrial activity.

The results suggest that different signaling pathways 
regulate fat deposition in BM and AF tissues. IMF dep-
osition in BM was associated with pyruvate and citrate 
metabolism through GAPDH, LDHA, GPX1, GBE1, 
and other genes, whereas AF deposition was related to 
acetyl-coenzyme A and glycerophospholipid metabo-
lism through FABP1, ELOVL6, SCD, and ADIPOQ. The 

transcriptional regulation of genes in network modules 
associated with traits and metabolic pathway analysis can 
provide new insights into the genetic mechanisms gov-
erning fat deposition in broiler chickens.

Conclusion
The analysis of transcriptome data from BM and AF tis-
sues, combined with differential expression analysis and 
WGCNA, showed that the genes GAPDH, LDHA, GPX1, 
and GBE1 were involved in regulating IMF deposition, 
and the genes FABP1, ELOVL6, SCD, and ADIPOQ 
determined AF deposition. Glycolysis/gluconeogenesis 
and other signaling pathways play an important role in 
IMF deposition, whereas PPAR metabolism controls AF 
deposition. Therefore, we hypothesized that IMF deposi-
tion in BM tissue  may affect energy metabolism during 
myocyte gluconeogenesis while fatty acid synthesis path-
ways may affect AF deposition.

Materials and methods
Animals and Sample Collection
Wenchang chickens (18 females) of 98  days were 
obtained from the Institute of Poultry Research of the 
Chinese Academy of Agricultural Sciences (Yangzhou, 
China). The diet (Additional file: Table S13) was formu-
lated according to the feeding standard (NY/T33-2004). 
Under the same standard conditions of light (20 lx), tem-
perature (35℃ ~ 37℃), humidity (not less than 50%), and 
immunization schedule, after a 12-h fast, the chickens 
were stunned by electric shock and killed by cervical dis-
location at 98 days. After slaughter, breast muscle (BM) 
and AF were collected and immediately stored at − 80 °C 
until use.

Measurement of Biochemical Indices [18]
The determination of fatty acids in BM and AF tissues 
refers to the national standard《GB/T 5413.27–2010 
Food Safety National Standard for infant food and 
dairy products determination of fatty acids》in the first 
method: acetyl chloride—methanol methyl esterification 
method. The determination of intramuscular fat in BM 
tissue refers to the national standard《GB/T 5009.6–
2016 National Standard for Food Safety determination 
of fat in food》in the first method: Soxhlet extraction. 
The TG, TCHO, and PLIP contents in BM and AF tis-
sues were measured using assay kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China, and Beijing 
Leichuang Biotechnology Co., LTD, China). We weighed 
2.0 ± 0.01 g breast muscle and abdominal fat samples and 
mixed them with 18 mL anhydrous ethanol in 50 ml cen-
trifuge tubes. Each sample was homogenized by a hand-
held high-speed homogenizer (35,000 r/min, 15 s/ time). 
The samples were crushed, centrifuged at 2500 r/min for 



Page 11 of 13Luo et al. BMC Genomics          (2022) 23:308 	

10  min. After centrifugation, the supernatant was used 
for measurement. Refer to the instruction for specific 
sample loading quantity. After incubation, the absorb-
ance value (510  nm) was measured using a microplate 
reader (Tecan Infinite 200 Pro, Switzerland).

Transcriptome Profiling
Transcriptome profiling of 18 breast muscle and 18 
abdominal fat tissues was performed on the Illumina 
PE150 platform (Berry Genomics; Beijing, China) 
(https://​www.​berry​genom​ics.​com). RNA was extracted 
as described previously [55]. Adapter sequences and 
other low-quality data were removed using Cutadapt. 
Reads were aligned to the reference genome using 
HISAT, while clean reads obtained by filtering were com-
pared to the reference genome according to the gene 
position information specified in the genome annotation 
file gtf, and the total comparison rate was approximately 
90%.

Differential Expression Analysis
Based on phenotypic data, DEGs were identified in BM 
tissue with high IMF and low IMF (from three animals 
each) and AF tissue with high AF and low AF (from three 
animals each) using DESeq2 in R [56]. Adjusted p-values 
(q-values) were calculated using Benjamin and Hoch-
berg’s approach for controlling the false discovery rate. 
Genes with | log2(fold change) |≥ 0.58 and P < 0.05 were 
considered differentially expressed.

Weighted Gene Co‑expression Network Analysis (WGCNA)
WGCNA was performed using the WGCNA package 
[57] with default settings and minor modifications. For 
the analysis of genes expressed in BM tissue (n = 16), the 
minModuleSize was set to 50, and mergeCutHeight was 
set to 0.25 for tissue- or stage-specific module detection 
(soft threshold = 4). For the analysis of genes expressed 
in AF tissue (n = 15), the minModuleSize was set to 30, 
and mergeCutHeight was set to 0.25 for tissue- or stage-
specific module detection (soft threshold = 10). Den-
drograms were created using topology overlap matrix, 
module detection, and similar module merging func-
tions. Module-trait relationships were calculated, and 
correlations were adjusted using Benjamin-Hochberg 
correction.

Pathway Enrichment Analyses
Gene ontology (GO) enrichment analysis was performed 
with the DAVID database (https://​david.​ncifc​rf.​gov/) to 
identify gene classes and categories. Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway enrichment 
analysis was performed using KOBAS version 3.0 (http://​
kobas.​cbi.​pku.​edu.​cn). The significance level was set at 

P < 0.05. The gene-pathway interaction networks for the 
candidate genes were visualized with Cytoscape 3.8.0 
(http://​www.​cytos​cape.​org/) [58].

Statistical Analyses
The significance of differences between means was 
assessed using Student’s t-test in SPSS 22.0 (IBM Corp, 
Armonk, NY, USA). P-values less than 0.05 were consid-
ered statistically significant. Data are presented as the 
mean ± standard error of the mean.
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