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Abstract

Background: In the pursuit of a better understanding of biodiversity, evolutionary biologists rely on the study of
phylogenetic relationships to illustrate the course of evolution. The relationships among natural organisms, depicted
in the shape of phylogenetic trees, not only help to understand evolutionary history but also have a wide range of
additional applications in science. One of the most challenging problems that arise when building phylogenetic trees
is the presence of missing biological data. More specifically, the possibility of inferring wrong phylogenetic trees
increases proportionally to the amount of missing values in the input data. Although there are methods proposed to
deal with this issue, their applicability and accuracy is often restricted by different constraints.

Results: We propose a framework, called PhyloMissForest, to impute missing entries in phylogenetic distance
matrices and infer accurate evolutionary relationships. PhyloMissForest is built upon a random forest structure that
infers the missing entries of the input data, based on the known parts of it. PhyloMissForest contributes with a robust
and configurable framework that incorporates multiple search strategies and machine learning, complemented by
phylogenetic techniques, to provide a more accurate inference of lost phylogenetic distances. We evaluate our
framework by examining three real-world datasets, two DNA-based sequence alignments and one containing amino
acid data, and two additional instances with simulated DNA data. Moreover, we follow a design of experiments
methodology to define the hyperparameter values of our algorithm, which is a concise method, preferable in
comparison to the well-known exhaustive parameters search. By varying the percentages of missing data from 5% to
60%, we generally outperform the state-of-the-art alternative imputation techniques in the tests conducted on real
DNA data. In addition, significant improvements in execution time are observed for the amino acid instance. The
results observed on simulated data also denote the attainment of improved imputations when dealing with large
percentages of missing data.

Conclusions: By merging multiple search strategies, machine learning, and phylogenetic techniques,
PhyloMissForest provides a highly customizable and robust framework for phylogenetic missing data imputation, with
significant topological accuracy and effective speedups over the state of the art.
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Background
The understanding of the evolutionary history and rela-
tionships among individuals or groups has become a key
research topic over the years. Phylogenetic studies repre-
sent a fundamental tool not only in the evolutionary biol-
ogy field but also in a wide range of other important appli-
cation domains [1]. Phylogenetic insights help conserva-
tion researchers to study and make decisions about the
protection of endangered species and conservation poli-
cies [2, 3]. The application of phylogenetics also revealed
to be important in forensic sciences [4]. It also improves
the investigation of pathogens in molecular epidemiology,
thus being a useful tool to understand and fight against
infectious diseases [5, 6]. In fact, phylogenetic analyses
are actively contributing to the identification and char-
acterization of SARS-CoV-2 lineages, as shown in [7, 8].
The inclusion of phylogenetics in medicine proved to be a
tool that significantly improves the detection of complex
diseases like cancer [9, 10]. In the area of pharmacology,
the analysis of phylogenetic trees also helps researchers in
drug development in a variety of ways [11].
In order to describe evolutionary hypotheses, a graph-

ical structure called phylogenetic tree is built. A phy-
logenetic tree T = (V ,E) illustrates evolutionary rela-
tionships among the organisms characterized in the node
set V, through the definition of linkages in the branch
set E. The internal nodes in V are known as Hypotheti-
cal Taxonomic Units (HTUs), since they denote potential
ancestors whose evolution resulted in the Operational
Taxonomic Units (OTUs) located in the terminal nodes.
The methodology used to infer phylogenetic trees is
divided into two major groups: character-based methods
and distance-based methods [12]. While the former uses
a multiple sequence alignment to generate a set of possi-
ble phylogenetic trees directly from the sequences at hand,
the latter processes the given sequences to construct a
phylogenetic pairwise distance matrix instead and then
infer a phylogenetic tree from the matrix. The most pop-
ular character-based methods are: maximum parsimony,
maximum likelihood, and Bayesian methods [1]. As for
distance-based methods, the ones that are mostly used
are: unweighted pairwise group method with arithmetic
means (UPGMA), weighted pairwise group method with
arithmetic means (WPGMA), neighbor joining (NJ) and
Fitch-Margoliash (FM) [13].
When analysing large-scale datasets, character-based

methods, in particular maximum likelihood and Bayesian
methods, tend to be computationally demanding. In con-
trast, distance based methods typically provide a less
demanding approach to infer phylogenies, which is crucial
to overcome strict time constraints in phylogenetic anal-
yses and also to define reliable starting points in complex
biological scenarios [14]. Moreover, under certain circum-
stances, distance-based methods have shown competitive

and faster results when comparing with character-based
methods [15–18]. Therefore, distance-based methods will
be the main point of focus in this research work.
Distance-based methods follow two major steps: 1)

compute the distance matrix and 2) obtain the phyloge-
netic tree from the distance matrix. In order to perform
the second step, the pairwise distance matrix obtained in
the first step is typically expected to be complete, i.e, all its
values should be known. However, the presence of missing
data can lead to failure in the straightforward calcula-
tion of phylogenetic distances, thus making the process of
building a phylogenetic tree a challenging task. In fact, the
probability of missing data increases with the amount of
data to be analysed [19]. Missing data in the phylogenetics
field may occur for several reasons: failure of experimen-
tal work [14], data generation protocols, approaches to
taxon and gene sampling and gene birth and loss [20].
Missing data can also appear due to the lack of biological
material, imprecision of experimental methods and for a
combination of unpredictable reasons [21].
With the aim of building the pairwise distance matrix,

the first step to be performed is the acquisition of the
sequences. Afterwards, the second step is the alignment
of the sequences. Finished the process of sequence align-
ment, the dissimilarity between each sequence is then
calculated, i.e., when comparing two sequences, each col-
umn is analysed and the distance between them is the
number of different columns they share. The calculated
dissimilarity is later converted into evolutionary distances
by using correction factors derived from a substitution
model and the result is the pairwise distance matrix con-
structed from the alignment of the sequences. Hence, the
problem of missing data in phylogenetic distance matri-
ces arises from the missing characters in the sequence
alignment [22].
In Fig. 1, there is an example of a dissimilarity matrix

obtained from an alignment with missing characters. In
order to calculate the distance between two sequences,
after being aligned, they have to share known subse-
quences between each other. In the example illustrated
in Fig. 1, it can be observed that the distance between
sequence B and C cannot be directly calculated, since
the known subsequences do not overlap. That is, in the
part sequence B has known characters, sequence C has
missing characters, represented with the question mark,
and vice versa. On the other hand, the distances between
sequence E and other sequences are not affected by this
issue, in spite of also having unknown values. In this case,
the columns in which E has an unknown value and the
OTU it is compared to has a known value do not count
towards the distance.
Different studies revealed that, under the presence of

missing data, the possibility of inferring wrong phyloge-
netic trees significantly increases [23, 24]. Therefore, there
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Fig. 1Missing matrix inputs obtained from incomplete sequences

is a need for efficient estimation techniques to deal with
missing data in phylogenetic pairwise distance matrices.
The approaches existing in the literature can be classified
into two major groups: direct and indirect methods. The
direct methods infer the phylogenetic tree directly from
the partial distance matrix, while the indirect methods
first implement an imputation strategy to fill the miss-
ing information in the distance matrix and, after that,
construct the phylogenetic tree from the imputed matrix.
State-of-the-art direct methods rely on different tech-

niques to infer the phylogenetic tree directly from the
incomplete distance matrix, such as the triangles method
[25], a least-squares (LS) method named MW-modified
[21], and an adaptation of NJ to deal with incomplete
distance matrices [26]. The applicability of the referred
methodologies depends on a combination of restrictions
that need to be satisfied. For example, in order to add a
new element to a tree in the triangles method, it must
share at least two known distances with elements within
the tree. On the other hand, MW-modified requires that
the distances are additive, that is, the distances in the
matrix must correspond to the distances in the phyloge-
netic tree. Distances are said to be additive when they
satisfy the four-point metric condition, i.e. the sum of the
distances dAB + dCD is ≤ max(dAC + dBD, dAD + dBC) for
any four OTUs A, B, C, D. When this condition is verified,
distances can be fitted so that the branch lengths in the
path between a pair of OTUs equal the genetic distance
between them. Such combinations of restrictions there-
fore impose limitations on the application of the existent
direct approaches.
Several studies proposed different approaches to define

indirect methods, where the inference of the missing dis-
tances is first tackled to proceed afterwards with the
construction of the phylogenetic tree from the imputed
distance matrix. Among these proposals, it can be high-
lighted a heuristic approach named LASSO [14], an
LS-based approach with multivariate optimization called
DAMBE [22], a statistical method called SIA [27], and
twoMachine Learning (ML) techniques: matrix factoriza-
tion and autoencoder [28]. In order to apply LASSO, the
molecular clock hypothesis needs to be assumed, mean-

ing that sequence divergence must accumulate over time
at a constant rate. This assumption establishes that genetic
distances are linearly proportional to the time elapsed,
leading to phylogenies that satisfy the ultrametricity prop-
erty. Ultrametric trees are rooted trees in which each leaf
has the same distance to the root. However, this constraint
is difficult to be ensured in real-world data, since evo-
lutionary rates are dependent on multiple factors, such
as mutation rates, generation times, or population sizes.
DAMBE proved that it is possible to build a phylogenetic
tree without assuming the molecular clock hypothesis.
Nevertheless, this method cannot ensure the phylogenetic
reconstruction with large percentages of missing data,
which is also the main issue with the SIA method. The
matrix factorization and autoencoder approaches from
[28] represent the current state-of-the-art strategies for
indirect phylogenetic imputation, yet an in-depth param-
eter tuning and the customization of the underlying archi-
tectures in these methods are still important questions to
be addressed.
Given the issues identified in the current state-of-the-

art methodologies, the definition of efficient algorithmic
strategies for dealing with missing data in phylogenetic
distance matrices remains an open, challenging problem.
Additionally, there is a demand for robust solutions that
can be configured and adapted to different situations
according to the features of phylogenetic datasets with
missing data.
In order to address the challenges that arise when

inferring phylogenies in the presence of missing data,
we introduce an ML-based framework designated as
PhyloMissForest. The devised approach is built upon
random forest based unsupervised imputation algo-
rithms that are combined with a variety of search tech-
niques, coupled with phylogenetic techniques and cri-
teria, to accurately conduct imputations over phyloge-
netic pairwise distance matrices. In this way, PhyloMiss-
Forest encapsulates, in a single customizable frame-
work, a set of different algorithmic strategies guided
by phylogenetic criteria to effectively address the miss-
ing data imputation problem in real-world phylogenetic
scenarios.
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Results
This section undertakes the experimental evaluation of
the proposed PhyloMissForest framework, reporting and
analysing the attained results. The experimental method-
ology followed these steps: i) for an input distance matrix
derived from sequence data, missing entries were ran-
domly introduced until accomplishing the desired per-
centage of missing data (from 5% to 60%); ii) we applied
PhyloMissForest to perform the imputation and recover
the missing entries; iii) the phylogenetic tree recovered
from the matrix generated by PhyloMissForest was com-
pared with a ground-truth tree, which was derived from
the original distance matrix. In this way, the success of
the framework to recover the original data and, con-
sequently, the underlying phylogenetic relationships can
be measured. The distance-based method used to infer
the referred phylogenetic trees was NJ. Since this algo-
rithm returns an unrooted bifurcating phylogenetic tree,
in order to compare the tree obtained via imputation
with the one constructed from the original matrix with-
out missing data, the Robinson-Foulds (RF) metric was
adopted as evaluation criterion [29].
RF compares two phylogenetic trees by inspecting dif-

ferences at the splits induced by the edges of the trees.
Given two unrooted phylogenetic trees A and B, the RF
metric calculates the number of edges in A or B that
are not in both trees, being each edge identified by the
bipartition it induces on the leaf set [30]. In order to get
the percentage of the difference between A and B, the
normalised Robinson-Foulds (NRF) metric is used. This
metric is calculated as the ratio between the RF score and
the maximum possible number of splits i.e. the maximum
possible RF. Since themaximumpossible RF, obtained by a
pair of bifurcating trees, is 2N −6, whereN is the number
of OTUs, the NRF expression is given as follows:

NRF = RF
2N − 6

(1)

By multiplying the value of the NRF by 100, the percent-
age of error that the imputation introduces is obtained.
If the NRF is 0%, the reconstruction of the phylogenetic
tree is accurate and the topology of the imputed solution
matches the reference one.
Across the experimental evaluation, we evaluate the

performance of PhyloMissForest by making comparisons
with the two techniques that represent the state of the
art in ML-based phylogenetic imputation: matrix fac-
torization and autoencoder [28]. For this purpose, three
different real-world datasets were employed in the exper-
iments: 1) a dataset with 9 sequences of baculovirus data
[28, 31]; 2) an amino acid dataset with 37 sequences of
xylona heveae fungi [32]; and 3) a DNA dataset with 55
sequences of green plants [33]. Two simulated datasets,

with 40 [34] and 201 [35] DNA sequences respectively,
were also considered in the experimentation to broaden
the spectrum of problem sizes under analysis. The original
distance matrices were generated from the sequence data
contained in these datasets with the exception of the bac-
ulovirus matrix, which was obtained from https://github.
com/Ananya-Bhattacharjee/ImputeDistances.
The following statistical methodology was adopted to

examine differences in the NRF samples reported by the
compared methods [36]. First, Kolmogorov-Smirnov tests
were conducted to detect if the samples followed a Gaus-
sian distribution. If so, Levene tests were then used to
analyse homogeneity in variances. In case of detecting
Gaussian-distributed samples with homogeneous vari-
ances, ANOVA was applied to analyse statistical signif-
icance. In any other case, Wilcoxon-Mann-Whitney was
used instead. Due to the number of samples and the vari-
ability observed in the evaluated scenarios, a confidence
level of 90% was considered in this analysis.
The herein presented experimental evaluation has been

performed in a multicore Intel i9-10980XE CPU, running
at 3.20 GHz with 128GB (8×16GB) of DDR4 RAM. The
operating system is Linux, with a compiler GCC version
7.3.0. The programming language adopted to develop the
framework is Python, version 3.7.7.

Comparison with ML-based state-of-the-art methods
Throughout this section, we test both bootstrap and non-
bootstrap configurations of PhyloMissForest and compare
them with two key state-of-the-art approaches: autoen-
coder and matrix factorization [28]. In order to per-
form this comparative evaluation, we analyse the different
datasets considered in this work with percentages of miss-
ing data from 5% to 60%, with increments of 5%. For
each percentage of missing data, 10 distance matrices are
tested. Taking into account experimental constraints and
the effect of stochastic components, each matrix is exe-
cuted 5 times and the average of the 5 runs is calculated,
accounting for a total of 50 runs per missing data percent-
age. We perform this procedure in our algorithm (both
configurations) and autoencoder. In the case of matrix fac-
torization, the restrictions imposed by the huge execution
time of this approach limited the experimentation to 10
runs per missing data percentage. The results of each per-
centage of missing data are the average of the 10 tested
matrices.

9×9 dataset
For the 9×9 dataset, Fig. 2 depicts, for each percentage
of missing data tested, the NRF results obtained by our
approach and the two ML state-of-the-art approaches.
Since our main goal is to minimize the value of NRF, lower
values in Fig. 2 denote better results. Table 1 reports the
results of the statistical analysis of NRF samples.

https://github.com/Ananya-Bhattacharjee/ImputeDistances
https://github.com/Ananya-Bhattacharjee/ImputeDistances
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Fig. 2 Results obtained with the 9×9 dataset. Box plots with the mean, min (best), max (worst) and standard deviation of NRF

Focusing first on the comparison between our approach
and autoencoder, it can be observed that PhyloMissFor-
est leads to general improvements over the autoencoder
approach, achieving a lower (better) mean NRF value in
most of the percentages of missing data considered in
this dataset. More specifically, the non-bootstrap con-
figuration recovers the targeted phylogenetic tree more
accurately than autoencoder for each percentage of miss-
ing data under study. Regarding the bootstrap case, it can
be observed that the method under this configuration
also improves autoencoder under different missing data
percentages. The only scenario where the autoencoder
approach is slightly better than the bootstrap configu-
ration is for 35% of missing data. Nevertheless, when
considering both configurations, PhyloMissForest pro-
vides overall NRF improvements over autoencoder, since
our approach supports the two combinations of parame-
ters in accordance with the configuration profile selected

by the user. According to Table 1, these improvements
are statistically significant in ten out of twelve cases
i.e. 83.3%.
The performance obtained with PhyloMissForest is

also better when compared to the matrix factorization
method. It can be observed in Fig. 2 that our approach
attains better mean NRF values for almost all percent-
ages of missing data, with the exception of the scenarios
with 50% of missing entries. From a statistical perspec-
tive, significant improvements are achieved in half of the
evaluated scenarios, being the differences more noticeable
within missing data ranges between 5% and 20%.
Apart from the comparisons described above, another

interesting aspect is the comparison between our
two combinations of parameters (bootstrap and non-
bootstrap profiles). As shown in Fig. 2, the bootstrap
configuration reports the best results in nine out of the
twelve percentages of missing data herein tested. The

Table 1 Statistical testing of NRF results for the 9x9 dataset, with regard to autoencoder (AE) and matrix factorization (MF). Statistically
significant improvements achieved by PhyloMissForest (under any of the considered configuration profiles) are denoted as�, while
non-significant differences are marked with ×
Dataset %Missing

Non-bootstrap p-values Bootstrap p-values PhyloMissForest diff.

Vs. AE Vs. MF Vs. AE Vs. MF Vs. AE Vs. MF

9x9 5% 0.09 0.25 0.02 0.10 � �
10% 0.00 0.02 0.00 0.01 � �
15% 0.02 0.08 0.01 0.09 � �
20% 0.02 0.02 0.11 0.14 � �
25% 0.25 0.28 0.22 0.12 × ×
30% 0.00 0.14 0.00 0.12 � ×
35% 0.58 0.17 0.97 0.44 × ×
40% 0.09 0.31 0.19 0.35 � ×
45% 0.31 0.44 0.06 0.10 � �
50% 0.14 0.17 0.09 0.53 � ×
55% 0.11 0.44 0.01 0.09 � �
60% 0.01 0.91 0.00 0.35 � ×

Bold values refer to p-values denoting statistically significant improvements
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Fig. 3 Results obtained with the 37×37 dataset. Box plots with the mean, min (best), max (worst) and standard deviation of NRF

minimum, maximum and standard deviation obtained
in each percentage of missing data are also important
information to analyse. As denoted in the box plots of
Fig. 2, our framework reaches 0% of NRF, which is the
desirable goal, in at least one matrix for the percent-
ages between 5% and 20%, while the other methods only
manage to achieve this percentage in the matrices with
5% and 10% of missing data. Hence, the results herein
achieved suggest that PhyloMissForest has better capa-
bilities to recover the full topology of the phylogenetic
trees, since it was able to reach 0% of NRF with up to 20%
of missing data, while the current state-of-art method-
ologies only satisfactorily handled at most percentages
of 10%.

37×37 dataset
Figure 3 presents the results obtained for the dataset with
37 OTUs. Again, we tested percentages of missing data

between 5% and 60%, with increments of 5%. Table 2
introduces the results of the statistical tests performed for
this dataset.
When considering the two configurations of param-

eters jointly, the proposed PhyloMissForest framework
obtains a lower (better) value of the mean NRF than the
state-of-the-art autoencoder method for every percent-
age of missing data. When the two configuration profiles
are separately considered, it can be concluded that Phy-
loMissForest with bootstrap achieves better average NRF
results than autoencoder for all tested percentages of
missing data, with statistically significant differences in
the missing data intervals from 20% to 60%. On the other
hand, the non-bootstrap configuration statistically out-
performs autoencoder in 66.7% of the evaluated scenarios.
In this sense, although autoencoder provides marginally
better solutions (0.5%) than the non-bootstrap profile
in the matrices with 10% of missing data, these differ-

Table 2 Statistical testing of NRF results for the 37x37 dataset, with regard to autoencoder (AE) and matrix factorization (MF).
Statistically significant improvements achieved by PhyloMissForest (under any of the considered configuration profiles) are denoted as
�, while non-significant differences are marked with ×
Dataset %Missing

Non-bootstrap p-values Bootstrap p-values PhyloMissForest diff.

Vs. AE Vs. MF Vs. AE Vs. MF Vs. AE Vs. MF

37x37 5% 0.63 0.04 0.22 0.17 × ×
10% 0.97 0.80 0.35 0.53 × ×
15% 0.28 0.63 0.31 0.44 × ×
20% 0.17 0.63 0.10 0.58 � ×
25% 0.08 0.11 0.06 0.17 � ×
30% 0.02 0.74 0.02 0.91 � ×
35% 0.04 0.85 0.02 0.68 � ×
40% 0.01 0.74 0.03 0.68 � ×
45% 0.02 0.63 0.01 0.91 � ×
50% 0.01 0.91 0.00 0.68 � ×
55% 0.00 1.00 0.01 0.39 � ×
60% 0.00 0.48 0.00 0.28 � ×

Bold values refer to p-values denoting statistically significant improvements
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Fig. 4 Results obtained with the 55×55 dataset. Box plots with the mean, min (best), max (worst) and standard deviation of NRF

ences are reported to be non-significant from a statistical
perspective (p-value = 0.97).
When compared with the matrix factorization method,

the proposed approach attains better NRF averages for six
out of twelve tested scenarios. Nevertheless, the statisti-
cal testing of NRF samples between PhyloMissForest and
matrix factorization reveals that bothmethods show com-
parable performance i.e. non-significant differences in this
dataset. It is worth noting that the 37×37 dataset con-
tains amino acid data, which turns the data imputation
problem more challenging when compared with a DNA
dataset, due to the different number of possible characters
in the alignment. In such complex scenarios, the observed
execution times give account of the benefits of applying
PhyloMissForest with regard to matrix factorization. Par-
ticularly, the matrix factorization approach requires 17
minutes in this dataset, while PhyloMissForest is able to
successfully finish the imputation process in only 25 sec-

onds under the non-bootstrap profile or 7 minutes when
bootstrapping is enabled. Therefore, effective speedups
can be observed when applying the proposed framework
in this context. A more detailed analysis of execution time
is addressed in the Results discussion section.
When comparing the non-bootstrap and bootstrap con-

figuration profiles supported by PhyloMissForest, it is
verified that the bootstrap approach achieves improved
results ten out of twelve times. Therefore, by enabling
bootstrapping, the accuracy of PhyloMissForest is boosted
in 83.3% of the cases, in comparison to the configuration
profile that does not involve bootstrap techniques.

55×55 dataset
Similarly to the 9×9 and 37×37 datasets, Fig. 4 presents
the results obtained by PhyloMissForest and the state-of-
the-art methods in the dataset with 55 OTUs. The statis-
tical evaluation of NRF samples is provided in Table 3.

Table 3 Statistical testing of NRF results for the 55x55 dataset, with regard to autoencoder (AE) and matrix factorization (MF).
Statistically significant improvements achieved by PhyloMissForest (under any of the considered configuration profiles) are denoted as
�, while non-significant differences are marked with ×
Dataset %Missing

Non-bootstrap p-values Bootstrap p-values PhyloMissForest diff.

Vs. AE Vs. MF Vs. AE Vs. MF Vs. AE Vs. MF

55x55 5% 0.00 0.17 0.00 0.10 � �
10% 0.00 0.58 0.00 0.25 � ×
15% 0.00 0.05 0.00 0.02 � �
20% 0.00 0.12 0.00 0.09 � �
25% 0.00 0.48 0.00 0.25 � ×
30% 0.00 0.09 0.00 0.02 � �
35% 0.00 0.03 0.00 0.00 � �
40% 0.00 0.03 0.00 0.00 � �
45% 0.00 0.09 0.00 0.00 � �
50% 0.00 0.02 0.00 0.00 � �
55% 0.00 0.03 0.00 0.00 � �
60% 0.00 0.00 0.00 0.00 � �

Bold values refer to p-values denoting statistically significant improvements
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Fig. 5 Results obtained with the 40×40 dataset. Box plots with the mean, min (best), max (worst) and standard deviation of NRF

Starting with the comparison between our approach
and autoencoder, our results denote that PhyloMissFor-
est reports better solutions in all the twelve percentages
of missing data herein examined. In fact, such improve-
ments are verified regardless of the configuration profile
(bootstrap or non-bootstrap) adopted in the framework.
It is worth highlighting that, for this particular dataset
in all the percentages of missing data, the improvement
observed in the average NRF score is always more than
6.8%, thus representing a significant difference in per-
formance between our approach and the state-of-the-art
autoencoder. This idea is supported by the output of the
statistical analysis, which confirms the attainment of sta-
tistically significant improvements in all the cases under
study.
When comparing our approach with the matrix factor-

ization method, it can be observed that PhyloMissForest
also achieves improved NRF performance over the com-
peting approach in overall terms. According to Table 3,
statistically significant improvements are observed in 83%
of the tested scenarios. These results therefore suggest
the relevance of the framework in this dataset, especially
when large percentages of missing data are considered. In
these difficult scenarios, any configuration profile of Phy-
loMissForest is able to outperform the matrix factoriza-
tion method, i.e., better results are attained independently
of the profile set in our algorithm. As for the comparison
between the bootstrap and non-bootstrap cases, more sat-
isfying results are observed when bootstrap strategies are
adopted.

By examining theminimum values of NRF, it can be con-
cluded that only the proposed PhyloMissForest is able to
recover 0% of NRF in at least one matrix. Additionally,
the maximum NRF value obtained in each percentage of
missing data is always lower for our approach than for the
state-of-the-art techniques.

Simulated datasets
The evaluation of PhyloMissForest in synthetic scenarios
is undertaken next. Figure 5 and Table 4 report the NRF
results obtained by the proposed framework for two sim-
ulated datasets (40x40 and 201x201). Table 5 illustrates
the statistical assessment of the results attained in these
datasets, in comparison to autoencoder andmatrix factor-
ization. Due to the increased execution times associated
to the processing of the 201x201 dataset, the evaluation of
this problem instance involved missing data percentages
between 10% and 20%.
Focusing first on the 40x40 dataset, the comparisonwith

autoencoder in this simulated scenario suggests similar
implications to the ones verified in real sequence data.
In particular, the proposed approach achieves statisti-
cally significant improvements over autoencoder in 83.3%
of the cases under study (considering the results from
both bootstrap and non-bootstrap configuration profiles).
Regarding the comparison with matrix factorization, the
results in this problem size (40x40) imply a compro-
mise between the observations reported for the 37x37
and 55x55 datasets. While PhyloMissForest and matrix
factorization tend to show comparable performance in

Table 4 Mean NRF results (%) and standard deviations for the 201x201 dataset. N/A refers to situations where matrix factorization did
not finish execution in an experimental time window of 48 hours

Dataset %Missing
PhyloMissForest

AutoEncoder Matrix Factorization
Non-bootstrap Bootstrap

201x201 10% 15.20±2 14.70±2 18.81±3 N/A

15% 19.02±1 18.89±2 23.64±2 N/A

20% 21.16±1 21.26±1 25.08±1 N/A

Bold values refer the best NRF results in the comparison
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Table 5 Statistical testing of NRF results for the 40x40 and 201x201 datasets, with regard to autoencoder (AE) and matrix factorization
(MF). Statistically significant improvements achieved by PhyloMissForest (under any of the considered configuration profiles) are
denoted as�, while non-significant differences are marked with ×. N/A refers to situations where matrix factorization did not finish
execution in an experimental time window of 48 hours

Dataset %Missing
Non-bootstrap p-values Bootstrap p-values PhyloMissForest diff.

Vs. AE Vs. MF Vs. AE Vs. MF Vs. AE Vs. MF

40x40 5% 0.69 0.05 0.69 0.05 × �
10% 0.31 0.69 0.42 0.42 × ×
15% 0.05 0.69 0.05 1.00 � ×
20% 0.05 0.31 0.10 0.22 � ×
25% 0.01 0.69 0.01 0.55 � ×
30% 0.10 1.00 0.10 0.31 � ×
35% 0.84 0.15 0.05 0.31 � ×
40% 0.05 0.01 0.03 0.05 � �
45% 0.01 0.05 0.10 0.55 � �
50% 0.01 0.01 0.15 0.22 � �
55% 0.10 0.84 0.84 0.42 � ×
60% 0.01 0.03 0.01 0.84 � �

201x201 10% 0.05 N/A 0.05 N/A � N/A

15% 0.01 N/A 0.01 N/A � N/A

20% 0.01 N/A 0.01 N/A � N/A

Bold values refer to p-values denoting statistically significant improvements

scenarios with low-medium percentages of missing data,
the proposed approach is more likely to successfully
achieve statistically significant improvements when large
percentages of missing data are involved in the imputation
process.
The analysis of the 201x201 dataset gives account of

the significant behaviour of PhyloMissForest when deal-
ing with larger problem sizes. Statistically significant
improvements over autoencoder are reported in all the
evaluated scenarios. As for matrix factorization, the exe-
cution times of this tool surpassed an experimental win-
dow of 48 hours per matrix instance, thus not being
able to report solutions in the considered time period.
In contrast, the proposed PhyloMissForest represents in
this sense a more suitable approach to process complex
datasets. These results therefore support the relevance
of the proposed framework also in the case of synthetic
datasets.

Comparison with other alternative methods
In order to further examine the performance of Phy-
loMissForest, comparisons with other approaches for
missing data imputation are herein presented. Particu-
larly, we have performed comparisons with two popular
methods: LASSO [14] and DAMBE [22]. Table 6 intro-
duces the comparison of mean NRF scores on real-world
datasets (9x9, 37x37, and 55x55), while Table 7 reports
the results observed in simulated datasets (40x40 and
201x201), considering for PhyloMissForest the results
achieved by the most accurate configuration profile.

These tables also include the p-values resulting from
the statistical comparison of the results obtained by
PhyloMissForest and the alternative techniques, in
order to verify the attainment of statistically significant
differences.
Focusing first on the results obtained on real-world

datasets, it can observed that PhyloMissForest and
LASSO achieve statistically comparable NRF results (p-
values ≥ 0.1, with a confidence level of 90%) in most
of the tests involving the 9x9 and 37x37 datasets. In
these scenarios, statistically significant improvements are
reported by PhyloMissForest when dealing with missing
data percentages of 5% and 10%, with mean NRF scores
of 3.33%–3.50% (for 9x9) and 3.94%–5.56% (for 37x37).
On the other hand, the only case where LASSO man-
aged to obtain significant higher accuracy was in the
37x37 dataset with 45% of missing data. Nevertheless, the
results obtained in the 55x55 dataset denote that the use
of PhyloMissForest leads to noticeable boosting in NRF
accuracy with regard to LASSO when a higher number
of sequences are involved. In fact, statistically significant
improvements (p-values around 0.0) are achieved by Phy-
loMissForest in this dataset for all the considered missing
data percentages. An additional advantage of PhyloMiss-
Forest over LASSO is given by the fact that the proposed
approach is not restricted by the molecular clock assump-
tion, i.e. the reported trees are not forced to be ultrametric
as in LASSO. As for DAMBE, it is worth remarking that
this method was not able to handle missing data percent-
ages beyond 15% for 37x37 and 30% for 9x9. In the case
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Table 6 Comparisons with LASSO and DAMBE on real-world datasets: mean NRF values and p-values obtained in the statistical testing
of PhyloMissForest samples over the alternative approaches. Lower NRF values denote better quality. N/A denotes scenarios where
DAMBE was not able to find any suitable solution

Dataset %Missing
NRF scores p-values

PhyloMissForest LASSO DAMBE vs. LASSO vs. DAMBE

9x9 5% 3.33 9.17 23.61 0.00 0.00

10% 3.50 8.33 29.17 0.00 0.00

15% 9.67 14.17 41.67 0.25 0.00

20% 10.67 13.33 38.54 0.35 0.00

25% 15.00 16.67 39.58 0.53 0.01

30% 14.00 17.50 36.11 0.48 0.01

35% 17.83 15.00 N/A 0.44 N/A

40% 19.83 21.67 N/A 0.58 N/A

45% 24.33 20.17 N/A 0.35 N/A

50% 25.00 22.83 N/A 0.63 N/A

55% 23.83 29.17 N/A 0.35 N/A

60% 33.17 30.00 N/A 0.68 N/A

37x37 5% 3.94 7.35 3.19 0.01 0.79

10% 5.56 7.50 6.72 0.06 0.54

15% 10.15 9.71 10.54 0.91 0.96

20% 10.88 10.74 N/A 0.53 N/A

25% 15.29 12.50 N/A 0.11 N/A

30% 17.56 15.00 N/A 0.19 N/A

35% 18.56 16.76 N/A 0.25 N/A

40% 20.24 18.24 N/A 0.48 N/A

45% 25.59 21.32 N/A 0.00 N/A

50% 24.74 22.21 N/A 0.14 N/A

55% 27.47 24.12 N/A 0.63 N/A

60% 31.53 30.15 N/A 0.53 N/A

55x55 5% 2.73 20.58 N/A 0.00 N/A

10% 5.38 21.63 N/A 0.00 N/A

15% 7.04 22.79 N/A 0.00 N/A

20% 8.67 22.31 N/A 0.00 N/A

25% 13.02 24.90 N/A 0.00 N/A

30% 14.52 26.73 N/A 0.00 N/A

35% 14.02 27.21 N/A 0.00 N/A

40% 17.79 30.38 N/A 0.00 N/A

45% 19.23 28.94 N/A 0.00 N/A

50% 24.02 33.27 N/A 0.00 N/A

55% 26.79 35.10 N/A 0.00 N/A

60% 29.73 35.10 N/A 0.00 N/A

Bold values in the “NRF scores” columns denote the best NRF scores in the comparison, while in the p-values columns they refer to p-values denoting statistically significant
improvements

of the 55x55 dataset, DAMBE did not manage to report
solutions in any of the evaluated scenarios.
The results reported in simulated datasets confirm the

relevance of the proposed PhyloMissForest with regard
to the alternative approaches. More specifically, Phy-
loMissForest achieved statistically significant improve-

ments over LASSO in all the targeted evaluation scenar-
ios, for both 40x40 and 201x201. In addition, the proposed
approach successfully handled all the considered missing
data percentages in these datasets, showing better applica-
bility than the DAMBE method. These results denote the
practical interest of PhyloMissForest and the performance
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Table 7 Comparisons with LASSO and DAMBE on simulated datasets: mean NRF values and p-values obtained in the statistical testing
of PhyloMissForest samples over the alternative approaches. Lower NRF values denote better quality. N/A denotes scenarios where
DAMBE was not able to find any suitable solution

Dataset %Missing
NRF scores p-values

PhyloMissForest LASSO DAMBE vs. LASSO vs. DAMBE

40x40 5% 2.43 20.54 N/A 0.00 N/A

10% 7.30 21.89 N/A 0.00 N/A

15% 7.43 20.00 N/A 0.00 N/A

20% 12.97 22.70 N/A 0.00 N/A

25% 12.57 23.24 N/A 0.00 N/A

30% 13.65 21.35 N/A 0.02 N/A

35% 20.95 28.38 N/A 0.00 N/A

40% 17.16 24.59 N/A 0.00 N/A

45% 19.19 31.89 N/A 0.00 N/A

50% 16.08 29.46 N/A 0.00 N/A

55% 27.84 32.97 N/A 0.03 N/A

60% 25.68 31.89 N/A 0.00 N/A

201x201 10% 14.70 33.84 N/A 0.00 N/A

15% 18.89 35.56 N/A 0.00 N/A

20% 21.16 34.85 N/A 0.00 N/A

Bold values in the “NRF scores” columns denote the best NRF scores in the comparison, while in the “p-values” columns they refer to p-values denoting statistically significant
improvements

Fig. 6 Phylogenetic trees estimated with the full distance matrix on the upper left, in comparison with the trees obtained with PhyloMissForest
(bottom left), matrix factorization (upper right) and autoencoder (bottom right) in the 9×9 dataset with 5% of missing data
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gains attained by the combination of ML techniques and
phylogenetic-aware search strategies available in the pro-
posed framework.

Phylogenetic trees reconstruction
In order to better depict the capabilities of our frame-
work to recover phylogenetic trees with missing data,
in comparison to autoencoder and matrix factorization,
Fig. 6 illustrates a graphical example of the solutions gen-
erated by each method. This example refers to the 9×9
dataset with 5% of missing data, showing the best solu-
tions reported by each approach for the first 5% matrix
instance considered in the experimentation. We herein
highlight the similarities and divergences of the recov-
ered phylogenetic trees in comparison to the phylogenetic
topology inferred from the original distance matrix. The
main idea is to examine how close the topology outputted
by PhyloMissForest (in the presence of missing data) is
with regard to the neighbor-joining solution (derived from
the full original distances).
From the analysis of Fig. 6, it can be verified that, for

both autoencoder and matrix factorization, the recovered
phylogenetic trees have noticeable differences from a
topological perspective. It can be identified the presence
of two main clades: 1) XcGV, CpGV and PxGV; and 2)
AcMNPV, OpMNPV and BmNPV. They not only appear
in the tree obtained with full information, but also in the
trees estimated with the two referred methods. However,
the relationships of these groups with the other OTUs
were lost in the imputation process implemented in both
autoencoder and matrix factorization. This issue results,
for both state-of-the-art algorithms, in a significant loss
of accuracy in the recovered solutions (with a NRF score
of 16.6%).
On the other hand, PhyloMissForest is able to fully

recover the topology of the neighbor-joining tree. For
both bootstrap and non-bootstrap profiles, the phyloge-
netic tree is correctly recovered with 0% of NRF. In fact,
by examining the branch lengths in this example, it can
be observed that the proposed framework is able to lead
in this scenario to branch length values that are almost
equal to the ones established by the phylogeny obtained
with the full matrix (mean error = 0.001). Considering
the cumulative branch lengths (i.e. the sum of the branch
lengths from the most distant ancestor to the OTU), the
most noticeable differences with regard to the competing
methods are as follows:

• The cumulative branch lengths estimated by matrix
factorization for the OTUs AcMNPV, OpMNPV,
BmNPV, and LdMNPV are 0.17, 0.22, 0.19, and 0.16.
In contrast, PhyloMissForest and the reference tree
define cumulative branch lengths about 0.22, 0.25,
0.22, and 0.12, respectively.

• The cumulative branch lengths reported by
autoencoder for the OTUs XcGV, CpGV, PxGV, and
SeMNPV are 0.39, 0.36, 0.34, and 0.13. On the other
hand, the reference lengths and the ones obtained by
PhyloMissForest are around 0.41, 0.38, 0.36, and 0.11,
respectively.

Discussion
According to the experimental evaluation herein con-
ducted, PhyloMissForest provides an accurate framework
to solve the missing data imputation problem in phy-
logenetic distance matrices. The main idea behind the
proposal consists of coupling a random forest based impu-
tation procedure with different pairwise matrix search
strategies and phylogenetic evaluation criteria (a detailed
description can be found in the Methods section). An
important characteristic of the devised approach there-
fore lies in the flexibility it offers in terms of the imputa-
tion strategies and configuration profiles that can be used,
in accordance with the characteristics of the input data.
Our framework has a wide range of configurable possi-
bilities that can be adopted during the imputation and
evaluation cycles, so that the combination of decisions
that best fit the data can be selected. We herein present
and describe the combination of decisions employed in
the experimental section, proceeding afterwards with
the hyperparameter tuning study and discussion of the
obtained results.

Framework engine study
With the aim of examining the strategies that better
behave in a variety of real-world datasets, the experimen-
tal evaluation of PhyloMissForest started by analysing the
different matrix search strategies integrated in the impu-
tation cycle of our framework, as well as the accuracy of
the supported stop criteria. Herein we present a summary
of this analysis and the attained results (to visualize amore
detailed report please refer to Additional file 1, provided
as supplementarymaterial). In order to properly assess the
wide range of possibilities that our framework offers to the
user, we divided the study in two main phases:

1 Component Phase: During the execution of the
random forest imputation cycle, different matrices
can be inferred in each iteration (i.e. upper triangular
matrix, lower triangular matrix, or the mean between
both). In this first phase, we tested the three possible
criteria implemented in PhyloMissForest to choose
the best distance matrix at each imputation step: LS,
minimal evolution (ME) or the variable set difference
[37]. Two additional strategies were also studied:
turning the matrix symmetric after each column
imputation and turning it symmetric only at the end
of all columns imputation. As such, five different
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approaches to choose the best matrix were
examined, each one combined with stochastic
decisions or Q-matrix based decisions in the process
of building each decision tree;

2 Stop Criterion Phase: In this second phase, we
evaluated the effectiveness of the two stop criteria
that our framework supports: the variable set
difference and an LS-based stop criterion. For both
phases, the initial guess of the missing values is
performed by first imputing the average value of each
column and then turning the matrix symmetric.

From this study, we concluded that significant improve-
ments in the performance and accuracy of the inference
can be achieved when we incorporate the guidance pro-
vided by phylogenetic LS in the decisions of the algorithm.
In this way, the method is able to identify the matrices
that best fit phylogenetic quality criteria. Among the com-
binations of decisions that obtained the best results, it
can be highlighted the configuration that analyses and
selects the best matrix using LS. As previously remarked,
this approach relies on splitting the non-symmetricmatrix
derived from the random forest into three candidate sym-
metrical matrices, aiming to better explore the matrix
search space iteratively. This is an important feature
that distinguishes our proposal from other imputation
approaches oriented towards mixed-type data imputa-
tion. Moreover, the referred configuration solves the ties
that take place during the decision trees building pro-
cess by using stochastic decisions and LS as the preferred
stop criterion. This combination of decisions and strate-
gies led PhyloMissForest to the most satisfying overall
behaviour and was therefore employed to undertake the
experimental analyses presented in this work.
In order to illustrate the performance of PhyloMissFor-

est under this imputation scheme (denoted as Split-LS-
Rand), Table 8 reports the mean NRF scores achieved
on the real-world datasets considering different missing
data percentages (five matrices per missing data percent-
age). The results of Split-LS-Rand are compared with the
best results achievable with any potential configuration of
search strategies supported in PhyloMissForest (without
hyperparameter tuning), as well as the ones reported by
the reference, mixed-type data imputation method Miss-
Forest [37]. The proposed approach leads to significant
improvements over MissForest in all the evaluated tests,
with accumulated NRF scores of 172.8% (Split-LS-Rand)
vs. 226.3% (MissForest). These results give account of the
improved imputation capabilities that PhyloMissForest
provides for phylogenetic data.

Hyperparameter study
The process of testing and defining hyperparameters in
ML methods, which is also known as hyperparameters

Table 8 Comparisons of NRF values between PhyloMissForest
and the baseline algorithm MissForest [37]. “Split-LS-Rand” refers
to the configuration where LS is incorporated for guidance
purposes in the different steps of PhyloMissForest, while “Best
Observed” represents the best results reported with any possible
configuration of search strategies. Lower values denote better
quality

Dataset %Missing
PhyloMissForest Mixed-type

Split-LS-Rand Best Observed MissForest

9x9 5% 4.6 2.9 5.0

10% 7.5 6.7 11.7

15% 7.5 7.5 12.1

20% 12.5 9.2 13.8

25% 12.5 12.5 19.2

30% 12.9 12.9 17.9

37x37 5% 1.2 1.2 2.0

10% 2.8 2.8 4.6

15% 4.6 4.6 7.0

20% 6.8 6.5 9.4

25% 9.3 9.3 14.0

30% 13.2 13.2 16.2

55x55 5% 3.4 3.0 6.3

10% 5.9 5.7 8.7

15% 11.0 10.1 14.7

20% 14.3 14.3 16.9

25% 20.5 19.7 22.0

30% 22.3 22.3 25.0

Bold values refer to the best NRF values in the comparison

tuning, is one of the most challenging tasks to be per-
formed. A widely adopted technique used for this purpose
is grid search, in which the user defines a set of values for
each parameter and then an exhaustive test of stochastic
combinations is tested. This approach potentially incurs
in a large number of runs, turning it inefficient. Aim-
ing to turn this task more methodological, a design of
experiments (DOE) was applied in our work. [38] points
out that the process of tuning hyperparameters in ML
can be enhanced by applying DOE, so this approach was
adopted to configure hyperparameters in the PhyloMiss-
Forest framework.
PhyloMissForest supports a variety of parameters

(which are detailed in the Methods section, more pre-
cisely in the Hyperparameters section). Some of them are
based on the size of the dataset, while there are others
that are not directly related to the dataset in usage. For
example, the minimum number of samples that a node
has to contain to be considered as a leaf (Min Leaf ) and
the maximum depth each decision tree can grow (Max
Depth) are defined by considering the size of the dataset in
usage. Particularly, the value of these parameters is given
by a floating-point number between 0 and 1, which is
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multiplied by the size of the dataset in order to fit the
specific dimensions of the evaluated data. The maximum
number of features that are analysed (Max Features) can
be established in a similar way. Other hyperparameters
supported by the proposal include the size of the boot-
strapped datasets (Size of the bootstrap) and the number
of decision trees to be considered in each random forest
(Number of trees).
The hyperparameter study was conducted under two

main profiles: bootstrap = 0, which refers to the non-
bootstrap case presented in the experimental evaluation
and bootstrap = 1, which refers to the bootstrap case.
For each of them, a study composed of three steps was
performed: 1) Parameter-by-parameter analysis, aiming to
understand reasonable ranges for each parameter value; 2)
Factorial DOE to filter which are the three parameters that
have the strongest statistical meaning, fixing the values of
the other parameters; 3) Box-Behnken design [39] to set
the values of the parameters that remained to be defined
from the previous step.
This analysis was performed by using the Statistica soft-

ware [40]. From it, it can be concluded that the optimal
combination of parameters for the evaluated real-world
datasets is the one defined in Table 9. Herein we presented
a summary of the hyperparameter study (please refer to
Additional file 2, provided as supplementary material,
for a more comprehensive review of this study). When
dealing with user-specified datasets, these two config-
uration profiles can serve as starting points to obtain
satisfying results. Further enhanced performance can be
attained through fine-grained parameter tuning in accor-
dance with the characteristics of the input data.

Results discussion
Using the insights from the framework and hyperparame-
ters studies, the experimental evaluation of PhyloMissFor-
est involved the comparative analysis of the configuration
profiles identified in Table 9 with the current state-of-
the-art ML competitors: matrix factorization and autoen-
coder. The experimentation was conducted in three real-
world problem instances with sizes between 9 and 55
OTUs and missing data percentages between 5% and 60%,

Table 9 Final parameter settings for PhyloMissForest under
non-bootstrap and bootstrap profiles

Parameters Non-Bootstrap Bootstrap

Bootstrap 0 1

Size of the bootstrap - 1

Number of trees 30 50

Max Features 0.25 1

Max Depth 1 1

Min Leaf 0.01 0.13

as well as two simulated datasets with 40 and 201 OTUs.
In overall terms, for the DNA datasets, our framework
attains noticeable improvements over the state-of-the-
art methods, especially when addressing larger problem
instances and missing data percentages. For the amino
acid dataset, PhyloMissForest achieves improved solu-
tions when comparing with autoencoder, whereas in the
comparison with matrix factorization our framework is
able to reach comparable results in this problem instance.
In order to further highlight the relevance of the

attained results, it is important to examine the execution
times required by each competing method. The analy-
sis of execution time represents a fundamental tool to
decide the most efficient and fitting strategies that can
be adopted to impute phylogenetic distances for a given
dataset in real-world scenarios. Table 10 presents the
mean execution times reported by PhyloMissForest under
the non-bootstrap and bootstrap profiles, with regard to
the alternative ML approaches autoencoder and matrix
factorization.
From the results shown in Table 10, it can be concluded

that PhyloMissForest, under the non-bootstrap configu-
ration profile, reports the fastest executions in the com-
parison for the 9×9, 37×37, and 40×40 datasets. When
running PhyloMissForest under non-bootstrap on these
smaller datasets, our proposal also tends to achieve better
results in terms of average NRF scores with regard to the
autoencoder approach. Regarding the second configura-
tion profile, when PhyloMissForest is run with bootstrap-
ping enabled, better NRF results can be attained at the
expense of a penalty in execution time. In comparison to
matrix factorization, the framework under the bootstrap
configuration is able to achieve significant reduction in
execution time, while also improving the overall accuracy
of the imputation in the DNA scenarios. As for the amino
acid dataset, the proposed approach was able to achieve
comparable success ratio with regard to matrix factor-
ization. However, while the matrix factorization method
requires 17 minutes to impute distances in this scenario,
our approach with bootstrapping only requires 7 minutes.
When addressing a larger dataset, as in the case of

201×201, it can be observed that the proposal requires

Table 10 Mean execution times obtained with autoencoder,
matrix factorization, and PhyloMissForest (non-bootstrap and
bootstrap profiles)

Dataset Autoencoder Matrix Fac-
torization

Non-Bootstrap Bootstrap

9×9 25s 18s 1s 20s

37×37 37s 17min 25s 7min

40×40 9min 35min 1.7min 20min

55×55 2min 53min 2min 25min

201×201 1.5h >48h 6h 34h
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more execution time than the autoencoder approach
when using the configuration profiles suggested in Table 9.
It can therefore be highlighted the significant scalabil-
ity shown by autoencoder as the size of the dataset is
increased. In this sense, it is important to emphasize that
the flexibility of the PhyloMissForest framework allows
the user to define a configuration profile that successfully
minimizes the time required to address imputations in
larger datasets. For instance, by just reducing the number
of trees from 30 to 5, the non-bootstrap profile signifi-
cantly reduces execution time from 6 to 1.3 hours. Under
this configuration, although a small penalty in NRF qual-
ity can be observed (0.2%), the proposal is able to go a
step further with regard to the relevant results reported
by autoencoder, from both topological accuracy and exe-
cution time perspectives. As for matrix factorization, the
experimentation highlighted the increased time require-
ments of this reference method for larger problem sizes,
in comparison to PhyloMissForest with the non-bootstrap
configuration profile.
Therefore, it can be stated that PhyloMissForest pro-

vides a robust imputation methodology in terms of the
user preference, since it fits not only the users concerned
with the accuracy, but also the ones focused on the exe-
cution time. The reported experimental results suggest
that the proposed framework is a valuable tool to enhance
phylogenetic research under missing data constraints.
Nevertheless, it opens potential research directions and
improvements in the future. For example, the random for-
est technique is widely used in ML approaches but it can
be further improved by integrating parallel strategies that
exploit the computing capabilities of modern hardware
architectures. Therefore, efficient parallel approaches and
implementations on GPU can be developed to turn this
model faster [41]. This will result in a boost on the
computational performance of our proposal. In order to
further improve the accuracy of the imputed phyloge-
netic distances, especially in scenarios when the NRF
increases with the percentage of missing data, a promising
approach lies in the hybridization of our current method
with other alternative methodologies that operate directly
at the alignment level [27]. Another important research
topic is the classification of imputation scenarios accord-
ing to the degree of bias and precision loss introduced
by the missing entries, verifying the capabilities of non-
bootstrap and bootstrap techniques to conduct accurate
imputations under different constraints.

Conclusions
This work has been focused on defining an ML-based
framework to allow the reconstruction of phylogenetic
trees from distance matrices with missing data. The
devised approach, designated as PhyloMissForest, is built
upon random forest based imputation algorithms, which

are merged with a number of different search strategies,
coupled with phylogenetic techniques and criteria, to effi-
ciently tackle the missing data problem. By adopting the
proposed framework, the user is able to customize the
imputation process and decide the strategies that best fit
the particularities of the input data.
The experimental evaluation revealed that PhyloMiss-

Forest is able to fill the gaps identified in the current
state-of-the-art MLmethods for phylogenetic imputation.
The proposed framework attains boosted accuracy in the
inferred phylogenetic relationships and improvements in
execution time for different real-world evaluation scenar-
ios, in comparison to other previous methods such as
matrix factorization and autoencoder. The results herein
presented suggest that our approach represents a valuable
tool to improve phylogenetic studies in the presence of
missing data.

Methods
The PhyloMissForest framework is built upon a random
forest imputation scheme. A random forest can be defined
as a group of decision or regression trees. A regression
tree is aimed at predicting an output continuous variable
based on a set of input features. The first step to build a
regression tree is to identify which feature splits the data
in two parts with the least error. In order to accomplish
this goal, potential split points must be identified. Error
measurements are employed to select the points that lead
to the most promising splits for each feature. Afterwards,
the feature that minimizes error is selected to conduct the
dataset splitting, defining a new decision node in the tree.
This process is repeated in a recursive way, finding for
each subset of the original dataset the best split and creat-
ing new decision nodes until the subset under processing
cannot be splitted anymore i.e. a leaf node is generated.
The random forest approach was proposed to deal with

the low bias and high variance issues associated to the
use of a single regression tree. Under this scheme, differ-
ent trees are generated with different parts of the input
dataset, which are randomly selected. The main idea is to
train successive trees with the known parts of the dataset
and use the trained random forest to predict the unknown
values. When predicting, each tree generates a value for
the prediction and the decision outputted by the random
forest is given by the average of all predictions, following
an aggregation approach. This idea is represented in Fig. 7.
All the search strategies and techniques defined in

PhyloMissForest are explained in detail throughout this
section.

PhyloMissForest overview
Figure 8 depicts a flowchart of each phase of the imputa-
tion methodology devised for PhyloMissForest. The algo-
rithm pseudocode is presented in Algorithm 1. We will
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Fig. 7 Random forest scheme with bootstrap and aggregation steps

focus firstly on describing the main idea of the imputation
scheme, which is based on the MissForest approach [37].
Important parameters to understand the behaviour of the
referred scheme are as follows:

• M is the distance matrix inputted by the user;
• Mold andMnew are the matrices from the previous

and current iterations of the imputation cycle,
respectively;

• olderror and newerror are the errors from the previous
and current iterations, respectively;

• Xobs and yobs are the variables used to train the forest,
which correspond to the known part of the input data;

• Xmiss is the variable used by the trained forest to
predict the missing values ymiss.

In order to know the location of the missing values,
the algorithm initializes first a boolean mask with the
same dimensions of the inputted distance matrix M (line
2 in Algorithm 1). The positions set to the logic value of
‘true’ correspond to the unknown data, while the positions
where the logic value is ‘false’ refer to the entries known
in the input. Once the creation of the mask has finished,
an initial guess for the missing values is calculated. Given
a column, the missing values are imputed with an initial
guess that corresponds to themean of the referred column

(line 3 in Algorithm 1). This process is repeated for each
column in the input. The algorithm then counts the num-
ber of missing values per column and stores it in a vector
k, in order to set the order in which the imputation will
occur (line 5 in Algorithm 1). By default, the imputation
starts in the column with the least number of missing val-
ues. In case of a tie in the number of missing values, the
column with the lowest index among the columns that are
tied is taken first. The initial values of olderror and newerror
are∞ and 0, respectively (line 6 in Algorithm 1). This is to
force the algorithm to run at least two iterations. There-
fore, the first iteration is considered as a zero iteration.
Mold andMnew are set with a copy of the input matrixM.
After this initialization process, the imputation loop

begins (line 7–18 in Algorithm 1). The first step of the
imputation loop lies in the update of the matrixMold with
a copy of the matrix Mnew. This operation is performed
to update the matrix of the previous iteration before the
new iteration begins. In the first iteration, this step is
ignored because the initialization explained above substi-
tutes this step. After the update of the matrix Mold , the
algorithm iterates over each column c following the order
defined in the vector k (line 10-14 in Algorithm 1). Dur-
ing the execution of this inner loop, the algorithm employs
the following variables: Xobs, Xmiss, yobs and ymiss. A ran-

Fig. 8 Flowchart of the phases of PhyloMissForest
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Algorithm 1 PhyloMissForest algorithm pseudo code
1: procedure PHYLOMISSFOREST(input matrixM)
2: Create a boolean mask to mark the position of the

missing values
3: Initial guess of the missing values (average value of

each column)
4: Turnmatrix with the initial guess into a symmetric

matrix
5: Create a vector k of missing values per column in

an ascending order
6: olderror = ∞; newerror = 0;Mold =Mnew =M
7: while olderror ≥ newerror do
8: Update olderror and newerror with the newly

calculated errors (if not iteration 0)
9: Update Mold with the matrix resultant from

the previous iteration
10: for each column c in k do
11: Fit a random forest withXobs and yobs (vari-

ables obtained from matrix M)
12: Predict ymiss given Xmiss to the predict

func. of the random forest previously trained
13: UpdateMnew with ymiss
14: end for
15: Split matrix into three candidate solutions
16: Choose best matrix among the candidate ones
17: Calculate the newerror from Mnew and Mold or

based on LS criterion
18: end while
19: ReturnMold
20: end procedure

dom forest model is fitted with Xobs (values of the other
columns in the positions where the currently processed
column c has observed values) and yobs (observed values of
c), given as an input. The trained model uses a predicting
function in order to estimate the missing values ymiss from
the given Xmiss. At the end of each iteration of this loop,
the predicted values are imputed in the unknown posi-
tions of the column c, which is the one taken into account
in this iteration. This process is repeated for each column
in the matrix.
After finishing the imputation of all the columns, the

error between Mold and Mnew is calculated, e.g. by com-
puting the variable set difference as expressed in Eq. (2)
(line 17 in Algorithm 1). The previous newerror is copied
to the olderror and the newerror is updated as follows:

newerror =
∑

i,j(Xnew[ i, j]−Xold[ i, j] )2
∑

i,j(Xnew[ i, j] )2
(2)

If newerror is smaller than olderror , the algorithm pro-
ceeds with another iteration. Otherwise, the stop criterion
is satisfied and the algorithm returns the imputed matrix

from the previous iteration,Mold , as it gives a smaller error
than Mnew. Additional file 3 provides an example on the
use of this methodology.
In order to enhance the imputation capabilities of this

scheme for phylogenetic continuous data, the design of
the algorithm must be accordingly refined. The follow-
ing strategies are defined in PhyloMissForest to handle
effectively the specific constraints of the phylogenetic
imputation problem:

• Initial guess: In the initialization step,
PhyloMissForest introduces a technique to ensure
that, after the initial guess of the missing values, the
matrix satisfies the main properties of a phylogenetic
distance matrix (line 4 in Algorithm 1);

• Splitting tie-break criteria: During the imputation
cycle of the PhyloMissForest, the framework defines
a method to deal with the ties during the splitting
process in the decision trees building. This method is
applied in the training phase of each random forest
(line 11 in Algorithm 1). Herein our framework not
only supports a default configuration based on
random selection among the tied features, but also a
tie-break criterion based on the Q-matrix selection
criterion implemented in the NJ tree-building
approaches;

• Split matrix: Given that the matrix outputted from
the imputation cycle is not symmetric, our framework
introduces several strategies to deal with this issue.
More specifically, PhyloMissForest explores the
possible solutions that can derive from a single matrix
by splitting the matrix into three candidate solutions:
lower triangular, upper triangular and mean between
both (lines 15-16 in Algorithm 1). Moreover, in order
to select the best matrix among the candidate ones,
PhyloMissForest adopts phylogenetic criteria, such as
LS and ME. With the combination of these
techniques, our framework not only ensures that all
the content available after the imputation is deeply
explored, but also that the matrix chosen is the one
that best fits a phylogenetic tree;

• Stop criteria: The stop criterion of PhyloMissForest
also supports the inclusion of phylogenetic LS,
ensuring that the algorithm is only concluded if the
actual matrix is worse, from a phylogenetic
perspective, than the matrix of the previous iteration
(line 17 in Algorithm 1).

Throughout the next subsections, a precise description
of each strategy included in PhyloMissForest is provided.

Initial guess
The first strategy included to improve the imputation
methodology is to turn the initial guess of the missing
values more guided to the tackled problem. Taking into
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account the properties of a pairwise distance matrix, the
matrix outputted from the algorithm needs to be sym-
metric. In order to help the algorithm to converge to a
symmetric matrix, it is helpful if the matrix with the ini-
tial guess is also symmetric. Hence, after guessing the
initial values for the missing entries, the mean between
the distance i, j and j, i is calculated and both distances
are updated with this average value. With this proce-
dure, we ensure that, when the imputation process begins,
the matrix with the initial guess satisfies the symmetric
properties of a phylogenetic distance matrix.

Splitting tie-break criteria
Throughout the imputation cycle, several random forests
composed by groups of regression trees are trained.When
building a decision tree, in the process of splitting a node
into two sub-nodes, a tie between the candidate features
can arise. This occurs when two features split the dataset
with the same sum of square residuals (SSR), which is
the metric used to measure the error given by splitting
a dataset based on a particular variable. Our frame-
work supports not only a default configuration based on
random choices, but also a decision rule based on the
Q-matrix of the NJ algorithm. Q-matrix is an auxiliary
matrix defined during the procedure of inferring a phylo-
genetic tree via NJ, being this matrix used to decide the
order of the pairs of OTUs to be agglomerated.
After calculating the initial values δ for the missing dis-

tances, if the tie-break criterion is configured with the
Q-matrix based split decision, the algorithm calculates
the Q-matrix corresponding to the distance matrix with
the initial guess using Eq. 3. Once obtained the referred
matrix, the algorithm defines a list of priorities for each
OTU based on the Q-matrix values. For each OTU, the
algorithm will search in the Q-matrix which is the other
OTU (among the other N) that shares the lowest value in
the Q-matrix. This will be the first OTU to appear in the
list of priorities. The algorithm will repeat the procedure
over the remaining OTUs to construct the list of priorities
for each OTU involved in the study.

Qij = (N − 2)δij − Si − Sj, where Sx =
N∑

i=1
δxi. (3)

Having the list of priorities defined, if a tie in terms of
SSR is observed when the splitting method is in progress,
the algorithm will check the list of priorities and choose,
from the OTUs that are tied, the one that appears first in
the list of priorities of the OTU that is being imputed.

Split matrix
Similarly to the initial guess process, when the algorithm
finishes an entire iteration, after the imputation loop has

processed all columns, the resulting matrix may not sat-
isfy the characteristics of a phylogenetic distance matrix.
Therefore, we introduce a procedure at the end of the
imputation cycle to deal with this issue.
The matrix could simply become symmetric by execut-

ing the function developed in the initial guess method.
However, since now we have a matrix that is the result
of an imputation process, flexibility and accuracy could
be lost with that approach. Hence, we developed a new
strategy that, from one matrix, examines three possi-
ble solutions. As the matrix is not symmetric, the lower
and upper triangular parts are different. Therefore, if we
assume that each one represents a possible solution and
that the mean between both is also a candidate solution,
three candidate matrices can be considered instead. We
designate this procedure as split matrix.
Given these three possible solutions, the problem of

how to choose the best distance matrix arises in this
context. In order to address it, we merged LS into our pro-
posal. For each pairwise distance matrix, a phylogenetic
tree T will be constructed. Then, the adaptation of each
phylogenetic tree is measured following Eq. (4), where
δij represents the distance between the OTUs i and j in
a pairwise distance matrix, while θij refers to the distance
between the OTUs i and j in the phylogenetic tree built
from the referred distance matrix. Since LS chooses the
matrix where the discrepancy is more subtle, the matrix
to be selected is the one that minimizes the value of S in
Eq. (4).

S =
∑

i,j
(δij − θij)

2 (4)

Merging LS to our proposal allows the imputation
method to identify which of the three candidate matri-
ces best fits a phylogenetic tree. Therefore, when all the
columns have been imputed, the algorithm performs the
following steps:

1 Split the imputed matrix into three possible
solutions: lower triangular, upper triangular and
mean between both;

2 Build a phylogenetic tree for each possible solution
using NJ;

3 Recover the inferred distance matrix from each
phylogenetic tree;

4 Calculate the LS values using the matrices of the
candidate solutions and the matrices inferred from
the phylogenetic trees;

5 Choose the solution that minimizes the value of LS.

Although there is evidence in the state-of-the-art that
the ME has issues in certain theoretical scenarios [22],
our framework also allows the adoption of this alterna-
tive criterion, so that the user is free to choose different
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decisions throughout the operation. Hence, according to
the user settings, our framework allows choosing the best
matrix among the three possible solutions by alternatively
using the ME criterion. Lastly, the framework also allows
the user to choose the best matrix by only comparing each
of the three possible solutions with the matrix of the pre-
vious iteration. In this case, the algorithm uses the stop
criterion expressed in Eq. (2). Once finished the calcu-
lation of the three errors, the chosen matrix is given by
the one that minimizes the value of Eq. (2). However, if
the user applies this alternative configuration, the out-
putted matrix will be selected without considering infor-
mation from phylogenetic criteria. Additionally, the user
can alternatively discard the process of analysing the three
possible solutions. If this step is discarded, the user has
the possibility of doing the mean between the lower and
upper triangular parts at the end of each column imputa-
tion or only when all columns are imputed. However, in
this scenario, no phylogenetic criteria will be involved in
the selection of the final solution, similarly to the case of
using Eq. (2).

Stop criteria
Finally, our framework allows the user to choose between
two different methods to measure the error between
the matrix of the previous iteration and the currently
imputed matrix. The first consists of applying Eq. (2) as
stop criterion, while the second one obtains the error by
considering the LS criterion.
The basis of the first criterion is to compare posi-

tion by position the matrix from the previous iteration
and the matrix from the current iteration. By apply-
ing this approach, the algorithm evaluates how close the
new matrix is to the matrix of the previous iteration by
analysing exclusively the values of the matrices. Although
the PhyloMissForest framework allows the user to choose
this method to obtain the error, it is recommended to
select the stop criterion based on LS instead, since it eval-
uates the phylogenetic trees with the purpose of attaining
an improvement in the performance of the imputation
algorithm.

Hyperparameters
When using a ML method, the user usually has to set sev-
eral hyperparameters that control the algorithm. There
are six hyperparameters in the proposed approach:

• Bootstrap: This hyperparameter allows the user to
enable or disable the bootstrap function. This is a
boolean parameter, meaning that it can be set to 0
(non-bootstrap search) or 1 (bootstrap search);

• Size of the Bootstrap: This hyperparameter controls
the size of the bootstrapped datasets, therefore it is
correlated to the previous hyperparameter. The

possible values in this case are floating-point
numbers between 0 and 1;

• Max Features: The aim of this hyperparameter is to
define, during the process of building each decision
tree, the number of features that are analysed. It
supports floating-point values between 0 and 1. The
adopted value is multiplied by the size of the dataset to
set the percentage of input features to be considered.

• Min Leaf: This hyperparameter defines the
minimum number of samples that a node has to
contain to be considered as a leaf node. It accepts
floating-point values between 0 and 1. This value is
multiplied by the size of the dataset to accommodate
the hyperparameter to the characteristics of the input
data.

• Max Depth: The aim of this hyperparameter is to
control the maximum depth each decision tree can
grow. If the user wants to limit the growth of the
decision trees, the value to be set to this
hyperparameter must be a floating-point number
between 0 and 1 (multiplied by the size of the
dataset). Otherwise, the value must be -1;

• Number of trees: The value of this hyperparameter
defines the number of trees of each random forest. It
only supports positive integer values and the user is
free to choose the number of trees to be included in
each forest.
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