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Diabetes risk loci‑associated pathways are 
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Abstract 

Aims/hypothesis:  Numerous genome-wide association studies have been performed to understand the influence 
of genetic variation on type 2 diabetes etiology. Many identified risk variants are located in non-coding and intergenic 
regions, which complicates understanding of how genes and their downstream pathways are influenced. An integra-
tive data approach will help to understand the mechanism and consequences of identified risk variants.

Methods:  In the current study we use our previously developed method CONQUER to overlap 403 type 2 diabetes 
risk variants with regulatory, expression and protein data to identify tissue-shared disease-relevant mechanisms.

Results:  One SNP rs474513 was found to be an expression-, protein- and metabolite QTL. Rs474513 influenced LPA 
mRNA and protein levels in the pancreas and plasma, respectively. On the pathway level, in investigated tissues most 
SNPs linked to metabolism. However, in eleven of the twelve tissues investigated nine SNPs were linked to differential 
expression of the ribosome pathway. Furthermore, seven SNPs were linked to altered expression of genes linked to 
the immune system. Among them, rs601945 was found to influence multiple HLA genes, including HLA-DQA2, in all 
twelve tissues investigated.

Conclusion:  Our results show that in addition to the classical metabolism pathways, other pathways may be impor-
tant to type 2 diabetes that show a potential overlap with type 1 diabetes.
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Introduction
Several large genome-wide association studies (GWASs) 
have been performed to understand the genetic drivers of 
type 2 diabetes (T2D). The most recent GWAS in almost 
one million people identified 403 variants  [1–3]. While 
for some risk variants the underlying mechanisms are 
relatively well understood, for most the mechanisms are 
largely unclear. In an attempt to elucidate such mecha-
nisms, previous studies have undertaken efforts to inte-
grate data from public repositories or perform functional 

follow-up of loci [1, 4]. For example, a recent study 
used public data to assign scores to genes near 101 T2D 
risk variants to identify the causal genes [4]. Most studies 
have used the precalculated cis expression quantitative 
trait loci (eQTLs) from the GTEx project [4, 5]. GTEx 
provides eQTLs in a one Mb region around transcription 
start sites of genes, which could lead to missed eQTLs 
of variants in intergenic regions or with more distant 
genes. In addition, most studies, focused on a single tis-
sue rather than considering all diabetes-relevant tissues. 
Finally, only few studies used other layers of information 
available in public data repositories such as DNA methyl-
ation-, miRNA -, protein-QTLs, chromatin interactions, 
chromatin state segmentations and transcription factor 
binding sites and expression data.
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In the current study, we investigate 403 previously iden-
tified T2D-associated single nucleotide polymorphisms 
(SNPs) to gain insight into the pathways under influence 
of T2D risk variants. We overlap SNPs in multiple tissues 
and molecular levels, including chromatin state segmen-
tations, multiple QTL modalities, including cis and trans 
eQTLs. Instead of focusing only on the eQTLs we inves-
tigate co-expression networks of eQTLs and look at the 
effects of eQTL shared by tissues. Our results confirm 
pathways known in T2D including metabolic pathways, 
but also identify potential other pathways including the 
ribosome and auto-immunity pathways.

Results
Four hundred three previously published T2D-associated 
SNPs [1] were investigated both individually and together 
(Fig. 1).

The SLC22A3 locus influences SLC22A3 and LPA gene 
expression and plasma LPA protein levels
SNPs were compared to expression QTLs (eQTLs), pro-
tein  QTLs (cis and trans pQTLs) and metabolite  QTLs 
(mQTLs). Among the 403 SNPs, there were 189 eQTLs 
across the 12 metabolic tissues investigated (Table  S2), 
1 cis-pQTL, 2 trans-pQTLs and 6 mQTLs. One SNP 
rs1260326 was an eQTL, pQTL and mQTL (Fig.  2a, 
Table S3). There were multiple eQTLs in multiple tissues. 
Rs1260326-C was associated with lower SNX17 mRNA 
levels in the muscle (β = -0.32, P = 1.29·10–32, Table  S3) 
and lower mRNA levels of NRBP1 in subcutaneous and 
visceral fat, whole blood, intestine, transverse colon. Of 
note, based on the H4 posterior probability (H4 PP), 
type 2 diabetes and NRBP1 (H4 PP ≥ 0.9) shared causal 
variants in five tissues, while the H4 PP for SNX17 was 
much lower (0.483). Rs1260326 has been associated with 
Glucokinase Regulatory Protein, but only in thyroid, this 
SNP was an eQTL with GCKR (β = 0.22, P = 1.84·10–8). 
In plasma, rs1260326-T was associated with upregulated 

alanine and multiple lipid levels, including very-low-
density lipoproteins (VLDL) and triacylglycerols levels. 
Finally, in trans rs1260326-T was associated with higher 
levels of plasma Insulin-like growth factor-binding pro-
tein 1 (IGFBP1, P = 2.42·10–13, H4 PP = 0.873), Kallikrein 
B1 (KLKB1, P = 2.13·10–10), although the latter showed a 
very low H4 PP (4.23·10–46). KLKB1 is involved in blood 
coagulation and IGFBP1 is involved in metabolism.

One SNP rs474513 was an eQTL and a cis pQTL 
(Fig. 2a, Table S4). In the liver, rs474513-A was an eQTL 
with apolipoprotein(a) (LPA, β = 0.29, P = 1.29·10–5, 
Figs.  2a and c). The A-allele of rs474513 gives an 
increased type 2 diabetes risk [1]. In plasma, rs474513-
A influenced LPA protein levels (β = 0.23, P = 8.27·10–

37). In multiple tissues, rs474513-A was an eQTL for 
SLC22A3 with an increase in expression, interestingly 
the liver was the sole tissue with decreased expression 
(β = -0.53, P = 2.23·10–12, Fig. 2d). Interestingly SLC22A3 
encodes the organic cation transporter 3 (OCT3) which 
is involved in metformin transport [6]. Of note, the H4 
PP do however suggest that these QTLs do not share 
causal variants with type 2 diabetes, limiting the implica-
tions and interpretation of these results.

The 189 SNPs that were identified as eQTL influ-
enced the expression of 556 genes with in total 1619 
eQTL-eGene pairs across investigated tissues (Fig.  2e, 
Table  S2). Several diabetes risk variants increased the 
expression of genes in multiple tissues, including AP3S2 
(rs4932265-T), CCDC92 (rs7978610-G), HLA-DQA2 
(rs601945-G) and a lncRNA RP11-252K23.2 (Table  S2, 
Fig.  S1, rs3115960-G). Genes that showed decreased 
expression with diabetes-risk alleles included CEP68 
(rs2052261-A, rs2249105-A), HSD17B12 (rs1061810-
A) and the long non-coding RNA (lncRNA) RP11-
613D13.10 (rs1061810-A). HLA-DQA2 is involved in 
multiple disease- and immune response-related path-
ways [7]. The two SNPs that influenced the expression of 
Centrosomal Protein 68 (CEP68) were in LD (r2 = 0.798). 
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Fig. 1  Setup of the current study
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CEP68 is involved in centrosome cohesion [8]. AP3S2 
is part of the AP-3 complex which is associated with 
the Golgi region and involved in vesicle transport [9]. 
HSD17B12 encodes Hydroxysteroid 17-Beta Dehydroge-
nase 12, which is involved in synthesis of fatty acids [7]. 
Rs1061810 influenced both the expression of HSD17B12 
and RP11-613D13.10, where the latter is  likely the 
HSD17B12 antisense, given that the expression of 
both transcripts was strongly correlated (Spearman’s 
ρ = 0.65–0.90, Fig.  S2). CCDC92 has been associated 
with impaired adipogenesis [10]. Of note, based on the 
posterior probability, only HSD17B12, R11-613D13.10 
shared causal variants with type 2 diabetes (Table S2).

Type 2 diabetes‑associated eQTLs link to ribosome 
and autoimmunity pathways
Next, eQTLs were investigated in more detail to find 
common and tissue-specific pathways across tis-
sues. The strongest enriched Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways were not those 
linked to metabolism (Table  S5). Instead, the strong-
est enriched pathway was the Ribosome, which was 
enriched in six of the twelve tissues (Table S5, Fig. S3). 

Also when the enrichment was based on REACTOME 
instead of KEGG, the top enriched pathway was Eukar-
yotic Translation Elongation, in which the ribosomes 
play a key role  (Table  S6). The ribosome pathway was 
followed by pathways that are related to immunity and 
all these pathways were driven by the same set of genes 
as indicated by the lines connecting pathways (Fig. 3a-
b, Fig.  S4). Immune-related pathways were identified 
in  10 of the 12 tissues. For the ribosome pathway the 
number of eQTLs varied across tissues from a single in 
pituitary up to nine SNPs in subcutaneous fat. Across 
the twelve tissues investigated, two eQTL-eGene pairs 
were most consistently observed, that is rs12719778-
T/RPL8 and rs12920022-A/RPL13 (Fig.  3c). The big-
gest effect size of rs12719778-T/RPL8 was observed in 
whole blood (NES = -0.10, P = 8.46·10–13, Fig. 3d), while 
for rs12920022-A/RPL13 the largest normalized effect 
size was observed in skeletal muscle (NES = -0.26, 
P = 3.36·10–25, Fig.  3e). The pathways that were iden-
tified in less tissues were those related to metabolism, 
for example in seven tissues Biosynthesis of unsaturated 
fatty acids which was driven by the effect of rs1061810 
on HSD17B12 (Table S5).
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Multiple diabetes‑associated SNPs link to genes linked 
to autoimmunity
The immune-related pathways were generally enriched 
based on the same gene set in all tissues investigated 
(Fig.  3a-b, Fig.  S4). Across tissues, the Antigen process-
ing and presentation pathway was the strongest enriched 
pathway of the immune-related pathways (Table  S5) 
which involved in total seven eQTLs and 18 genes. Com-
parison of the KEGG enrichment with that based on 
REACTOME resulted also in a strong enrichment for 
antigen presentation pathways, including PD-1 signal-
ing and MHC class II antigen presentation (Table  S6). 
Rs601945 was the eQTL that influenced the most genes 
involved (Fig. 4a). Rs601945 is a QTL in the HLA region, 
with the strongest positive effect on HLA-DQA2 in the 
skeletal muscle (NES = 1.19, P = 2.50·10–78, Fig. 4b), while 
rs601945 had a negative effect on HLA-DQB1 with the 
strongest effect, again, in skeletal muscle (NES = -0.50, 

P = 1.18·10–16, Fig.  4c). Based on histone modifica-
tions across tissues, the HLA locus was generally qui-
escent, except for blood cells where in multiple blood 
cell types enhancers were found (Fig. S5). In line with 
this, multiple chromatin interactions were observed 
in blood cells (CD34+, CD4+ memory, CD4+ naïve 
and CD4+ T-cells, Fig.  4d), 40 of which are interac-
tions with loci located in HLA genes, with the top 
genes HLA-DQA1 (19 interactions) and HLA-DQB1 
(13 interactions, Fig.  4d). Rs601945 has previously 
also been identified as a risk factor for autoimmun-
ity diseases, including type 1 diabetes (P = 5.72·10–80), 
ulcerative colitis (P = 1.05·10–28) and inflammatory bowel 
disease (P = 2.34·10–24) based on data from the T1D por-
tal (https://​t1d.​hugea​mp.​org).

Moreover, rs601945 was associated with blood cell 
counts of neutrophils (P = 2.53·10–112), eosinophils 
(P = 1.36·10–37) and monocytes (P = 1.70·10–15).
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Discussion
In this study, we investigated 403 T2D-associated SNPs 
in more detail. We show that variants can have effects 
across multiple molecular layers, including gene, protein 
and metabolite levels. Moreover, risk variants are associ-
ated with altered expression of the same genes in multi-
ple tissues, including HSD17B12, AP3S2, HLA-DQA2. 
This was also reflected in observed enriched pathways, 
where the same pathways were influenced by genetic risk 
for diabetes across tissues, including antigen processing, 

ribosome, proteasome and protein processing in endo-
plasmic reticulum.

One T2D-associated variant, intronic of SLC22A3 was 
both an expression- and protein-QTL. The T2D risk 
allele A of rs474513 was associated with higher expres-
sion of LPA expression in the liver and higher protein lev-
els in plasma. High LPA levels have been associated with 
higher risk on cardiovascular disease events in people 
with diabetes [11]. In addition to LPA, rs474513-A was 
associated with higher expression of SLC22A3 (OCT3).
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Several T2D-associated risk-alleles showed tissue-
shared eQTL effects, including AP3S2, CCDC92, 
HLA-DQA2, CEP68, HSD17B12 and two lncRNAs 
RP11-613D13.10 and RP11-252K23.2. Both AP3S2 and 
HSD17B12 have previously been found in relation to 
T2D, but in limited number of tissues. AP3S2 in human 
pancreatic islets [12] and HSD17B12 in adipose, liver, 
muscle tissue and whole blood [3], which are relevant 
for T2D [13]. One of the strongest observed effects was 
between rs4932265 and AP3S2. AP3S2 is a subunit of the 
AP-3 complex which is involved in budding of vesicles 
from the Golgi membrane [9]. AP3S2 has been linked to 
T2D in six different GWASs [14–19] investigating vari-
ous populations (South Asian, Japanese and European 
ancestry) and with four different SNPs, three of which 
(rs12912009, rs2028299, rs8031576) are in LD (r2 ≥ 0.80) 
with rs4932265. In the current study we observed that 
AP3S2 has a higher expression in the twelve tissues in 
individuals carrying the risk allele of rs4932265. Despite 
increasing evidence for the role AP3S2 in T2D suscepti-
bility it remains unclear how AP3S2 is involved, although 
there is some evidence pointing at a beta-cell defect [20]. 
Nonetheless, our data suggest that the effect may be 
more tissue-shared than limited to one cell type.

For HSD17B12, we show that the diabetes-risk risk 
allele of rs1061810 was associated with a lower expres-
sion in all twelve tissues investigated. The HSD17B12 
gene encodes a bifunctional enzyme involved in the bio-
synthesis of estradiol and the elongation of very long 
chain fatty acids [21]. This result corroborates the find-
ing that HSD17B12 expression is downregulated in the 
adipose tissue of insulin-resistant subjects [22] and that 
HSD17B12 plays a role in adipogenesis [23]. Rs1061810 
was also associated with altered expression of RP11-
613D13.10 and which is the antisense of HSD17B12. 
The role of the lncRNAs RP11-613D13.10 and RP11-
252K23.2 is not clear. Furthermore, we observe in the 
current study that based on the H4 PP causal variants 
were shared between type 2 diabetes and HSD17B12 / 
R11-613D13.10.

On the pathway level as expected most SNPs linked to 
metabolic pathways. The metabolic pathways as curated 
by KEGG [7] consists of 1489 genes and is an encompass-
ing term for all pathways that are involved in metabolism. 
Our results show that SNPs that are directly linked to 
metabolism do not influence a single metabolic process 
but are scattered among various metabolic pathways. Due 
to this dispersion of SNPs between numerous pathways it 
remains difficult to assign groups of SNPs to specific pro-
cesses in specific tissues. This together with the variety of 
pathways to which SNPs are mapped shows that T2D has 
a lot of different points of engagement through which it 

can originate and progress, which is accordance with the 
heterogeneous nature of T2D [24].

In eleven of the twelve tissues, eQTLs were enriched 
for the ribosome pathway. Genetic susceptibility to 
T2D has previously not been linked to a decreased 
expression of ribosomal genes, although the association 
between ribosomal content and T2D has extensively 
been studied [25–27]. Insulin and ribosomal content 
are tightly connected, where insulin stimulates the 
synthesis of ribosomal proteins in various tissues [28, 
29] and a loss of ribosomal proteins is associated with 
an inhibition of AKT phosphorylation activity/insulin 
pathway [30].

Multiple enriched pathways linked to immunity and 
the eGenes in these pathways were mainly from the 
HLA class. Rs601945 was the key SNP in these path-
ways as it influences the expression of multiple HLA 
genes across tissues. HLA genes have previously been 
associated with T2D [3, 17], however, our results 
reveal that the effects are widespread as its associa-
tion with altered expression of various HLA genes was 
observed in all investigated tissues. Interestingly, while 
the HLA region represents the highest risk for T1D 
[31], our results are pointing to a connection between 
HLA-DQA2 and T2D. Rs601945 has also been associ-
ated with other diseases where autoimmunity plays a 
key role, including type 1 diabetes, ulcerative colitis, 
inflammatory bowel disease. Moreover, rs601945 is 
strongly associated with blood cell counts of neutro-
phils, eosinophils and monocytes. These results sug-
gest that the r601945 is associated with autoimmunity. 
These results also support previous results that dia-
betes could also be considered as a continuum rather 
than two separate diseases with overlap [32, 33]. Our 
data support that T2D has an immuno-metabolic com-
ponent involving, like T1D, members of both innate 
and adaptive immune response. In addition, our pQTL 
analyses also highlighted immune response pathways. 
Also, in a previous study in blood of persons with T2D 
we found that HbA1c is associated with altered expres-
sion of immune response-related genes [34].

Strength of our study is the hypothesis-free approach 
in multiple tissues, which allowed us to investigate 
tissue-shared effects of T2D-associated SNPs. A limi-
tation of our study is that we mostly rely on eQTLs 
where we do not know whether the observed changes 
in expression also translate to changes in protein levels. 
A second limitation is that we use QTL data from dif-
ferent sets of individuals, while ideally one would use 
regulatory, expression and protein data from the same 
set of individuals. Third, we rely on data from Euro-
pean descent, which limits the generalizability to other 
ethnicities. Fourth, a limitation is that in the current 
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study we do not validate our findings in  vitro, which 
is required to fully understand the observed results. 
Finally, the pQTLs included in the current study were 
only measured in plasma and are therefore not neces-
sarily representative of the pQTLs within tissues.

Conclusion
Altogether, our data show biological processes that are 
subject to genetic influences. We show that they are not 
necessarily limited to single tissues but are shared across 
diabetes-relevant tissues. Our findings highlight the 
importance of an integrative tissue-wide approach where 
risk loci for T2D are not only seen as individual risk fac-
tors but also as a network of risk factors that may play a 
role across tissues.

Methods
Four hundred three SNPs from the GWAS summary 
statistics reported by Mahajan et  al. [1] were extracted. 
SNPs plus those in LD were used in subsequent analyses, 
where LD was defined as r2 ≥ 0.80 around the respective 
variants. The SNPs were analyzed using our previously 
published package CONQUER [35]. Both the single SNP 
mode and multi-SNP mode were used to analyze the 
SNPs of interest. For the single SNP analysis we extracted 
data from relevant databases using our R-package CON-
QUER, including expression quantitative trait loci 
(eQTLs) in cis and trans, DNA methylation-, protein-
QTLs, chromatin interactions, chromatin state segmen-
tations, transcription factor binding sites and expression 
data [35].

QTL data
eQTLs were obtained from GTEx based on data from 
mainly European descent. All lead SNPs were tested 
against all genes (eGenes) in cis and trans on the GTEx 
API. eGenes are genes under influence of an eQTL. 
Trans-eQTLs were those more distant from the SNP 
but on the same chromosome and the tested region was 
defined by the range of the predicted chromosomal inter-
actions. SNPs were considered significant if the P-value 
was below the GTEx threshold. Effect sizes in figures and 
tables are those for the effect allele of T2D relative to the 
alternative allele based on an additive model. The latter 
threshold is defined as the empirical P-value of the gene 
closest to the 0.05 FDR threshold. Significant protein-
QTLs (pQTLs, P < 5·10–8) obtained from Yao et  al. [36] 
and filtered for the 403 lead SNPs plus SNPs in LD with 
those SNPs. QTLs in Yao et al. [36] have been identified 
in people from European descent. Significant metabolite 
QTLs (mQTLs, P < 5·10–8) were obtained Gallois et  al. 
[37] based on a Finnish population.

GTEx gene expression data
Expression data was obtained from GTEx V8 for tissues 
relevant for the etiology of T2D, including subcutane-
ous and visceral fat, sigmoid- and transverse colon, liver, 
skeletal muscle, pancreas, pituitary, terminal ileum of the 
small intestine, stomach, thyroid and whole blood. Of the 
included tissues, sample sizes range from N = 187 (termi-
nal ileum) to N = 803 (skeletal muscle). The percentage 
males was relatively higher (63.1%—72.1%, Table S1) with 
the majority middle-aged (50–69 years, Table S1).

Colocalization analysis
To compare whether two traits shared a common causal 
variant, a colocalization analysis was performed using the 
R-package coloc. The measure for a single shared causal 
variant is the H4 posterior probability, where a H4 PP 
larger than 0.9 indicates a single causal variant shared by 
two traits. In the current study, we use the colocalization 
to compare the type 2 diabetes SNPs to the protein and 
expression QTLs.

Multi‑SNP analysis
Modularization and pathway enrichment for included 
tissues was performed on all significant eQTLs (see 
above). Genes co-expressed with eGenes were identi-
fied (ρ ≥|0.90|, Spearman’s rank correlation coefficient). 
The latter was done to identify entire pathways that are 
under influence of one or more SNPs. The eGenes and 
co-expressed genes were hierarchical clustered [38, 39] 
based on pairwise distance between genes (1 – ρ). The 
number of modules within the clustered data was opti-
mized by maximizing the globalSEmax of the gap sta-
tistic [40] using the cluster R package [41]. Modules of 
co-expressed genes and eGenes were tested for path-
way enrichment based on KEGG [7] pathways. For each 
module, association with pathways was determined with 
Fisher’s exact test [42], which resulted in odds ratios and 
accompanying P-values on the association. If a module 
did not contain an eQTL or was not enriched for a path-
way, it was omitted from the results. Figures were pro-
duced in and obtained from CONQUER or additionally 
made using the R-package ggplot2 version 3.2.1. [43].
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Additional file 1: Figure S1. a Frequency of tissues in which a certain 
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Scatterplot of expression of RP11-613D13.10 versus the expression of 
HSD17B12. X-axis, expression of RP11-613D13.10; y-axis expression of 
HSD17B12. Figure S3. a Frequency of the number of times an enriched 
pathway was found across the twelve tested tissues. X-axis, pathway inves-
tigated; y-axis, frequency of tissues. Blue bars indicate pathways associated 
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with HLA-genes. Figure S4. Relation between KEGG pathways identified 
in each of the tissues. Tissues include subcutaneous fat (a), visceral fat 
(b), sigmoid colon (c), transverse colon (d), pituitary (e), small intestine 
(f ), stomach (g), thyroid (h), whole blood (i). Figure S5. Chromatin state 
segmentations for rs601945 in various tissues and cell lines (data from 
Epigenomics Roadmap). Plus-symbol indicates a SNP in LD and blood cell 
types are colored in blue. X-axis, location on the genome; y-axis cell type.
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