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Abstract

Background: Tools for accurately clustering biological sequences are among the most important tools in
computational biology. Two pioneering tools for clustering sequences are CD-HIT and UCLUST, both of which are fast
and consume reasonable amounts of memory; however, there is a big room for improvement in terms of cluster
quality. Motivated by this opportunity for improving cluster quality, we applied the mean shift algorithm inMeShClust
v1.0. The mean shift algorithm is an instance of unsupervised learning. Its strong theoretical foundation guarantees
the convergence to the true cluster centers. Our implementation of the mean shift algorithm inMeShClust v1.0 was a
step forward. In this work, we scale up the algorithm by adapting an out-of-core strategy while utilizing
alignment-free identity scores in a new tool:MeShClust v3.0.

Results: We evaluated CD-HIT,MeShClust v1.0,MeShClust v3.0, and UCLUST on 22 synthetic sets and five real sets. These
data sets were designed or selected for testing the tools in terms of scalability and different similarity levels among
sequences comprising clusters. On the synthetic data sets,MeShClust v3.0 outperformed the related tools on all sets in
terms of cluster quality. On two real data sets obtained from human microbiome and maize transposons,MeShClust
v3.0 outperformed the related tools by widemargins, achieving 55%–300% improvement in cluster quality. On another
set that includes degenerate viral sequences,MeShClust v3.0 came third. On two bacterial sets,MeShClust v3.0 was the
only applicable tool because of the long sequences in these sets.MeShClust v3.0 requires more time and memory than
the related tools; almost all personal computers at the time of this writing can accommodate such requirements.
MeShClust v3.0 can estimate an important parameter that controls cluster membership with high accuracy.

Conclusions: These results demonstrate the high quality of clusters produced byMeShClust v3.0 and its ability to
apply the mean shift algorithm to large data sets and long sequences. Because clustering tools are utilized in many
studies, providing high-quality clusters will help with deriving accurate biological knowledge.
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Background
Clustering DNA sequences has broad applications in
molecular biology. Clustering tools have been applied
to grouping transposable elements [1–4], open reading
frames [5, 6], and expressed sequence tags [7–10]. Cluster
analysis has been utilized as a “complement” to phylo-
genetic analysis [11]. Clustering tools have been used in
identifying sub-types in a viral population [12], identifying
“non-reference representative sequences” needed for con-
structing a pangenome [13], decomposing genomes [14],
and “assigning individuals” to operational taxonomic units
using DNA barcodes [15].
The two most widely used clustering tools are CD-HIT

[16] and UCLUST [17]. These pioneering tools have been
utilized in thousands of studies. CD-HIT and UCLUST
depend on greedy algorithms for clustering sequences and
on the Needleman-Wunsch global alignment algorithm
[18, 19] for evaluating sequence similarity. While study-
ing these two tools, we identified two main limitations.
Because of the greedy nature of these tools, they are not
guaranteed to find the optimal clusters, i.e., the true clus-
ters. The clusters produced by CD-HIT and UCLUST are
likely fragments of the true clusters. Because of the slow
nature of the global alignment algorithm, the two tools
cannot be applied to clustering very long sequences such
as bacterial genomes.
Motivated to overcome the first limitation, we pro-

posed MeShClust v1.0 [20], which is based on the mean
shift algorithm [21]. The ability of the mean shift algo-
rithm to find the true cluster centers is proven theoret-
ically. There are more than 15,000 applications of the
mean shift algorithm in the computer vision field [22–24].
Our bioinformatics field is slowly taking advantage of this
powerful algorithm [20, 25–28]. The first adaptation of
the mean shift algorithm to clustering DNA sequences
resulted in clusters of better quality than those produced
by CD-HIT and UCLUST [20]. This adaptation is not
the orthodox implementation of the mean shift algo-
rithm. What prevented us from applying the orthodox
mean shift algorithm in MeShClust v1.0 is its initializa-
tion step that requires evaluating similarity between every
two sequences in a data set. Such initialization step would
take an impractical long time on large data sets. We are
convinced that the orthodox mean shift algorithm should
result in high-quality clusters. To this end, we propose a
new adaptation of the mean shift algorithm that is closer
to the orthodox algorithm than our earlier adaptation.
MeShClust v1.0 overcame the first limitation of CD-

HIT and UCLUST ; however, it cannot be applied to very
long sequences because it is assisted by a global align-
ment algorithm. CD-HIT, MeShClust v1.0, and UCLUST,
utilize identity scores as the sequence similarity measure.
We define an identity score of two sequences as the per-
centage or ratio of the number of identical nucleotides

in two optimally aligned sequences to the length of the
alignment. The alignment length can be longer than the
length of any of the two sequences because an align-
ment may include gaps representing insertions and dele-
tions. Traditionally, identity scores are produced by align-
ment algorithms. Recently, we have devised an efficient
machine-learning-based alternative to global alignment
algorithms in a tool we call Identity [29]. Identity can
produce pairwise identity scores efficiently and without
performing any costly alignments. Taking advantage of
Identity, MeShClust v3.0 can cluster long sequences such
as those of bacterial genomes, overcoming the second
limitation.
In sum, the two main contributions of MeShClust

v3.0 are: (i) high-quality clusters as measured by multi-
ple quality measures including purity, Jaccard index, G-
Measure, Davies-Bouldin index, Dunn index, Silhouette
score, intra-cluster similarity, and inter-cluster similar-
ity and (ii) the ability to cluster long sequences using
alignment-free identity scores.

Implementation
Here, we explain how the mean shift algorithm works.
Then we propose a new out-of-core learning strategy,
in which the learning algorithm is trained on separate
batches of the training data consecutively, in order to scale
the algorithm to large data sets.
The original algorithm and the scaled-up version

require a method for calculating the similarity between
two sequences; in this work, we utilize identity scores.
We could use the Needleman-Wunsch global alignment
algorithm for calculating identity scores; however, this
algorithm is quadratic and will not scale to a large num-
ber of sequences or very long sequences. Alignment-free
methods are more efficient — and could be more accu-
rate— than alignment algorithms [30, 31]. For this reason,
we utilize a machine-learning-based, alignment-free tool
called Identity for predicting identity scores much faster
than the Needleman-Wunsch global alignment algorithm
(linear vs. quadratic).

Calculating alignment-free identity scores efficiently
Identity is designed to work on large sequence sets
and long sequences, e.g., bacterial genomes. Identity
is an instance of self-supervised learning. The tool
selects sequences from the input set to generate its own
labeled training data. Each sequence of the selected input
sequences is mutated to produce multiple similar copies
with known identity scores when compared to the origi-
nal sequence. The idea is that Identity keeps track of the
mutations (introduced to a copy of the original sequence),
each of which could change the alignment length and the
number of matched nucleotides in a unique way if the
original sequence and the mutated version were to be
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aligned. For example, introducing an insertion increases
the length of the alignment by the size of the insertion and
has no effect on the number of matched nucleotides. This
way, the identity score can be calculated without apply-
ing an alignment algorithm by dividing the number of
matches by the length of the alignment; both numbers are
calculated according to the mutations introduced to the
original sequence.
At this point, Identity has a set of sequence pairs with

their identity scores; it is ready to train itself. The training
process is automatic and involves the following steps:

• Convert each sequence to a k-mer histogram
(k = ⌈

log4 average length of training sequences
⌉−1).

• Calculate a set of single statistics (Manhattan,
Euclidean, χ2, Chebyshev, Hamming, Minkowski,
Cosine, Correlation, Bray Curtis, Squared chord,
Hellinger, Jeffrey divergence, Intersection, Kulczynski
1, Kulczynski 2, Covariance, Harmonic mean,
Similarity ratio, SimMM, DS

2, and D∗
2 [32]) on each

pair of histograms representing an original-mutated
sequence pair; take the square of each statistic to
produce squared statistics; multiply every unique pair
of statistics (single or squared) to produce paired
statistics.

• Select a subset of these statistics (single, squared, and
paired) using the best-first algorithm [33].

• Train a general linear model on the selected statistics,
resulting in a weight for each selected statistic.

Now, Identity is ready to predict the identity score of
any sequence pair in an input data set. Two sequences
are converted to two k-mer histograms, on both of which
the selected statistics are calculated. The identity score is
calculated as the weighted sum of the statistics.
Identity has an option to skip a sequence pair if it is

impossible to produce a desired minimum identity score.
A sequence pair is skipped if (i) the length ratio (length
of short sequence ÷ length of long sequence) is less than
the desired identity score or (ii) their monomer potential
(Eq. 3) is less than the desired threshold score.

Potential(h1, h2) =

∑

b∈{A,C,G,T}
min(h1(b), h2(b))

max(l1, l2)
(3)

Here, h1 and h2 are monomer histograms (counts of A, C,
G, and T) of two sequences, and l1 and l2 are the lengths
of the two sequences. This equation is similar to the one
applied in theMUSCLE program [34].We apply it in Iden-
tity tomonomer histograms, whereas it is applied to k-mer
histograms in MUSCLE.
Note that the user is not required to provide labeled

training data; Identity generates its own training data
from the input sequences. Further, the training process is

repeated on each input sequence set; the process is auto-
matic and does not require any involvement from the user.
Next, the mean shift clustering algorithm utilizes Identity
for calculating pairwise identity scores.

Clustering few thousands of sequences
The original mean shift algorithm — without any modi-
fications — can cluster 25K–45K sequences in reasonable
time using memory available on personal computers. The
algorithm is iterative and consists of four steps. The first
step is executed only once, but the second, third, and
fourth steps are executed many times until the algorithm
converges. Algorithm 1 outlines the mean-shift algorithm
as it is applied to nucleotide sequences. Input sequences
are converted to k-mer histograms (k is determined the
same way as in Identity), on which the algorithm performs
the following steps:

• Step 1: Initialize. Every k-mer histogram is treated as
a center of a one-member cluster.

• Step 2: Shift. A new mean for each cluster is
computed as the average of sequences (k-mer

Algorithm 1 Sequence clustering using the mean shift
algorithm
Input: A set of n nucleotide sequences represented by

histograms: {x1, x2, ..., xn}.
Output: A set of cluster centers, C.
1: Initialize n centers from the n histograms. C contains

all n centers initially.
2: for t = 1 to m or until |C| does not change in two

consecutive iterations do
3: for all centers do
4: Update — shift — center cj at the current itera-

tion, t, using the center from the previous itera-
tion, t − 1.

K(x, y) =
{
1 if identity score of x and y ≥ h
0 if identity score of x and y < h

(1)

Here, h is the “the bandwidth” of a cluster or the
threshold identity score, which is the minimum
identity score between a sequence and the center
of its cluster.

ctj =

n∑

i=1
K

(
xi, ct−1

j

)
· xi

n∑

i=1
K

(
xi, ct−1

j

) (2)

5: end for
6: Merge centers if their identity scores are above or

equal to the threshold identity score.
7: end for
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histograms) that have identity scores with the center
of the cluster above or equal to a threshold score
(provided by the user or estimated automatically).

• Step 3:Merge. Centers whose identity scores are
greater than or equal to the threshold identity score
are merged. We keep the center that represents the
mean of the largest number of histograms.

• Step 4: Represent. The mean of each cluster is
represented, i.e., replaced, by the sequence (k-mer
histogram) with the highest identity score.

Steps 2–4 are repeated until the algorithm converges.
Note that Step 3 and Step 4 are reversed when cluster-
ing degenerate sequences (≤ 70% identity score); this way,
the merging step is performed on k-mer histograms of
real sequences not on the means of degenerate sequences.
Convergence occurs when the number of iterations is
reached or the number of clusters does not change in two
consecutive iterations.
Once the algorithm converges, we have centers —

but no clusters yet. Input sequences are re-read. Each
sequence is assigned to the center that has the highest
identity score with it.

Clustering hundreds of thousands of sequences
Running the original mean shift algorithm on a large data
set would take impractically long time because of the ini-
tialization step. In the original algorithm, each sequence
is treated as the center of a one-member cluster in the
initialization step. Then the identity score of every two
centers is calculated. This step is quadratic with respect to
the number of sequences in a data set — very slow on very
large data sets. To make the issue clear, consider a data set
consisting of 1,000,000 sequences. The initialization step
requires 499,999,500,000 sequence comparisons. Calcu-
lating this huge number of identity scores — even with an
efficient tool such as Identity — takes approximately one
day. Keep in mind that this number of sequence compar-
isons is required in the first step only, and more sequence
comparisons will be performed in subsequent steps.
To circumvent this limitation, we propose an out-of-

core learning adaptation to the original mean shift algo-
rithm. In out-of-core learning, the learning algorithm (the
mean shift clustering algorithm here) is trained on batch
by batch instead of the entire data set [35]. The large-scale
mean shift algorithm requires multiple passes through
the data.
To allow the algorithm to work on batch by batch, Step 2

(the mean-shift step) needs to be modified. The algorithm
keeps track of how many sequences (k-mer histograms)
contributed to each center. In the modified Step 2, the
new mean is calculated as the weighted average of the old
mean and new sequences. For example, suppose that 80
sequences contributed to a center after the algorithm had

run on some batches. While processing the next batch,
20 sequences were similar to the center (their identity
scores with the center were above or equal to the thresh-
old score). The new mean is the weighted average of the
old mean (weight: 80/100 = 0.80) and each of the new 20
sequences (weight: 1/100 = 0.01). Once the new mean is
computed, the number of sequences contributing to the
mean is updated to 100 (80 + 20).
We outline the first data pass of the out-of-core mean

shift algorithm in Fig. 1. To begin, a batch of the input
sequences is read. Once the first batch is read, the four
steps of the original mean shift algorithm are executed
until convergence. Sequences that do not belong to any
cluster of size greater than one — we call them singles —
are kept in a reservoir. After that, a new batch is read. The
algorithm is initialized using the centers found in the pre-
vious batch(es), i.e., no new centers are introduced. Steps
2–4 are executed on the new batch one time. Next, singles
found in the new batch are added to the reservoir. After
processing a batch,MeShClust v3.0 checks to see if enough
(more than the batch size) sequences have been accumu-
lated in the reservoir. If yes, sequences in the reservoir are
shuffled; a new instance of themean shift algorithm is exe-
cuted on a batch obtained from the reservoir — not from
the input file. This instance is initialized according to the
original algorithm, i.e., every sequence represents the cen-
ter of a one-member cluster. It is run until convergence.
Centers found in this batch are added to the main mean
shift instance. Some of the centers found in the reservoir
batch may be merged with some of the centers found so
far; others are new centers. To fill the reservoir faster, the
number of sequences to read increases adaptively by a fac-
tor equal to the batch size (25,000 is the default) divided
by the number of singles found in the previous sequences.
The increase is limited by a maximum of four times, i.e.,
the maximum number of sequences that can be read when
using the default batch size is 100,000 sequences. These
steps are repeated until all sequences in the input file are
processed and the reservoir is empty.
In subsequent data passes, input sequences are re-read

batch by batch. Steps 2–4 are executed once on each
batch. Singles are not added to the reservoir. If the number
of centers does not change in a data pass, the algorithm
converges.
In the final data pass, input sequences are re-read batch

by batch. Each sequence is assigned to the cluster with the
closest center to it.
Overall, the first data pass is for discovering centers, the

subsequent passes are for fine-tuning them, and the final
pass is for forming clusters.
This adaptation was motivated by the need to reduce

the number of sequence comparisons at the initialization
step. The number of sequence comparisons required for
the initialization step on a 25K-sized batch is 312,487,500.



Girgis BMCGenomics          (2022) 23:423 Page 5 of 16

Fig. 1 Overview of the first data pass.MeShClust v3.0 is based on the mean shift algorithm, which is an instance of unsupervised learning. The
scaled-upMeShClust v3.0 is also an instance of out-of-core learning [35], in which the learning algorithm is trained on separate batches of the
training data consecutively. The algorithm requires multiple passes through the input data. In the first data pass, the tool reads a batch of input
sequences. Then the mean shift algorithm (all of the four steps) is run on the batch until convergence. Sequences that cannot be assigned to any
center are kept in the reservoir. Next, a new batch is read. The main mean shift is run on this batch but without the initialization step and for one
iteration only, i.e., already found centers are shifted and merged on the new batch and no new centers are discovered. Sequences that cannot be
assigned to any of the centers are added to the reservoir. When the reservoir has enough sequences (more than the batch size), sequences in it are
shuffled and a batch of them is clustered using an independent instance of the mean shift algorithm. This instance is run until convergence. The
resulting centers (if any) are merged with the centers accumulated by the main mean shift. This procedure is repeated until all sequences are read
and the reservoir is empty. In subsequent passes, the algorithm rereads input sequences batch by batch. The main mean shift algorithm is run for
one iteration on each batch. If the number of clusters does not change during a pass, the algorithm converges. In the final data pass, all sequences
are reread batch by batch, and each sequence is assigned to the cluster with the closest center to it

Identity can calculate these scores in a matter of seconds
or minutes — not a day as it is the case if the original algo-
rithm was to be applied. The rational is that a sequence
that belongs to one of the already found clusters does not
need to form its own cluster because this cluster would
merge with the already-found cluster. Further, in a data
set that has a smaller number of clusters than the batch
size, most of the clusters could be found by running the
mean shift on the first batch. In case some of the clusters
are missed, we accumulate singles in the reservoir. Then,
sequences in the reservoir are clustered independently to
find any clusters that could have been missed.

Estimating the threshold score
One advantage of MeShClust v3.0 is that the user may
choose not to provide a threshold score. In this case, the
tool determines the threshold score from input data auto-
matically. The idea is that for a sequence to belong to a
cluster, its identity score with the center must be greater
than or equal to the threshold score. If we assume that
any sequence may represent the center of a cluster and

the smallest cluster consists of five sequences, then the
threshold score is approximately equal to the maximum
identity score between the center and any of the other four
members.
To determine the maximum center-member identity

score, MeShClust v3.0 reads 10,000 sequences. It cal-
culates all-versus-all identity scores on these sequences
using Identity. For each sequence, the highest four identity
scores are collected.
If the size of the input data set is smaller than 10,000, the

threshold score is estimated to be the mean minus three
times the standard deviation. Assuming that these scores
are normally distributed, this threshold score should cover
99.9% of the data. If the size of the input data set is greater
than 10,000, the collected scores are clustered into two
groups. One group should represent scores of sequences
that belong to clusters. The other group should repre-
sent sequences that do not belong to clusters; this case is
possible if the data include noise or the batch analyzed
is smaller than the entire input. MeShClust v3.0 utilizes
the k-means clustering algorithm with a k value of 2.
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Assuming that the percentage of noisy scores is small, the
cluster with the smallest number of points is removed.
The estimated threshold, t, is determined by Eq. 4.

t = μl − f × σl (4)

Here, μl and σl are the mean and the standard deviation
of the large cluster, and f is determined according to the
ratio of the batch size to the input size.

f =
⎧
⎨

⎩

2 ratio > 0.25
1 ratio > 0.05 and ratio ≤ 0.25
0 ratio ≤ 0.05

(5)

This estimation procedure is repeated three times (if the
input data are large enough) using a new batch each time;
the median threshold is selected.

Related tools
We compared the performance of our tool to those of
CD-HIT [16], MeShClust v1.0 [20], and UCLUST [17].
CD-HIT was run with -Mwith a value of 0, -G with a value
of 1, -d with a value of 0, -T with a value of 16, and -c with a
value of the desired threshold score. If the threshold iden-
tity score is between 60% and 50%, the -t parameter was
used with a value of 3. When the threshold identity score
is less than 50%, the -n parameter was used with a value of
3. MeShClust v1.0 was run with the “threads” parameter
with a value of 16. ForUCLUST, the usearch program was
executed with -cluster_fast, -id with a value of the desired
threshold score, -sort with a value of “length”, and -threads
with a value of 16. MeShClust v3.0 was run with -t with
a value of the desired threshold score. In the experiments
whereMeShClust v3.0 estimated the threshold score itself,
it was run without any parameters.MeShClust v3.0 deter-
mines the number of threads automatically as the number
of hyper-threads available on a computer, i.e., MeShClust
v3.0 utilized 16 threads.

Evaluation computer
All experiments were conducted on a computer with 8
cores/16 hyper-threads (16Megabyte Cache and 3.6 Ghz),
Nvidia Quadro RTX 4000 graphic card, 64 Gigabyte (GB)
of RAM, 1-TB solid state disk, two 2-TB hard disk drives,
and Ubuntu 18.04 as the operating system.

Data
To evaluate MeShClust v3.0 and the related tools, we
collected real sequences and generated synthetic ones.

Real Data: Five real data sets were utilized in this
work. These data sets represent bacterial genomes, viral
genomes, the 16S rRNA gene of the human microbiome
[36] (European Nucleotide Archive, accession number:
ERA000159), and Long Terminal Repeats (LTRs) of
maize retrotransposons. The viral set was obtained from
viruSITE [37] (Supplementary data set 9 of [20]). All bac-
terial genomes were downloaded from the National Cen-
ter for Biotechnology Information. Table 1 shows statistics
on these data sets.

Synthetic Data: One of the advantages of using syn-
thetic data sets is that we know the true clusters and
their true centers. We generated 22 training data sets,
on which we trained and optimized MeShClust v3.0, and
additional 22 testing data sets, on which we evaluated our
tool and the related ones. Table 2 shows the statistics of
the training data sets. The testing data sets have very sim-
ilar statistics to the training ones (data are not shown).
To generate a data set, a number of random sequences —
templates — are synthesized. These templates may repre-
sent the true cluster centers. The length of each template
is chosen at random between a minimum length and a
maximum length. To reduce the chance of generating
intersecting clusters, identity scores among all templates
in the same data set are at most 10% less than the provided
threshold score that determines cluster membership. A
randomnumber (between aminimum and amaximum) of
mutated copies are generated from each template by intro-
ducing single-point mutations and block mutations to a
copy of a template. These mutated copies are generated
using the module that generates training data for Identity
[29]. All mutated copies generated from the same tem-
plate have identity scores with the template greater than
or equal to the provided threshold score. Each of the small
data sets (Short-X, Medium-X, and Long-X) includes 100
clusters and less than 25,000 sequences. Each of the large
data sets (Numerous-X) includes 5,000 clusters and about
one million sequences.

Table 1 Statistics of the real data sets. The 14-bacterial-species data set includes 14 clusters. The viral set includes 9 clusters. Cluster
counts in the bacterial, maize LTRs, and human microbiome sets are unknown

Data set Sequence count Total length Maximum length Minimum length Mean length Median length

14 bacterial species 1,328 4,256,374,969 9,270,175 801,203 3,205,102 2,874,351

Bacterial 10,562 38,577,794,947 16,040,666 112,031 3,652,509 3,647,501

LTRs 253,224 346,337,915 5,999 100 1,368 1,187

Microbiome 1,071,335 269,374,512 372 171 251 256

Viral 96 635,979 13,246 2,605 6,625 7,458
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Table 2 Statistics of the synthetic training data sets. To construct a synthetic data set, a specific number of template random
sequences are synthesized. The length of a template is chosen at random between minimum and maximum lengths. A random
number (between minimum and maximum numbers) of mutated copies are generated from each template. All clusters in the same
data set have the same minimum identity score. For example, members comprising the clusters of the Short-97 data set are
97.00–99.99% identical to the templates, from which these members were generated. Identity scores among templates in the same
data set are at most 10% less than the provided minimum identity score. Length is measured in base pairs (bp)

Data set Template avg.
length (bp)

Template min.
length (bp)

Template max.
length (bp)

Cluster
avg. size

Cluster
min. size

Cluster
max. size

Cluster
count

Sequence
count

Short-97 288 202 396 202 12 400 100 20,195

Short-95 307 200 400 177 5 400 100 17,734

Short-90 298 204 399 199 9 400 100 19,877

Short-80 302 200 400 204 6 392 100 20,423

Short-70 299 205 400 202 7 395 100 20,230

Short-60 304 200 399 195 9 395 100 19,539

Medium-97 1,394 752 1,998 192 13 390 100 19,215

Medium-95 1,358 750 1,968 203 7 396 100 20,315

Medium-90 1,405 759 1,977 194 5 400 100 19,393

Medium-80 1,434 760 2,000 222 14 398 100 22,208

Medium-70 1,345 768 1,999 212 8 398 100 21,184

Medium-60 1,387 771 1,993 202 13 398 100 20,211

Long-97 2,677 1,520 3,983 210 5 398 100 20,994

Long-95 2,611 1,508 3,959 206 10 400 100 20,565

Long-90 2,677 1,530 3,969 196 5 400 100 19,622

Long-80 2,859 1,528 3,990 194 5 398 100 19,424

Long-70 2,830 1,512 3,993 224 19 399 100 22,396

Long-60 2,630 1,519 3,977 207 7 398 100 20,699

Numerous-
97

272 171 372 203 5 400 5,000 1,012,543

Numerous-
95

272 171 372 203 5 400 5,000 1,012,528

Numerous-
90

271 171 372 204 5 400 5,000 1,018,681

Numerous-
80

271 171 372 203 5 400 5,000 1,016,997

Evaluation measures
A number of criteria for evaluating the results of clus-
tering algorithms have been proposed (https://en.wiki
pedia.org/wiki/Cluster_analysis). Some criteria are appli-
cable when the true clusters are known, other criteria are
applicable when the true clusters are unknown, and oth-
ers are applicable when the true clusters are available or
unavailable.

Criteria for known true clusters: All (or themajority of )
sequences in a good, predicted cluster should come from
one real cluster. The purity criterion measures the mixing
extent of sequences comprising a predicted cluster (Eq. 6).

purity = 1
m

∑

p∈P
max
t∈T

|p ∩ t| (6)

Here,m in the number of sequences comprising predicted
clusters of size two or more, P is the set of predicted clus-
ters, and T is the set of true clusters. The higher the purity,
the better.
Jaccard index compares the number of sequences com-

mon to a predicted cluster and a real cluster (i.e., the
intersection of the two clusters) to the total number of
unique sequences found in both clusters (i.e., the union
of the two clusters). Equation 7 describes how the Jac-
card index is calculated. Perfect clustering results have a
Jaccard score of 1.

Jaccard = 1
|P|

∑

p∈P
max
t∈T

|p ∩ t|
|p ∪ t| (7)

The G-Measure [38] is similar to the Jaccard index. It
compares the number of common sequences to a pre-

https://en.wikipedia.org/wiki/Cluster_analysis
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dicted cluster and a real cluster to the size of each clus-
ter separately (Eq. 8). Perfect clustering results have a
G-Measure score of 1.

G-Measure = 1
|P|

∑

p∈P
max
t∈T

√
|p ∩ t|

|p| × |p ∩ t|
|t| (8)

To look at these three criteria simultaneously, we define
a new criterion called cluster quality for known clusters
which is the harmonic mean of purity, Jaccard index, and
G-Measure (Eq. 9).

Cluster quality = 3
1

purity + 1
Jaccard + 1

G-Measure
(9)

The harmonic mean is usually suitable to averaging rates
that have the same range.

Criteria for unknown true clusters: In high-quality
clustering, a cluster is desired to be compact and as far
as possible from its neighbors to maximize separation.
For each cluster, Davies-Bouldin index [39] evaluates the
closest most-scattered cluster (Eq. 10).

Davies-Bouldin = 1
|P|

|P|∑

i=1
max
i�=j

( si + sj
dij

)
(10)

Here, si measures the scatter of members of cluster i as
the average distance between a member and the cluster
center; dij measures the separation between clusters i and
j as the distance between their centers. The lower the
Davies-Bouldin score, the better.
Dunn index [40] takes into account clusters’ scatter and

separation. This index is calculated as the ratio of the dis-
tance between the closest two clusters in a data set to the
maximum scatter (Eq. 11). The higher the Dunn score, the
better.

Dunn =
min
i,j,i�=j

di,j

max
i

si
(11)

The Silhouette [41] criterion compares the placement
of a sequence in a cluster to the placement of the same
sequence in the closest neighbor cluster (12).

Silhouette = 1
m

m∑

i

xni − xci
max(xni, xci)

(12)

Here, m is the number of sequences in a data set; xci is
the distance between the ith sequence and the center of
its own cluster and xni is the distance between the ith
sequence and the center of the closest neighboring clus-
ter. Silhouette scores are between -1 (the worst score) and
1 (the best score). In our calculation of Silhouette scores,
the neighbor cluster is determined for an entire cluster —
not for each sequence separately — as the cluster with the
closest center.

A distance is calculated as 1 minus the corresponding
identity score reported by Identity [29]. Recall that an
identity score is a sequence similarity measure calculated
as the ratio of the number of identical nucleotides of two
sequences to the length of the alignment (including gaps)
of the two sequences.
Intra-cluster similarity is the average similarity (identity

score) of a sequence to the center of its cluster (the higher,
the better). Inter-cluster similarity is the average similarity
between two centers of predicted clusters (the lower, the
better).
To look at multiple criteria assessing the quality of pre-

dicted clusters, for which we do not have a ground truth,
we defined the cluster quality for unknown clusters. The
geometric mean is suitable to averaging values that have
different units or ranges. Thus, the cluster quality for
unknown clusters is defined as the geometric mean of the
following:

• 1 ÷ Bavies-Bouldin,
• Dunn,
• (1+ Silhouette) ÷ 2,
• Intra-cluster similarity, and
• 1− inter-cluster similarity.

Criteria for known and unknown true clusters: Cov-
erage, run time, and memory requirement are criteria
applicable to known and unknown true clusters. Cov-
erage is the ratio of the total size of predicted clusters
including at least two sequences to the size of the data
set. The wall-clock time is reported. Memory is measured
in Gigabyte (GB).

Results
Results on synthetic data
Small data sets with 80–97% identity: We evaluated
CD-HIT, MeShClust v1.0, MeShClust v3.0, and UCLUST
on the following 12 testing data sets: Short 80, Short 90,
Short 95, Short 97, Medium 80, Medium 90, Medium 95,
Medium 97, Long 80, Long 90, Long 95, and Long 97. Each
of these data sets includes less than 25,000 sequences.
Note that these data sets were generated for this work
and were not available at the time we developed MeSh-
Clust v1.0. Additionally, these testing data sets are differ-
ent from the training data sets that were utilized while
developing and optimizingMeShClust v3.0. We report the
average performance on the 12 sets in Table 3 and the
performance on each data set in Additional file 1.
We start by looking at cluster quality as defined in Eq. 9,

MeShClust v3.0 came first, achieving almost perfect score
(1.00); MeShClust v1.0 came second (0.99) followed by
CD-HIT (0.29) and UCLUST (0.15). The same trend was
observed on the percentage of true centers identified by
each tool (MeShClust v3.0: 78%; MeShClust v1.0: 35%;
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Table 3 Evaluations on the synthetic testing data sets. The first set of evaluations was conducted on 12 sets, each of which includes
clusters whose members are 80%, 90%, 95%, or 97% identical to a template sequence, i.e., a true center. The second set of evaluations
was conducted on six data sets representing clusters of degenerate sequences (e.g., members are 60% or 70% identical to true centers).
Each set of the first and second sets of evaluations includes less than 25k sequences. The third set of evaluations was conducted on
four data sets, each of which includes more than one million sequences (80%, 90%, 95%, or 97% identical to true centers). All clusters in
the same data set have the same minimum identity score. For example, cluster members of the Short-97 data set are 97.00–99.99%
identical to the true centers. The direction of the arrow next to each criterion indicates whether a high or a low value is better. We mark
MeShClust v3.0 with “auto” when the threshold is estimated automatically, otherwise a specific threshold is provided to the tool

Tool Purity (↑) Jaccard (↑) G-Measure (↑) Cluster quality (↑) Coverage (↑) Centers (↑) Time (↓) Memory (GB) (↓)
Short, Medium, and Long: 80–97%

CD-HIT 0.92 0.19 0.33 0.29 0.92 0.01 00:71:00 0.36

MeShClust v1.0 0.99 0.92 0.93 0.94 0.99 0.35 00:00:26 0.20

MeShClust v3.0 1.00 1.00 1.00 1.00 1.00 0.78 00:05:18 6.55

MeShClust v3.0 (auto) 1.00 1.00 1.00 1.00 1.00 0.80 00:12:08 6.59

UCLUST 0.70 0.08 0.20 0.15 0.70 0.00 00:00:16 0.12

Short, Medium, and Long: 60–70%

CD-HIT 1.00 0.14 0.28 0.24 0.90 0.01 01:23:46 0.35

MeShClust v1.0 0.98 0.93 0.96 0.96 1.00 0.53 00:00:25 0.19

MeShClust v3.0 1.00 1.00 1.00 1.00 1.00 0.76 00:11:44 5.79

MeShClust v3.0 (auto) 1.00 1.00 1.00 1.00 0.98 0.65 00:14:32 5.83

UCLUST 1.00 0.22 0.34 0.34 0.83 0.01 00:00:28 0.08

Numerous: 80–97%

CD-HIT 1.00 0.48 0.59 0.62 1.00 0.00 00:39:31 0.91

MeShClust v1.0 1.00 0.81 0.83 0.87 0.99 0.01 00:19:04 2.58

MeShClust v3.0 1.00 0.99 0.99 1.00 1.00 0.15 02:58:15 12.76

MeShClust v3.0 (auto) 1.00 0.98 0.99 0.99 0.99 0.15 02:50:40 13.06

UCLUST 1.00 0.07 0.20 0.15 0.89 0.00 00:06:41 0.72

CD-HIT : 1%; and UCLUST : 0%). The greedy nature of
CD-HIT andUCLUST does not allow them to identify the
true centers. Because these data sets are synthetic, they
do not include noisy sequences. Therefore, a coverage
score of one is desired. A coverage score of less than one
indicates that some sequences do not belong to any clus-
ter. MeShClust v3.0 and MeShClust v1.0 achieved perfect
or almost perfect coverage scores, followed by CD-HIT
(0.92) andUCLUST (0.70).With respect to time,UCLUST
was the fastest followed by MeShClust v1.0, MeShClust
v3.0, and CD-HIT. MeShClust v3.0 required the highest
amount of memory. Regardless of the rank of MeShClust
v3.0 with respect to its time and memory requirements,
these requirements are very reasonable. It tookMeShClust
v3.0 five minutes and 18 seconds on average to process
one of the 12 sets. MeShClust v3.0 required 6.55 GB of
memory on average for each data set; such memory is
available on almost all personal computers at the time of
this writing. In sum,MeShClust v3.0 achieved the highest
scores on cluster quality and the percentage of true centers
while requiring reasonable time and memory.

Small data sets with low identity: Clustering degenerate
sequences (≤ 60% identity) using alignment-free statis-
tics was a challenge while developing MeShClust v1.0.

Therefore, we decided to utilize a global alignment algo-
rithm in clustering degenerate sequences withMeShClust
v1.0. Due to the improvement we introduced to Iden-
tity (the tool for calculating pairwise identity scores using
alignment-free statistics), MeShClust v3.0 is able to clus-
ter degenerate sequenceswithout the use of any alignment
algorithms.
We evaluated the performances of the four tools on the

following six testing data sets: Short 60, Short 70, Medium
60, Medium 70, Long 60, and Long 70. The average per-
formance is reported in Table 3 and the performance on
each data set in Additional file 1.
MeShClust v3.0 achieved perfect score on the cluster-

quality criterion; MeShClust v1.0 came second with a
score of 0.96, UCLUST came third with a score of 0.34,
and CD-HIT came fourth with a score of 0.28. MeSh-
Clust v3.0 andMeShClust v1.0 were able to cluster almost
all sequences, whereas CD-HIT and UCLUST clustered
90% and 83% of the sequences. MeShClust v3.0 was able
to identify 76% of the true centers, i.e., the predicted
center of a cluster is the same as the true center, from
whichmember sequences were generated.MeShClust v1.0
identified 53% of the true centers, whereas CD-HIT and
UCLUST identified 1%. With respect to processing time,
MeShClust v1.0 was the fastest followed by UCLUST,
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MeShClust v3.0, and CD-HIT. MeShClust v3.0 took 11
minutes and 44 seconds on average to process one of
the degenerate sets. The memory required by MeShClust
v3.0 was the highest (5.79 GB), whereas the three related
tools required 0.08–0.35 GB. Overall, MeShClust v3.0 is
able produce high-quality clusters while utilizing available
memory and acceptable processing time.

Large data sets with 80–97% identity: The previous
two experiments were conducted on small data sets, each
of which includes less than 25,000 sequences. Now, we
report the performances of the four tools on the follow-
ing testing sets: Numerous 80, Numerous 90, Numerous
95, and Numerous 97. Each of these data sets consists
of more than one million sequences and 5,000 clusters.
Table 3 displays the average performance on the four large
sets. Additional file 1 includes the performance on each
set individually.
According to the cluster-quality criterion, MeShClust

v3.0 achieved the highest score of 1.00; MeShClust v1.0
came second with a score of 0.87; CD-HIT came third
with a score of 0.62; UCLUST came fourth with a score of
0.15. According to the true-centers criterion, MeShClust
v3.0 identified the largest percentage of the true centers
(15%), whereasMeShClust v1.0 identified 1% and CD-HIT
and UCLUST could not identify any true centers. Even
though MeShClust v3.0’s performance based on the true-
centers criterion is not as good as the performance on the
small data sets, it is the best on the large data sets in con-
trast to the three related tools. According to the coverage
criterion, MeShClust v3.0 and CD-HIT achieved almost
perfect coverage scores, followed byMeShClust v1.0 (0.99)
and UCLUST (0.89). MeShClust v3.0 took about three
hours on average to process each of the large data sets.
MeShClust v3.0 was the slowest among the four tools.
With respect to memory requirement, MeShClust v3.0
required the largest amount of memory of 12.76 GB.
MeShClust v3.0 achieved the highest scores on the

cluster-quality, the true-centers, and the coverage crite-
ria. Producing these high-quality clusters required more
time and more memory than the related tools. From the
prospective of a life scientist who is about to drive bio-
logical insights from sequence clusters, the high quality
of clusters produced byMeShClust v3.0 greatly outweighs
its time and memory requirements, both of which are
reasonable and available.

Estimating a threshold identity score from data: A life
scientist may not know or uncertain of a good value (or at
least a good starting point) for the threshold-score param-
eter. CD-HIT, MeShClust v1.0, and UCLUST require the
user to provide a threshold identity score.MeShClust v1.0
can handle some error in the threshold score; however, it
still requires the user to provide a score. A tool uses this

threshold as a cutoff for determining cluster membership.
All members of a cluster must have identity scores with
the center greater than or equal to the threshold score.
MeShClust v3.0 can estimate the threshold score without
any assistance from the user.
First, we appliedMeShClust v3.0 to estimating threshold

identity scores on the 22 training sets. The error ranged
from 0.02% to 3.36% with an average of 1.05% and a stan-
dard deviation of 0.81%. Second, we applied MeShClust
v3.0 to estimating the threshold scores and using them
in clustering the 22 testing sets. In Table 3, we report
(marked with “auto”) the average performances in the
three previous experiments. The performance due to an
estimated threshold score is very comparable to that due
to a user-provided one, demonstrating MeShClust v3.0’s
success in estimating the threshold score needed for deter-
mining cluster membership. Another implication of these
results is that a user may use MeShClust v3.0 without
adjusting any parameters, minimizing guesswork.
The user should use this feature in combination with the

evaluation feature that calculates scores indicating clus-
ter quality. This way, the user has a reference point to
compare to if the user decides to adjust the threshold
around the estimated value. One drawback is that the user
may run MeShClust v3.0 few times. Another drawback is
that estimating the threshold may require slightly more
time and memory than providing a threshold by the user.
Nonetheless, this feature is very important when a life sci-
entist does not know a good value for the threshold-score
parameter.

Results on real data
We evaluated CD-HIT, MeShClust v1.0, MeShClust v3.0,
andUCLUST on theMicrobiome data set, which includes
more than one million sequences, using an identity score
of 97% (Table 4).MeShClust v3.0 outperformed all related
tools on every criterionmeasuring cluster quality. Accord-
ing to the overall cluster quality measure, MeShClust
v3.0 came first followed by MeShClust v1.0, CD-HIT, and
UCLUST. MeShClust v3.0 achieved 100% improvement
over our previous version, more than 200% over CD-HIT,
and 300% over UCLUST. The coverage of our tool was
96%, meaning that 4% of the sequences did not belong to
any clusters according to the 97% threshold. One possible
explanation is that the unclustered sequences represent
noisy sequences due to sequencing errors. Another pos-
sible explanation is that these sequences represent rare
bacterial species found in the human microbiome. A third
explanation is that MeShClust v3.0 tends to be a bit strict
in assigning sequences to clusters.
The improvement in MeShClust v3.0’s cluster quality

came at the cost of time andmemory.MeShClust v3.0 took
the longest time (one hour and 41 minutes) and required
the largest memory (about 15 GB), whereas the other
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Table 4 Evaluations on real data sets. The microbiome set was clustered with an identity score of 97%. The LTRs set was clustered with
an identity score of 70%. The direction of the arrow next to each criterion indicates whether a high or a low value is better

Tool Dunn (↑) Davies-
Bouldin (↓)

Silhouette (↑) Intra (↑) Inter (↓) Cluster
quality (↑)

Coverage (↑) Time (↓) Memory
(GB) (↓)

Microbiome

CD-HIT 0.01 3.39 0.24 0.94 0.94 0.16 0.99 00:01:45 0.93

MeShClust v1.0 0.02 1.50 0.43 0.96 0.90 0.25 0.99 00:05:01 2.56

MeShClust v3.0 0.27 0.77 0.74 0.97 0.90 0.50 0.96 01:41:06 15.08

UCLUST 0.01 5.50 -0.14 0.94 0.96 0.12 0.98 00:00:31 0.42

LTRs

CD-HIT 0.02 1.81 0.05 0.78 0.52 0.29 1.00 03:47:05 0.75

MeShClust v1.0 0.14 1.13 0.33 0.86 0.52 0.51 1.00 00:02:57 1.75

MeShClust v3.0 0.98 0.86 0.47 0.88 0.58 0.79 0.94 02:01:22 16.24

UCLUST 0.02 2.02 0.11 0.75 0.55 0.27 1.00 00:09:01 0.50

related tools took few minutes and required 0.42–2.56 GB
of memory. MeShClust v3.0’s memory requirement of 15
GB is already available on almost all personal computers
at the time of this writing. When scientific conclusions
depend on the formed clusters, waiting for two hours to
obtain high-quality clusters is well justified.
Next, we evaluated the tools on the LTRs data set,

which includes about 250,000 sequences, using an iden-
tity score of 70%. This data set was produced by a pro-
gram called LtrDetector that discovers LTR retrotrans-
posons [42]. LtrDetector processed the maize genome.
One way to reduce the false positive rate of LtrDetec-
tor is to cluster the LTRs; sequences with predicted LTRs
that do not belong to any cluster are likely to be false
positives and should be removed.MeShClust v3.0 outper-
formed the three related tools on every criterion related
to cluster quality except the inter-cluster similarity mea-
sure. According to the overall cluster quality measure,
our tool came first followed by MeShClust v1.0, CD-HIT,
and UCLUST. The margin of improvement is very clear
(55% over MeShClust v1.0, 172% over CD-HIT, and 193%
over UCLUST). Only 94% of the LTRs were clustered.
This coverage is in line with the assumption that this
data set includes false positives; the purpose of clustering
these sequences is to identify and remove sequences that
do not belong to any cluster. Similar to the Microbiome
data set, our tool took the longest time and required the
largest amount of memory. However, our time and mem-
ory requirements are well justified given the high quality
of the clusters produced byMeShClust v3.0.
In the third evaluation experiment on real data, we eval-

uated the four tools on the viral data set with a threshold
identity score of 50%. This is a challenging experiment
because k-mer statistics may be ineffective on highly
degenerate sequences [32]. To circumvent this challenge
while developing MeShClust v1.0, we utilized the actual
global alignment algorithm instead of the k-mer-statistics-
based classifier when the threshold identity score is 60%

or below. MeShClust v3.0 is completely free from align-
ment algorithms and depends entirely on alignment-free
k-mer statistics. The results of this experiment are shown
in Table 5. Recall that the viral data set consists of nine
known clusters. In terms of cluster quality,MeShClust v1.0
(0.81) came first followed by CD-HIT (0.78), MeShClust
v3.0 (0.71), and UCLUST (0.43). In terms of coverage, the
same exact performance ranking was observed. In terms
of time, CD-HIT was the fastest followed by MeShClust
v3.0, UCLUST, and MeShClust v1.0. In terms of memory,
MeShClust v1.0 and UCLUST came first, MeShClust v3.0
came second, and CD-HIT came last. Although MeSh-
Clust v3.0 did not come first in this experiment, its cluster
quality is within 10–14% from those obtained by the first
and the second-best performing tools. Because clustering
degenerate sequences using alignment-free k-mer statis-
tics could not be done in the past, these results represent
a progress in the alignment-free field.
In the fourth evaluation experiment on real data, we

applied MeShClust v3.0 to clustering bacterial genomes.
None of the related tools can cluster very long sequences
such as those of bacteria because of the prohibitive time
alignment algorithms would take to calculate pairwise
identity scores.We applied our tool to clustering bacterial
genomes into species. To start, we assembled the 14-
bacterial species data set, which includes 1,328 sequences
representing 14 bacterial species. The length of an average
genome is approximately 3 mega base pairs. Because this
is the first time to cluster bacterial genomes using identity
scores, there is no community-accepted threshold identity
score as the one we utilized in clustering the microbiome
data set (97%). Using the threshold-estimation feature of
MeShClust v3.0, an identity score of 91.23% served as a
starting point. The clusters obtained due to the estimated
threshold were fine but not perfect — their cluster qual-
ity was 0.77 (a perfect cluster quality score is 1). After
that, we tried three lower threshold scores of 90%, 85%,
and 80%. Table 5 shows the results of this experiment.
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Table 5 Evaluations on the viral and the 14-bacterial-species data sets. The viral set was clustered with an identity score of 50%; it
includes nine clusters representing nine viruses. The 14-bacterial-species set was clustered with multiple identity scores; it includes 14
clusters representing 14 bacterial species. We markMeShClust v3.0 with “auto” when the threshold is estimated automatically,
otherwise a specific threshold is provided to the tool

Tool Purity (↑) Jaccard (↑) G-Measure (↑) Cluster
quality (↑)

Coverage (↑) Time (↓) Memory
(GB) (↓)

Viral data set

CD-HIT 0.97 0.67 0.77 0.78 0.95 00:00:02 0.18

MeShClust v1.0 0.91 0.72 0.83 0.81 0.98 00:00:28 0.08

MeShClust v3.0 0.96 0.56 0.72 0.71 0.72 00:00:07 0.12

UCLUST 1.00 0.26 0.46 0.43 0.64 00:00:17 0.08

14-bacterial-species set

MeShClust v3.0 (0.80) 1.00 1.00 1.00 1.00 1.00 00:29:36 14.09

MeShClust v3.0 (0.85) 1.00 0.93 0.97 0.97 0.91 00:46:01 14.11

MeShClust v3.0 (0.90) 1.00 0.64 0.76 0.78 0.96 00:42:54 14.21

MeShClust v3.0 (auto) 1.00 0.62 0.73 0.77 0.93 02:48:41 14.21

The clusters due to the 80% and 85% threshold scores
had high cluster quality and high coverage, suggesting that
bacterial genomes of the same species are 80-85% iden-
tical to each other. Using a threshold identity score of
84%, we clustered the bacterial data set, which consists
of 10,562 sequences with an average length of 3.7 mega
base pairs. This experiment represents a stress test for
MeShClust v3.0 because of the high time and memory
requirements. MeShClust v3.0 successfully clustered this
data set in about 50 hours using 56 GB of memory, result-

ing in 482 clusters of size 2 or greater covering 67% of the
data set. To the best of our knowledge, this is the first time
long sequences such as those of bacterial genomes can be
clustered using identity scores.

Discussion
The scaled-upmean shift algorithm in action
Figure 2 shows detail about how MeShClust v3.0 dis-
covered centers in the Numerous-97 training data set,
which includes 5,000 clusters and more than one million

Fig. 2MeShClust v3.0 in action on the Numerous-97 training data set. The top plot shows the number of centers as the algorithm runs. The middle
plot shows the number of sequences accumulated in the reservoir; this number changes in the first data pass (Pass 1) and is zero in the second and
third data passes (Pass 2 and Pass 3). The bottom plot shows the number of sequences read during the three data passes
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sequences. The bottom plot of Fig. 2 shows the number
of sequences read as MeShClust v3.0 progresses. Recall
that MeShClust v3.0 employs an out-of-core strategy, in
which the tool processes input sequences batch by batch.
MeShClust v3.0 scanned the data three times until it con-
verged. The middle figure shows the number of sequences
that do not belong to any of the clusters discovered so
far; these sequences are kept in the reservoir. The reser-
voir is utilized during the first data pass only; therefore,
it is empty during the second and third data passes. The
top plot shows the number of discovered centers as the
tool runs. All centers are discovered in the first data pass;
the first set of centers were discovered by the main mean
shift instance that was started with a quadratic initializa-
tion step. Additional centers were discovered by running
an independent instance of themean shift with a quadratic
initialization step when 25,000 (the batch size) sequences
were accumulated in the reservoir. For this reason, every
increase in the number of centers is associated with a
decrease in the reservoir size due to removing a batch.
The number of discovered centers decreased a little bit
(from 5,016 to 5,012) during the second data pass because
some centers were merged. The number of centers did
not change at all during the third data pass, resulting in
convergence.

Effects of the all-vs-all block size onMeShClust v3.0
To evaluate the effects of the all-vs-all block size on the
performance ofMeShClust v3.0, we ran our tool using dif-
ferent block sizes (1k, 2k, 5k, 10k, 15k, 20k, 25k, and 46k)
and measured cluster quality, percentage of true centers,

coverage, time, and memory (Fig. 3). Recall that this block
of sequences is used for initializing the mean shift algo-
rithm, which applies Identity to calculating the similarity
scores of every unique pair of sequences in this block.
In other words, Identity performs all-vs-all on this block
of sequences. This step is the most time-consuming step
in MeShClust v3.0. The larger the block size is, the more
time and memory are required. We performed this exper-
iment on four training data sets: 60-Short, 70-Medium,
80-Long, and 97-Numerous. Each of the first three data
sets includes less than 25k sequences, whereas the 97-
Numerous set includes more than one million sequences.
First, we looked at cluster quality (the harmonic mean of

purity, Jaccard index, and G-Measure). On the small data
sets (60-Short, 70-Medium, and 80-Long), the block size
seems to have no effect on cluster quality. On the large
data set (97-Numerous), we observed a minor increase in
performance as the block size increased; almost the same
cluster qualities were obtained using a size of 10k or larger.
After that we looked at the percentage of true centers
identified. On the small data sets, using large blocks (20–
25k) resulted in identifying more true centers than using
small sizes. The same trend was observed on the large
data set, but it was not as strong as that observed on the
small data sets. In general, the percentage of true centers
increases with using large block sizes. This observation is
consistent except on the 1k and the 2k block sizes on the
small data sets. Determining the true centers depends on
the availability of sequences of the same cluster in a block.
If these sequences are well distributed, i.e., represent the
entire cluster, the true center is likely to be found. How-

Fig. 3 The effects of the size of the all-vs-all block on cluster quality, percentage of true centers, time, and memory. Figures a–d are produced by
evaluatingMeShClust v3.0 using different block sizes (1k, 2k, 5k, 10k, 15k, 20k, and 25k) on three small data sets: Short 60, Medium 70, and Long 80;
each of these sets consists of less than 25k sequences and includes 100 clusters. Figures e–h are produced by evaluatingMeShClust v3.0 using
different block sizes (1k, 2k, 5k, 10k, 15k, 20k, 25k, and 46k) on one large data set (the Numerous 97 set), which includes more than one million
sequences and 5,000 clusters
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ever, if the majority of these sequences come from one
part of the cluster, i.e., they are not well distributed, the
true center is unlikely to be found. Clearly, the block size
has an effect on the distribution of sequences that belong
to the same cluster in a block; this effect is more notice-
able in the cases of small blocks. The block size has almost
no effect on the coverage measure (99.6–99.7% on average
on the three small data sets and 99.6–99.9% on the large
data set).
With respect to time, MeShClust v3.0 took longer time

using large blocks than using small blocks on the three
small data sets. This time trend is expected because
MeShClust v3.0 utilized one mean shift instance with the
quadratic initialization step while processing the small
sets. On the large data set, the time requirements due to
different block sizes were very similar. Processing small
blocks takes shorter time and discovers a smaller number
of new centers than processing large blocks. The smaller
the number of discovered centers is, the more frequent
executing the mean shift with the quadratic initialization
step occurs and vice versa, i.e., these two trends balance
each other. Finally, we looked at memory, which increases
as the block size increases.
In sum, using a large block size is likely to result in iden-

tifying more true centers than using a small size but at
the cost of memory. Further, cluster quality due to a large
block size is likely to be better than that due to a small
block size — specially on large data sets.

MeShClust v1.0 versusMeShClust v3.0
Even thoughMeShClust v1.0 andMeShClust v3.0 are both
based on the mean shift algorithm, their adaptations of
the algorithm are completely different. MeShClust v1.0
consists of two stages. In the first stage, it builds ini-
tial clusters one at a time. First, MeShClust v1.0 sorts its
input sequences according to length. Starting with the
shortest sequence as the initial center of the first clus-
ter, it scans all input sequences for sequences that are
similar to the center. The mean of these sequences is cal-
culated (sequences are converted into k-mer histograms)
and a representative sequence is selected. This representa-
tive sequence becomes the new center of the cluster. The
just-found, similar sequences are removed from the input
sequences. Next, MeShClust v1.0 scans the remaining
sequences for sequences that are similar to the new center.
This procedure — (i) find similar sequences, (ii) calculate
a new mean, and (iii) find a representative sequence —
is repeated until no new similar sequences can be found.
At that time, the cluster is put aside, and a new sequence
is selected from the remaining sequences to be the initial
center of the new cluster. The new sequence is the closest
sequence (among the remaining sequences) to the center
of the previous cluster. The first stage results in a semi-
sorted list of clusters. In the second stage,MeShClust v1.0

attempts to merge a cluster with the five clusters before
it in the list and the five clusters after it in the list. In
contrast to MeShClust v1.0, MeShClust v3.0 builds many
clusters at the same time — not only one.MeShClust v3.0
attempts to merge a cluster with every other cluster — not
only the neighboring 10 clusters.MeShClust v3.0may scan
input sequences as many times as needed until the algo-
rithm converges — not only two stages. MeShClust v3.0
processes input data batch by batch — the entire data set
is not loaded in memory. For this reason, MeShClust v1.0
cannot process very large data sets.
MeShClust v3.0 is alignment free, whereas MeShClust

v1.0 is not entirely alignment free. MeShClust v1.0 deter-
mines sequence similarity using a machine-learning-
based classifier that is trained on identity scores produced
by a global alignment algorithm. MeShClust v3.0 utilizes
Identity whose core is a regression model trained on iden-
tity scores that are calculated by introducing mutations
into real sequences, i.e., alignment algorithms are never
used. For this reason, MeShClust v3.0 can be applied to
very long sequences, e.g., bacterial genomes, but MeSh-
Clust v1.0 cannot be applied because of the impractical
long time a global alignment algorithm would take on
such long sequences. When the threshold identity score
is less than or equal to 60%, MeShClust v1.0 uses a global
alignment algorithm— instead of the classifier— to deter-
mine the similarity between a sequence and the center of
a cluster, whereas MeShClust v3.0 uses Identity which is
completely alignment free.
The classifier utilized in MeShClust v1.0 depends on

four features only and applies a greedy strategy for feature
selection, whereas MeShClust v3.0 utilizes Identity that
employs the best-first algorithm to select features from
903 statistics, i.e., a stronger feature-selection algorithm
andmany more informative features than those utilized in
MeShClust v1.0.

MeShClust v2.0
The adaptation of the mean shift algorithm in MeSh-
Clust v2.0 (https://github.com/BioinformaticsToolsmith/
MeShClust2) is the same as that of MeShClust v1.0. The
difference between the two versions is that the second
version’s classifier utilized in selecting similar sequences
does not utilize alignment algorithms to generate iden-
tity scores for training; it generates — similar to Identity
— semi-synthetic sequence pairs with known identity
scores.

Runtime analysis ofMeShClust v3.0
Two cases should be considered when we analyze the run-
time. In the first case, the data size (n) is smaller than the
all-vs-all block size (b). Here, the algorithm is quadratic
with respect to the data size, i.e., O(n2), because of the
initialization step, which requires calculating the identity

https://github.com/BioinformaticsToolsmith/MeShClust2
https://github.com/BioinformaticsToolsmith/MeShClust2
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scores of all unique sequence pairs. In the second case, the
data size is larger than the block size. Here, the scaled-up
version of the algorithm (i.e., the out-of-core strategy) is
applied, processing block by block. When the mean shift
algorithm is initialized, it requires calculating the iden-
tity scores of all unique sequence pairs in the provided
block. This step is quadratic with respect to the all-vs-all
block size, i.e., O(b2). The quadratic, initialization step is
applied at the beginning of the algorithm and when there
are enough sequences in the reservoir. When the mean
shift is not initialized, it requires calculating the identity
scores between sequences in a new block and the iden-
tified centers. The runtime of this step is O(cb), c is the
number of centers. There are n/b blocks approximately.
The runtime of the scaled-up version isO(nmax (b, c)). In
sum, the algorithm is quadratic, O(n2), if the size of the
input sequences is smaller than the block size. Otherwise,
the runtime of the scaled-up version is O(nmax (b, c));
this runtime is linear (O(n)) when b and c are smaller than
— and independent of — the data size.

Conclusions
Computational tools for clustering DNA sequences are
utilized in many studies in molecular biology. Two pio-
neering tools — CD-HIT and UCLUST — are based on
greedy algorithms. For this reason, they may result in
fragmented clusters and are unable to identify the true
centers of the clusters they form. Further, these widely
used tools cannot be applied to clustering long sequences
such as those of bacterial genomes. Earlier, we developed
MeShClust v1.0, which is based on the mean shift algo-
rithm to address some of the limitations of CD-HIT and
UCLUST. Although the adaptation of the mean shift algo-
rithm in MeShClust v1.0 was a step forward, it was not
the original algorithm.We are convinced that applying the
original mean shift algorithm should result in high-quality
clusters. In this work, we propose MeShClust v3.0, which
applies the original mean shift algorithm on small data
sets and a scaled-up version of it on large data sets.
The main contributions ofMeShClust v3.0 are:

• High-quality clusters;
• Clustering long sequences as those of bacterial

genomes using identity scores for the first time;
• Clustering large data sets that cannot fit in memory

using the mean shift algorithm;
• Automatic estimation of the threshold identity score;

and
• Progress towards using alignment-free k-mer

statistics in clustering degenerate DNA sequences.

MeShClust v3.0 represents progress in terms of cluster
quality and scale, resulting in accurate biological insights
and providing opportunities for new studies.

Availability and requirements
Project name:MeShClust v3.0
Project home page: https://github.com/Bioinformatics
Toolsmith/Identity
Operating system(s): UNIX/Linux/Mac
Programming language: C++
Other requirements: GNU g++ 7.5.0 or later, GNUMake,
and CMake v3.10
License: The source code is licensed under Affero Gen-
eral Public License version 1 and the data are licensed
under Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International Public License (CC BY-NC-
SA 4.0)
Any restrictions to use by non-academics: Alternative
commercial license is required
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