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Abstract 

Background:  Affinity prediction between molecule and protein is an important step of virtual screening, which is 
usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. 
Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast 
and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to 
be improved.

Results:  The proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and 
compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of 
the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high 
accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast 
execution speed, and can be suitable for the screening of large databases.

Conclusion:  We construct protein and molecular graphs through sequence and SMILES that can effectively reflect 
their structures. To utilize the detail contact information of protein, graph neural network is used to extract features 
and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target 
affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.
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Background
The drug-target affinity prediction is a key task in virtual 
screening, which has been studied for decades. The pre-
diction can be used to determine whether the small mol-
ecule can bind to a target, which could be further applied 
to screen lead compounds to speed up drug research and 
development. Sequence-based method and structure-
based method are two commonly used methods in drug-
target affinity prediction. The difference is that whether 

the protein structure is provided or not. For a target with 
known structure, we can use molecular docking and 
molecular dynamics simulation to predict the binding 
conformation and binding strength between molecule 
and protein, which can obtain a relatively accurate result. 
There are several programs that can be implemented for 
molecular docking, such as DOCK [1] and AutoDock [2]. 
However, structure-based method has many limitations. 
On the one hand, molecular docking requires confor-
mational searching, which is time-consuming, and it is 
expensive to screen a large database containing hundreds 
of millions of small molecules. On the other hand, with 
the development of proteomics, protein sequencing is 
very fast, but its structure is still difficult to obtain, which 
means that there are still many targets without structural 
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information. Sequence is the only information for these 
targets that can be used to predict binding affinities with 
small molecules, which is called as sequence-based affin-
ity prediction.

Sequence-based method has always been a research 
hotspot in computational biology. Various neural net-
works have been tried to extract the feature of protein 
sequence and molecule SMILES (simplified molecu-
lar input line entry specification) [3]. Sequence-based 
method can be further divided into two types according 
to different demands, including compound-protein inter-
action (CPI) prediction and drug-target affinity (DTA) 
prediction. CPI prediction is a simplified DTA predic-
tion, which is a binary classification task and could pre-
dict whether the drug can bind to the target. For example, 
TransformerCPI [4] uses a transformer neural network 
[5] to mine sequence information for the CPI prediction. 
Liu et  al. [6] builds up highly credible negative samples 
and combines various sources such as chemical expres-
sion profiles, sequences information and protein func-
tional annotations into a systematic screening framework 
to get the CPI prediction. However, it is need to gener-
ate many profiles for the pre-processing, which is time 
consuming. DeepScreen [7] is an individual predictor for 
a specific target using a deep convolutional neural net-
work. NeoDTI [8] integrates various sources from het-
erogeneous network data and uses topology-preserving 
representations of drugs and targets to implement inter-
action prediction. Hu et  al. [9] proposes a CNN-based 
method for drug-target interaction prediction, which 
takes 1D, 2D structural descriptors of drug and sequence 
of protein as the network inputs. To achieve a more accu-
rate prediction, decision tree and kernel ridge regression 
[10] are used for feature dimensionality reduction and 
ensemble learning.

Different from CPI prediction, DTA prediction can 
predict the detailed binding affinity between drug and 
target, it is usually a regression task and has aroused 
great interest in recent years. For instance, DeepDTA 
[11] is made up of two convolutional neural networks 
(CNN), which are used to learn the latent vectors of pro-
tein sequences and drug SMILES respectively to predict 
their affinity. WideDTA [12] improves DeepDTA by add-
ing two extra CNNs to represent the additional protein 
domains and motifs (PDM) and ligand maximum com-
mon substructures (LMCS). DeepPurpose [13] utilizes 
two encoders to represents the SMILES and sequence, 
which are composed of CNN, recurrent neural net-
work (RNN) and Transformer. GANsDTA [14] uses a 
semi-supervised generative adversarial networks (GAN) 
for feature extraction to predict binding affinity. Shim 
et  al. [15] proposes a method based on CNN, which 
involves the outer products between column vectors of 

two similarity matrices for the drugs and targets to pre-
dict the affinity. For molecule representation, molecular 
fingerprinting has always been an effective way, which 
includes extended connectivity fingerprints (ECFPs) 
[16], atom-environment fingerprints (MOLPRINT2D) 
[17] and molecular access system keys (MACCS) [18]. 
Because the obtained fingerprinting is a vector composed 
of 0 and 1, it can be easily learned by neural networks. 
Moreover, MSTG [19] utilizes a substructure tree to 
describe molecule, which is used for generating molecule 
in drug design and achieves a good performance.

The molecule could be easily represented using a 
graph, so graph neural network (GNN) [20] is suitable for 
extracting feature of the molecule. GNN could obtain the 
local and global structural information by using neigh-
bor node features to update feature. Through the trans-
mission of multi-layer networks, the feature of the whole 
data can be extracted. It has been successfully applied in 
CPI and DTA prediction task. For example, Tsubaki et al. 
[21] develops a novel CPI prediction method by combin-
ing graph neural network (GNN) and convolution neural 
network (CNN) for compounds and proteins represen-
tation respectively. GraphDTA [22], MCN-CPI [23] and 
PADME [24] also construct graphs to describe molecules 
and apply GNN for the feature extraction in DTA predic-
tion. The achievements of these methods demonstrate 
that the GNN could effectively characterize the small 
molecule.

Due to the simplicity of the molecule, most existing 
methods can effectively mine their structural informa-
tion, but structural information contained in protein 
sequence is always ignored. Moreover, as we stated above, 
there are still many targets without structure. To obtain 
structural information from sequence, the commonly 
used method is protein structure prediction. After dec-
ades of development, the accuracy of protein structure 
prediction has gradually increased. Especially with the 
emergence of AlphaFold [25], a breakthrough has been 
made in this field. Protein structure prediction usually 
needs to predict the interaction between different residue 
pairs, which is called contact map. It is a two-dimensional 
matrix, in which each element in the matrix represents 
the distance or interaction probability between residues. 
Because proteins are formed by the interaction of resi-
dues, contact map can reflect the spatial structure of the 
whole protein. Thus, if the contact map can be obtained 
according to the sequence in a fast way, its structural 
information can be obtained more quickly, which is use-
ful for the affinity prediction.

To improve the performance of DTA and CPI predic-
tions, we proposed a sequence-based method using 
weighted graph neural networks, the contributions of 
this paper are listed as below:
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•	 Protein structure is determined by its residue interac-
tion, which is caused by molecular forces. Due to the 
different distance between residues, the interactions 
are different. Only using a binary value in contact 
map is not accurate to depict the interaction between 
residues. A weighted protein graph construction 
method is proposed in this paper, which could pro-
vide more detailed information of the residue inter-
action.

•	 In our previous work, we proposed DGraphDTA [26]
model, which uses contact map to construct protein 
graph, and achieved good performance for DTA pre-
diction. However, the MSA process used in DGraph-
DTA for structure prediction and feature generation 
is time-consuming. Protein structure prediction pro-
vides key information for CPI and DTA prediction, so 
how to select a fast and accurate method to improve 
the efficiency is another issue to be solved. In this 
work, the evolutionary scale modeling (ESM) [27] is 
used, which could keep the accuracy rate stable while 
significantly increasing the computing speed. Moreo-
ver, to solve the sequence length limitation, a subse-
quence merging method is proposed.

•	 Finally, a weighted graph neural networks model that 
could be suitable for the proposed weighted protein 
graph is established. Different experiments show 
that the proposed method has high accuracy for CPI 
and DTA prediction and is faster than our previous 
method.

Results
We propose a novel method for protein sequence rep-
resentation using weighted graph, and a model is con-
structed based on it, which is called as WGNN-DTA. In 
order to comprehensively test the accuracy of the pro-
posed WGNN-DTA, various experiments are designed, 
including CPI and DTA prediction performance valida-
tion, contact map efficiency comparison.

Datasets
Based on a variety of designed experiments, several data-
sets are involved. The datasets are described in detail as 
follows.

Davis and KIBA datasets: Davis [28] and KIBA [29] 
datasets are used to verify the DTA prediction perfor-
mance of WGNN-DTA. It is a benchmark for DTA pre-
diction used in DeepDTA [11] and is published. Davis 
dataset is obtained by screening some kinase proteins 
and their related inhibitors, and its binding affinity is 
the corresponding dissociation constant Kd. The KIBA 
dataset is constructed from kinase family proteins and 
their inhibitors, and the binding KIBA score is calculated 

based on different affinity (Ki,Kd and IC50). The detailed 
information of the two datasets shown in Table  1. For 
Davis dataset, the affinities are processed in the same way 
of DeepDTA, which is calculated using Eq. (1).

Human and C.elegans datasets: the human and 
C.elegans of CPI datasets were created by Liu et  al. [6] 
in 2015 and used by Masashi et al. [21] to verify the CPI 
prediction performance of their proposed method. The 
dataset includes highly credible negative samples of 
compound-protein pairs obtained by using a systematic 
screening framework. The positive samples of the data-
set are obtained from two manually managed databases 
which are DrugBank [30] and matador [31]. The human 
dataset contains 3369 positive interactions between 1052 
unique compounds and 852 unique proteins; The Caeno-
rhabditis elegans (C.elegans) dataset contains 4000 posi-
tive interactions between 1434 unique compounds and 
2504 unique proteins.

DUD-E dataset: DUD-E [32] is designed for benchmark 
molecular docking programs by providing challenging 
decoys. There are 102 targets in the dataset, and each tar-
get is provided with several active molecules and decoys, 
which constitutes the CPI dataset of positive samples 
and negative samples. The dataset contains the structure 
information of proteins, so it is used in our work to test 
whether the proposed WGNN-DTA can be extended to 
the structure-based prediction.

Performance of compound‑protein interaction (CPI) 
prediction with WGNN‑DTA
Compound-protein interaction (CPI) prediction is an 
important task of virtual screening. In order to verify the 
performance of WGNN-DTA proposed in our work, two 
CPI prediction experiments are introduced.

First, a five-fold cross validation experiment is imple-
mented on two datasets including human and C.elegans 
datasets [6], where every dataset is randomly divided 
into five parts with the same size and every part is used 
to verify the performance of the model trained by the 
other four parts in turn. In Masashi’s implementation 
[21], they verified the performances for their method 

(1)pKd = − log10
Kd

109

Table 1  Davis and KIBA datasets

Dataset Number of 
proteins

Number of 
drugs

Binding entries

Davis 442 68 30056

KIBA 229 2111 118254
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with a ratio of 1:1, 1:3 and 1:5 for positive and nega-
tive samples. We also adopted the same setting, and the 
same measures are used for the performance compari-
son, which consists of area under curve (AUC), preci-
sion and recall. Precision and recall are commonly used 
measures to evaluate the binary classification, which 
are calculated through the Eqs.  2 and 3, where TP, FP 
and FN means the number of true positive predictions, 
false positive predictions and false negative predictions. 
In addition, F1-score is also involved to measure the 

proposed method which is calculated through Eq.  4. 
The used hyperparameters for our model are listed in 
Table 2 and the five-fold cross validation results for the 
two datasets are shown in Figs. 1, 2, 3, 4. The black line 
in the histogram indicates the standard deviation.

(2)Precision =
TP

TP + FP

Fig. 1  Five-fold cross validation of CPI prediction performance on human dataset with GCN implementation

Fig. 2  Five-fold cross validation of CPI prediction performance on human dataset with GAT implementation
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The four figures illustrate that the performance of 
WGNN-DTA achieve a high performance whether using 
GCN or using GAT for the model construction, and the 
AUC measure on two datasets are all above 0.9 in the 

(3)Recall =
TP

TP + FN

(4)F1− score =
2× (Precision+ Recall)

Precision× Recall

Fig. 3  Five-fold cross validation of CPI prediction performance on C.elegans dataset with GCN implementation

Fig. 4  Five-fold cross validation of CPI prediction performance on C.elegans dataset with GAT implementation

Table 2  Hyperparameters used in the experiment

Number Name Setting

1 The number of GNN layers 3

2 The type of GNN pooling layer Global mean pooling

3 Activation function Sigmoid

4 Optimizer Adam

5 Learning rate 0.001

6 Loss function Binary cross entropy loss

7 Epochs 1000

8 Batch size 512
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five-fold cross validation. When the ratio of positive 
and negative samples is 1:1, the performance is the best. 
With the proportion of negative samples increases, the 
performance decreases, and the standard deviation also 
increases gradually, which means that the stability of the 
model decreases. This is because unbalanced data will 
lead to poor fitting of the model. But even the ratio is 1:5, 
WGNN-DTA could still have a good capability, where the 
AUC measure reaches 0.969 and 0.985 with GCN imple-
mentation and reaches 0.972 and 0.989 with GAT imple-
mentation on the two datasets.

To further validate the performance of WGNN-DTA, 
Masashi’s method [21] is involved  for comparison. The 
same CPI datasets as Masashi are used, and the same 
dataset division is implemented, in which the dataset is 
randomly divided into training set, validation set and test 
set with a proportion of 0.8, 0.1 and 0.1. The dataset set-
tings with ratios of 1:1, 1:3 and 1:5 for positive and nega-
tive samples are also adopted, and the same measures are 
used for the performance comparison, which consists of 
AUC, recall and precision. In addition, F1-score measure 
is introduced. We compare WGNN-DTA with Masashi’s 

method and other traditional machine learning methods 
including k-NN, random forest (RF), L2 logistic (L2) and 
support vector machine (SVM), experimental results of 
which are referenced from the Masashi’s paper [21]. The 
comparison results are shown in Figs. 5 and 6.

It is illustrated from the figures that the performance 
of WGNN-DTA has a high accuracy on two CPI data-
sets. For the human dataset, WGNN-DTA achieve a 
better prediction on balanced data with AUC scores 
of 0.986 and 0.995, and the prediction performance 
declines on unbalanced data. But for C.elegans dataset, 
whether GCN or GAT is used, WGNN-DTA has a supe-
rior prediction performance on all ratios, which is bet-
ter than other methods. The AUC scores are both more 
than 0.990 on balanced and unbalanced data with GAT 
implementation.

So it can be concluded from the experimental results 
that the performance of WGNN-DTA for CPI predic-
tion is superior to other methods. This is because the 
structural information of proteins and small molecules 
are fully represented by constructing weighted protein 
graph and molecular graph, and through the mining of 

Fig. 5  CPI prediction performance on human dataset
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the GNN model, the factors affecting the binding can 
be accurately taken into account, which leads to a better 
prediction performance.

Performance of drug‑target affinity (DTA) prediction 
with WGNN‑DTA
Compared with CPI prediction, the drug-target affinity 
(DTA) prediction is more complex. CPI prediction only 
needs to determine whether a molecule can bind the pro-
tein or not, while DTA prediction needs to predict the 
detailed binding affinity.

Similar to CPI experiment, a five-fold cross valida-
tion experiment is firstly implemented on Davis [28] and 
KIBA [29] datasets to test the stability of the model. The 
published datasets have already divide each dataset into 
five parts and one test part randomly, and the five parts 
in training set are used for the validation in the experi-
ment. Mean square error (MSE), concordance index (CI) 
and the extra Pearson correlation coefficient (Pearson) 
are introduced for performance measurement, where 
a smaller MSE or a higher CI and Pearson of the results 
means a better performance of the model. The used 

hyperparameters are listed in Table 3 and the validation 
results are shown in Fig. 7. It is shown that WGNN-DTA 
with GCN implementation performs well on KIBA data-
set, which could reach 0.149 with MSE measurement, the 
performance of GCN implementation and GAT imple-
mentation is almost the same on Davis dataset with a 
MSE of 0.214 and 0.215. In addition, the standard devia-
tion is small, which means that WGNN-DTA has good 
stability on the two datasets.

To comprehensively evaluate the performance of the 
proposed method on DTA prediction, we compare our 
work with DeepDTA [11], GraphDTA [22] and GANs-
DTA [14] using the same benchmark datasets including 
Davis [28] and KIBA [29] datasets. The same training set 
and test set are implemented, as well as the same perfor-
mance measures are introduced for evaluation. All other 
method prediction results are referenced from their 
papers. The performance comparison is illustrated in 
Figs. 8 and 9.

Compared with other methods, the performance of 
DTA prediction is improved with WGNN-DTA. No 
matter using GCN or GAT, the proposed method has 

Fig. 6  CPI prediction performance on C.elegans dataset
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excellent performance with all measures used for evalu-
ation. WGNN-DTA could reach 0.208 and 0.130 on 
Davis and KIBA datasets with MSE measure, which is 
smaller than other methods and suggests a better per-
formance. In addition, the CI score of the predictions 
for WGNN-DTA is also higher than other methods, 
which indicates the comprehensively excellent perfor-
mance of the model. Moreover, the Pearson correlation 
coefficient measure used in WideDTA is calculated to 
evaluate WGNN-DTA, which is illustrated in Table  4. 
It can be seen from the table that WGNN-DTA per-
forms well with Pearson correlation coefficient measure 
evaluation.

Molecular SMILES and protein sequence contain a 
wealth of structural information, especially for pro-
teins, which include the function and binding site 
information. By constructing the graphs for proteins 
and drugs, these features can be encoded effectively, 
and the representations further mined by the GNN 
model. The hidden structural and binding sources can 
be fully obtained, which plays an important role in the 
final affinity prediction.

Performance of edge weights
WGNN-DTA constructs a weighted protein graph based 
on the contact probability. It could show the interaction 
between different residues more accurately, and could 
comprehensively describe the protein structure. To 
demonstrate whether the added edge weights improve 
the prediction performance or not, the protein graphs 
are constructed with and without weights, and the per-
formances of different graph construction methods are 
compared. In the experiment, CPI and DTA predic-
tion are all involved, and Human [6] balanced (positive 
samples: negative samples= 1:1) dataset and Davis [28] 
dataset are used respectively. The prediction results are 
shown in Tables 5 and 6.

It is illustrated that the introduction of edge weights 
improved the prediction performance for both CPI and 
DTA prediction. In the folding structure of protein, even 
if the residues can generate an interaction, the interac-
tion strength may be different, which is a reflection of 
molecular forces such as hydrogen bond. The closer the 
residues are, the more likely they can interact with each 
other. WGNN-DTA takes the probability prediction of 
interaction as the edge weight of the constructed protein 
graph, which can take the interaction strengths between 
different residues into account, thus it could represent 
the protein structure more comprehensively and thor-
oughly, and improves the binding prediction perfor-
mance with small molecule.

Performance of contact map prediction
The first step in the proposed method is to predict con-
tact map according to the corresponding sequence, 
then the weighted protein graph can be constructed 
based on it. The performance of the contact map pre-
diction will greatly influence the accuracy and efficiency 

Fig. 7  Five-fold cross validation of DTA prediction performance with WGNN-DTA on Davis and KIBA datasets

Table 3  Some hyperparameters used in the experiment

Number Name Setting

1 The number of GNN layers 3

2 The type of GNN pooling layer Global mean pooling

3 Activation function Not used

4 optimizer Adam

5 Learning rate 0.001

6 Loss function Mean squared error loss

7 Epochs 2000

8 Batch size 512
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Fig. 8  Comparison of DTA prediction performance on Davis dataset

Fig. 9  Comparison of DTA prediction performance on KIBA dataset
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of CPI and DTA prediction. Therefore, another experi-
ment is set up to verify the contact map prediction per-
formance and the speed of WGNN-DTA.

In our previous work, our proposed DGraphDTA 
uses PconsC4 [33] for the contact map prediction, 
which needs to implement the MSA for every protein 
at first. To compare the accuracy of WGNN-DTA and 
our previous MSA-based method in DTA prediction, 
the test set of Davis dataset is introduced for the com-
parison. The predictions of the two methods are run on 
a server with a single core mode of an Intel(R) Xeon(R) 
E5-2620 CPU and a GTX 1080Ti GPU. The perfor-
mance of DGraphDTA and WGNN-DTA are shown in 
Table 7.

It can be seen from the table that the performance 
degradation of the proposed method is limited, which 
achieve an MSE of 0.208. Therefore, although WGNN-
DTA removes the complex MSA processing, the con-
structed protein graph could still describe the structural 
information of protein effectively, which results in a high 
accuracy.

Moreover, two other methods are introduced for the 
speed comparison, which includes DeepDTA and Graph-
DTA. The prediction time of the two methods together 
with WGNN-DTA and DGraphDTA are calculated for 
the test set. The time includes the time of data process-
ing and model prediction. The results are illustrated in 
Table 8.

It can be concluded that DeepDTA has a faster speed 
for the prediction. DeepDTA utilizes CNN directly to the 
SMILES and sequence, and there is no other additional 
process for the prediction. GraphDTA also encodes 
sequence using CNN, but it introduces molecular graph 
processing, which takes a little more time. WGNN-DTA 
construct graphs for both molecule and protein, espe-
cially when constructing weighted protein graph, the 
ESM model is implemented for contact map prediction, 
which takes up most of the time. Obtaining structural 
information requires more calculations, so WGNN-DTA 
takes more time on this to improve the accuracy. But 
even so, for the whole test set formed by more than 400 
proteins, it only takes a total of 50 minutes. Compared 
with the previous DGraphDTA, it improves the efficiency 
greatly. MSA processing have to generate a list of similar 
sequences for the target, and the database searching is a 
large time consuming process. The proposed WGNN-
DTA no longer needs MSA profiles as input, which 
saves a lot of time and still maintain high accuracy. Thus, 
WGNN-DTA could improves DTA prediction efficiency.

Performance of contact map prediction
From the above experiments, it can be seen that the 
proposed WGNN-DTA has high performance for the 
sequence-based DTA and CPI prediction. In order to ver-
ify whether the proposed method can be extended to the 
structure-based prediction, an additional experiment is 

Table 4  Performance of DTA prediction with Pearson correlation 
coefficient measure on two datasets

The values in boldface represent the best prediction performances with the 
corresponding measures

Method Davis KIBA

WideDTA 0.820 0.856

WGNN-DTA (GCN) 0.862 0.891

WGNN-DTA (GAT) 0.863 0.900

Table 5  Performance of CPI prediction with and without edge 
weights on human dataset

The values in boldface represent the best prediction performances with the 
corresponding measures

Method AUC​ Precision Recall

WGNN-DTA (GCN) 0.986 0.972 0.960

WGNN-DTA (GAT) 0.995 0.980 0.970
Without Weight (GCN) 0.967 0.927 0.869

Without Weight (GAT) 0.970 0.930 0.877

Table 6  Performance of DTA prediction with and without edge 
weights on Davis dataset

The values in boldface represent the best prediction performances with the 
corresponding measures

Method AUC​ Precision Recall

WGNN-DTA (GCN) 0.208 0.902 0.862

WGNN-DTA (GAT) 0.208 0.898 0.863
Without Weight (GCN) 0.215 0.893 0.856

Without Weight (GAT) 0.224 0.892 0.850

Table 7  Performance comparison of WGNN-DTA with DGraphDTA

The values in boldface represent the best prediction performances with the 
corresponding measures

Method MSE CI Pearson

DGraphDTA 0.202 0.904 0.867
WGNN-DTA (GCN) 0.208 0.902 0.862

Table 8  Speed comparison of WGNN-DTA with other methods

The values in boldface represent the best prediction performances with the 
corresponding measures

Method Total time (min)

DGraphDTA 15900

WGNN-DTA (GCN) 50

DeepDTA 0.5
GrapDTA 2.5
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implemented on data with structural information, which 
could obtain their contact map directly. We construct 
the corresponding weighted protein graph based on its 
real contact map with a threshold of 8Å, and use the 
distance between different pair of residues as the edge 
weights. The WGNN-DTA is used for feature extraction 
to predict the binding interaction. In this experiment, 
DUD-E [32] is introduced for the validation. We select 
200 active molecules and decoys for each protein, which 
yield total of around 35000 molecule-protein pairs, 
random 60% proteins (61 proteins) and their binding 
molecules and decoys are used as the training set and 
the remain 40% proteins (41 proteins) are used as the 
test set. The detailed experimental results are shown in 
Table 9.

It is illustrated that the when WGNN-DTA applying 
to structure-based CPI prediction, the performance 
still remains quite better, which can achieve 0.963 and 
0.962 AUC scores with GCN and GAT. It is shown that 
the constructed weighted protein graph and molecu-
lar graph can indeed represent the binding informa-
tion and structural information of proteins and small 
molecules.

Discussion
In order to improve the performance of DTA predic-
tion, the WGNN-DTA method is proposed in this paper, 
which could well characterize small molecule and protein 
sequence by constructing molecular graph and weighted 
protein graph based on contact map. By using GNN for 
further feature extraction, the obtained latent vectors 
can represent proteins and molecules in a more sufficient 
way. Moreover, the introduction of contact map predic-
tion method, ESA model, which removes the complex 
multiple sequence alignment process, improves the effi-
ciency of the method. So the proposed method could be 
applied to virtual screening of large datasets.

With the accumulation of actual biological data, many 
relevant databases used for simulation and validation 
have been published. With the help of deep learning to 
assist analysis, more accurate simulation can be real-
ized. At present, there are many research fields and many 
excellent cases have emerged. In our work, a novel weight 
graph is constructed to represent the protein sequence, 
and the graph neural network is used to construct the 
model to realize the predictions of DTA and CPI. The 
corresponding graphs of small molecule SMILES and 
protein sequence constructed according to the pro-
posed method can be input into the model in practical 
application, then the binding prediction result could be 
obtained, which provides a powerful mean for the virtual 
screening of target proteins and assists the discovery of 
lead compounds.

Based on various experiments, it is demonstrated that 
WGNN-DTA can not only be applied to DTA and CPI 
prediction, but also has good performance for the predic-
tion extended to the structure-based prediction.

Table 9  CPI prediction performance on DUD-E dataset

Method Protein rep. Compound 
rep.

AUC​ Precision Recall

WGNN-DTA 
(GCN)

GCN GCN 0.963 0.949 0.789

WGNN-DTA 
(GAT)

GAT​ GAT​ 0.962 0.896 0.867

Fig. 10  The process of WGNN-DTA for affinity prediction
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Method
WGNN‑DTA architecture
The process of the proposed WGNN-DTA is shown 
in Fig.  10. The input are protein sequence and mol-
ecule SMILES. A weighted protein graph is constructed 
based on the contact map, which could comprehensively 
describe the protein structure. Instead of binary value 
used in DGraphDTA, the interaction probability is used 
as edge weight, which could provide more detailed struc-
tural information. In addition, molecular graph is intro-
duced to describe molecule, the atoms are used as node 
and bonds are used as edge. Finally, a method called 
weighted GNN drug-target affinity predictor (WGNN-
DTA) is proposed, which uses two types of GNNs includ-
ing graph convolutional network (GCN) [34] and graph 
attention network (GAT) [35] to extract the latent vectors 
of protein and molecular graphs, and the affinity predic-
tion can be achieved base on the latent vectors. Some 
node features that can be quickly generated are selected 
to improve the performance of the method.

Weighted protein graph and latent vector extraction
The first important step is to construct weighted pro-
tein graph, which will directly influence the accuracy of 
the prediction. Protein sequence is a string composed of 
about 20 symbols, but it contains rich evolutionary and 
structure information. How to extract the information 
from the sequence is the key factor to promote the pre-
diction accuracy.

Contact map is the result of protein structure predic-
tion. There are many structure prediction methods, such 
as AlphaFold [25]. However, most existing structure pre-
diction methods need to carry out sequence alignment 
by scanning the sequence database, which spends lots of 
time and greatly weaken the efficiency of affinity predic-
tion. Therefore, the evolutionary scale modeling (ESM) 
model proposed by Rao et al. [27] is involved in our work 
for contact map prediction, which could obtain relatively 
accurate results without sequence alignment, and the 
prediction of a protein sequence can be completed in less 
than a minute. In addition, we verified that the contact 
prediction was relatively accurate for DTA prediction, 

and the detailed validation is described in the experi-
ment part.

After obtaining the contact map, the weighted graph 
for protein is constructed. The obtained contact map is a 
probability matrix, which indicates the interaction prob-
ability of different residue pairs, and the range of prob-
ability is [0,1]. Normally, a threshold is used to convert 
the probability matrix to a binary matrix to indicate 
whether two residues are connected or not. The weighted 
protein graph is constructed according to contact map 
with residue as node and interaction as edge, the value 
of 0.5 is set as the threshold which means there will be 
an edge between residues with interaction probability 
exceeding 0.5. Different with the protein graph proposed 
in our previous DGraphDTA, we do not only use binary 
matrix as edge, but also use the probability value as the 
edge weight. The detailed construction process is shown 
in Fig. 11, the intensity of the contact map indicating the 
weight of the corresponding edge.

In the constructed weighted protein graph, the residue 
is used as the node, so it is need to describe the features 
for different residue nodes. The selected residue features 
are shown in Table  10. Due to the different R group of 
residues, the residues show different properties, and the 
properties further influence their interactions. It is noted 
that in order to speed up the processing, we remove the 
position-specific scoring matrix (PSSM) profile intro-
duced in our previous work, because the PSSM needs to 
be calculated based on MSA processing.

The length of input sequence of ESM model is required 
to be within 1024, so it is need to find a way to deal with 
longer sequences. It is well-known that the close resi-
dues in the sequence usually generate an interaction, the 
value on the diagonal of contact map is what we focus on. 
Thus, based on the above observations, for proteins with 
long sequence (more than 1000), we use intercepting and 
splicing to reconstruct the contact map, and the process 
is shown in Fig. 12. The whole sequence is cut into mul-
tiple subsequences, the length and step of which is set 
as L (set as 1000 in our work) and L/2. The contact map 
of each subsequence is calculated in turn, and the final 
contact map is reconstructed according to them. For the 

Fig. 11  Construction of weighted protein graph
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overlapping part of the subsequence, the contact map is 
obtained by averaging them (blue area in Fig. 12). Through 
experiment verification, we find that the contact map 
obtained by this method can still maintain high accuracy.

In addition, since adjacent residues are connected 
by peptide bonds in principle, the value of any adjacent 
residues is set to 1, and a self-loop is also added, which 
means each residue connect with itself.

The weighted protein graph can initially represent the 
proteins, so a neural network needs to be established to 
deeply mine the latent feature. Graph neural network 
(GNN) is applied to extract the features of the con-
structed graph in WGNN-DTA. GNN is a deep learning 

model gradually used in recent years. The traditional con-
volution neural network can only extract the features of 
Euclidean structure data with fixed sizes, which limits its 
application. But GNN could handle non-Euclidean struc-
ture data such as graph, which ensure it could be widely 
used. The commonly used GNN models include graph 
convolution neural network (GCN) and graph attention 
network (GAT), which is also introduced to establish the 
proposed WGNN-DTA.

For GCN, each layer will execute the following equation:

(5)Hl+1
= f Hl ,A = σ D̂− 1

2 ÂD̂− 1
2HlW l+1

Table 10  Residue node feature

Feature name Feature description Dimension

Residue type One-hot encoding of the residue 21

Residue aliphatic Whether the residue is aliphatic 1

Residue aromatic Whether the residue is aromatic 1

Residue polar Whether the residue is polar neutral 1

Residue Acidic polar Whether the residue is acidic charged 1

Residue basic polar Whether the residue is basic charged 1

Residue weight The molecular weight of the residue 1

−COOH property Dissociation constant for the −COOH group [36] 1

−NH3 property Dissociation constant for the −NH3 group [36] 1

Other groups property Dissociation constant for any other group in the molecule [36] 1

Residue isoelectric The pH at the isoelectric point [36] 1

Hydrophobicity 1 Hydrophobicity of residue (pH = 2) [37] 1

Hydrophobicity 2 Hydrophobicity of residue (pH = 7) [37] 1

All All features of the residue 33

Fig. 12  Intercepting and splicing of the contact map prediction for large proteins (with a sequence length over 1000)
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where A is the adjacency matrix of the graph with 
shape of (n,n), and n is the number of nodes of the graph. 
Â = A+ I , and I is the identity matrix. D̂ is the degree 
matrix calculated according to A, which has the same 
shape as A. Wl+1 is the weight matrix of layer l+1, and 
it can be learned during training. Hl is the output of the 
last layer with a shape of (n,Fl). Fl is the number of output 
channels of layer l, and H0=X, H0=X is the input feature 
matrix of the graph node.

The node features of each layer for GAT are calculated as:

where, N(i) is the set of neighbor nodes of node i, 
W is the weight matrix, and Xj is the input feature 
matrix of node j, αij is the attention coefficient after 

(6)hi = σ





�

j∈N (i)

αijWXj





(7)αij =
ea(hi ,hj)

∑

k∈N (i)

a(hkhi)

regularization through Eq. (7). a(x) is a mapping func-
tion RFl

× RFl
→ R , which can calculate the non-regu-

larization coefficients of a pair of node i and j.
The detailed WGNN-DTA structure is shown in 

Fig.  13. Because the contact probability is used as the 
edge weight in the construction of weighted protein 
graph, weighed GNN is used to extract protein fea-
tures. In implementation, when using GAT to estab-
lish WGNN-DTA, it is difficult for GAT to involve the 
weights, so we first use a layer of GCN to obtain the 
weight information of the graph, and then use GAT lay-
ers for the further construction of the model.

There is rich structure information in protein 
sequence, which determines its function and contains 
the mechanism of drug-target binding. The protein 
structure is then determined by the residue interac-
tions, and the proposed weighted protein graph can 
present the residue interaction in the way of edge 
weight, which effectively shows the hidden structure 
information of protein. At the same time, the proper-
ties of residue will be represented in the form of node 
features, which can achieve a more accurate and com-
prehensive sequence representation.

Fig. 13  The detail neural network using for weighted protein graph feature extraction in WGNN-DTA
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Molecular graph and latent vector extraction
In sequence-based affinity prediction, molecule is 
usually represented by SMILES, which could convert 
the original atoms and covalent bonds into an ASCII 
character sequence. It is easy to restore SMILES back 
to the form of molecular structure with common 
molecular processing softwares such as RDKit [38]. 
Then the molecular graph is constructed with atom 
as node and chemical bond as edge. More specifically, 
when constructing the molecular graph, all atoms in 
the molecule are set as graph nodes, and if there is a 

bond between two atoms, then an edge will be added 
between the corresponding atom nodes. The construc-
tion process is shown in Fig. 14. Moreover, in the same 
way as the construction of protein graph, self-loop is 
also introduced when constructing molecular graph, in 
which each atom node is connected to itself.

Similar to protein graph construction, in addi-
tion to nodes and edges, the features of atom nodes 
should be described to distinguish them. So it is nec-
essary to determine the node feature for different 
atoms. Atoms are the smallest particles in chemical 

Fig. 14  Construction of molecular graph

Table 11  Atom node feature

Feature name Feature description Dimension

Atom type One-hot encoding of the atom 44

Atom neighbors One-hot encoding of the degree of the atom in the molecule, which is the number of 
directly-bonded neighbors

11

Number of hydrogens One-hot encoding of the total number of H bound to the atom 11

Number of implicit hydrogens One-hot encoding of the number of implicit H bound to the atom 11

All All features of the atom 78

Fig. 15  Affinity and interaction prediction in WGNN-DTA
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reaction. Due to their different sizes and charges, dif-
ferent atoms show different chemical properties. The 
selected features of atom node are shown in Table 11. 
By characterizing the features of different atom 
nodes, the chemical properties and binding proper-
ties of small molecule can be expressed more com-
prehensively. Therefore, the factors influencing the 
binding of molecule is involved, which can promote 
the prediction performance.

GCN or GAT is also utilized to extract features after the 
molecular graph is constructed, and processed by global 
pooling, molecules with different sizes are extracted 
into latent vectors with the same size. The connections 
and atom features will eventually influence the molecule 
properties and its binding with the target protein.

After feature extraction of GNN, the latent vectors of 
the weighted protein graph and molecular graph are 
obtained. Then the two latent vectors are concatenated 
and further extracted by the neural network to realize the 
final binding prediction, which is illustrated in Fig.  15. 
Whether it is used for CPI or DTA prediction, WGNN-
DTA can be competent. The only difference is whether to 
add a sigmoid activation function to the output.

At the same time, because the contact map prediction 
does not need sequence alignment and the generation of 
node feature can be quickly calculated by sequences, the 
prediction is fast and easy to be implemented. Thus, the 
proposed WGNN-DTA is suitable for the virtual screen-
ing of large databases, which improves the efficiency of 
sequence-based DTA prediction.
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