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Abstract

Background: Calling germline SNP variants from bisulfite-converted sequencing data poses a challenge for
conventional software, which have no inherent capability to dissociate true polymorphisms from artificial mutations
induced by the chemical treatment. Nevertheless, SNP data is desirable both for genotyping and to understand the
DNA methylome in the context of the genetic background. The confounding effect of bisulfite conversion however
can be conceptually resolved by observing differences in allele counts on a per-strand basis, whereby artificial
mutations are reflected by non-complementary base pairs.

Results: Herein, we present a computational pre-processing approach for adapting sequence alignment data, thus
indirectly enabling downstream analysis on a per-strand basis using conventional variant calling software such as
GATK or Freebayes. In comparison to specialised tools, the method represents a marked improvement in
precision-sensitivity based on high-quality, published benchmark datasets for both human and model plant variants.

Conclusion: The presented “double-masking” procedure represents an open source, easy-to-use method to
facilitate accurate variant calling using conventional software, thus negating any dependency on specialised tools and
mitigating the need to generate additional, conventional sequencing libraries alongside bisulfite sequencing
experiments. The method is available at https://github.com/bio15anu/revelio and an implementation with Freebayes
is available at https://github.com/EpiDiverse/SNP
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Background
DNA methylation is among the most-studied of the
molecular mechanisms involved in epigenetics, and has
been associated for example with changes in gene expres-
sion [1–3], chromosome interactions [4, 5], and genome
stability through the repression of transposable elements
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[6–8]. It is a basemodificationmost often characterised by
the addition of a methyl group to a cytosine nucleotide [9],
to form 5-methylcytosine (5mC) or one of its derivatives
e.g. 5-hydroxymethylcytosine (5hmC). Cytosine methyla-
tion occurs typically in a CG sequence context in eukary-
otes [10] but is also prevalent in CHG and CHH contexts
(where H is any base but G) in plants [11].
Following the emergence of next-generation sequenc-

ing (NGS) technologies, library preparation protocols
such as BS-seq [11] and MethylC-seq [12] were devised
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which facilitate the nucleotide-resolution analysis of DNA
methylation patterns through the chemical treatment of
sample DNA with sodium bisulfite. The treatment catal-
yses the deamination of unmethylated cytosines to uracil,
while methylated cytosines remain unaffected, to pro-
duce non-complementary, single-stranded (ss)DNA. As
these strands then undergo PCR, uracil pairs with adeno-
sine rather than the original guanosine during replication,
which in turn pairs with thymine in the final, amplified
product in place of the original cytosine. The resulting
paired-end libraries therefore contain four distinct read-
types: the forward (FW) and reverse complement (RC) of
the bisulfite-converted sequence from the original Wat-
son(+) strand, and the forward and reverse complement of
the bisulfite-converted sequence from the original com-
plementary Crick(-) strand. Mapping such reads to the
known genome requires specialised software, but when
performed successfully can reveal the underlying extent
of DNA methylation over each potential 5mC site by con-
sidering the proportion of cytosine matches to thymine
mismatches. Evidently, any thymine mismatches arising
instead as a result of natural mutation are obscured by
bisulfite conversion and risk being mistaken as unmethy-
lated cytosines.
Previous attempts to resolve such confounding posi-

tions in the genome, to determine both the correct
methylation level and reveal single nucleotide polymor-
phisms (SNPs), have resulted in the development of spe-
cialised software such as BISCUIT (https://github.com/
huishenlab/biscuit), Bis-SNP [13], BS-SNPer [14], gemBS
[15] and MethylExtract [16]. Each case combines methy-
lation calling and variant calling into a single, concurrent
analysis to produce output in a custom variant call for-
mat (VCF). No single approach however considers the
variant calling itself as a primary, independent outcome.
Users looking additionally to leverage SNP data for e.g.
genotyping or purposes unrelated to DNA methylation
are therefore limited by the scope and rationale behind
the development of existing tools. Instead, the present
application aims to abstract variant calling as a standalone
objective in order to facilitate analysis with conventional
software, such as GATK [17], Freebayes [18], or Platypus
[19], thereby optimising precision-sensitivity during SNP
discovery and allowing users to make the most out of their
bisulfite sequencing data for a broader range of purposes.
Under a simple Bayesian framework to variant calling,

the conditional probability of observing the true genotype
G given the variants observed in the sequencing data D
can be represented for example by equation (1), which for-
mulates the problem as the derivation of a prior estimate
of the genotype P(G) and the likelihood of observing the
data P(D|G).

P(G|D) = P(G)P(D|G)
∑

i P(Gi)P(D|Gi)
(1)

Given that NGS data is seldom error-free, even the
simplest model will typically incorporate base quality
(BQ) information directly into the Bayesian inference of
genotypes as a fundamental scaling factor for the data
likelihood estimation. The BQ score itself is a phred-
based quality value which denotes on each position the
estimated probability that the base caller identified the
correct nucleotide during sequencing. In the context
of variant calling from bisulfite-treated NGS data, any
potential nucleotide conversions present in the resulting
sequencing reads can, in principle, be considered anal-
ogous to zero-quality base calls. Leveraging this mech-
anism imposes an indirect strand-specificity on poten-
tial variants which cannot otherwise be dissociated from
the effect of bisulfite conversion, dictating that they be
informed only by opposite-strand alignments where the
original, complementary nucleotide is hence unaffected
by the treatment.

Implementation
The method presented herein involves a simple
“double-masking” procedure which manipulates specific
nucleotides and BQ scores on alignments from bisulfite
sequencing libraries (Fig. 1), with the formal procedure
on individual alignments described in Algorithm 1. It
involves two steps which are performed in silico. First,
specific nucleotides in bisulfite contexts are converted to
the corresponding reference base, in order to prevent any
preselection of sites which are informed exclusively by
the artificial bisulfite treatment. This circumvents what
can potentially be millions of positions from even being
considered by the variant caller as candidate variants
for analysis, thus reducing valuable analysis time and
conserving computational resources. Second, any given
nucleotide which may potentially have arisen due to bisul-
fite conversion is assigned a BQ score of 0. This drives
the variant caller to make the correct decision in regards
to genotype on positions where there is real evidence of
a SNP. As the procedure is informed by decisions made
during alignment, it behaves in exactly the same manner
and is applicable to both directional and non-directional
sequencing libraries. In paired-end sequencing, the pro-
cedure applies in a C>T context on mate 1 alignments
to the Watson strand (FW+) and mate 2 alignments to
the Crick strand (RC-), whereas mate 1 alignments to the
Crick strand (FW-) and mate 2 alignments to the Watson
strand (RC+) follow G>A context. Reads obtained from
single-end sequencing behave in equivalent manner to
mate 1 in paired-end sequencing.

https://github.com/huishenlab/biscuit
https://github.com/huishenlab/biscuit


Nunn et al. BMC Genomics          (2022) 23:477 Page 3 of 10

Fig. 1 An overview of the double-masking procedure. The central sequence represents the reference genome, with example alignments (+FW and
-FW) adjacent to each originating strand. Black, emboldened nucleotides potentially arise from bisulfite treatment. Blue colouring indicates
5mC/5hmC. Red colouring represents in silico nucleotide manipulation, and corresponding base quality manipulations are indicated with an
exclamation mark. In example (1) the variant caller is informed only by the -FW alignment, and in (2) only by the +FW alignment. As there is no
equivalent Watson(+) alignment in (3) it is impossible to determine whether the apparent G>A polymorphism arises from bisulfite or a natural
mutation

In contrast to previous approaches with bisulfite data,
the method is applied as a pre-processing step prior to
variant calling, thereby facilitating interoperability with
conventional, state-of-the-art variant calling software.
For validation, SNPs derived from published, experi-
mental whole genome bisulfite sequencing (WGBS) data
in human (NA12878) and Arabidopsis thaliana (Cvi-0)
accessions are compared to high-quality variant standards
and high-confidence regions obtained from the NIST
Genome in a Bottle initiative [20] and the 1001 genomes
project [21], respectively. The method presented herein
has been implemented as a standalone python script
available at https://github.com/bio15anu/revelio, which is
intended to be adapted and “plugged-in” to any vari-
ant pipeline working with bisulfite data so that the user
can choose whichever alignment and variant calling soft-
ware best suits their purposes. An open-source example
of a working pipeline for whole genome data is avail-
able at https://github.com/EpiDiverse/SNP, which is itself
a branch of the EpiDiverse Toolkit [22]. The presented
software is also implemented by epiGBS2 in the analysis
of reduced-representation bisulfite data [23].

Validation datasets
All datasets analysed in this study are derived from
published, public domain resources. High-quality ref-
erence variant datasets for human (NA12878) and A.
thaliana (Cvi-0) accessions were obtained from Genome
in a Bottle (GIAB) (https://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/release/NA12878_HG001/NISTv4.2.1/) and the
1001 genomes project (https://1001genomes.org/data/

GMI-MPI/releases/v3.1/), respectively. The correspond-
ing reference genomes GRCh38 (GCF_000001405.26) and
TAIR10 (GCF_000001735.3) were obtained from NCBI.
Equivalent WGBS data were obtained from the NCBI
Sequence Read Archive under accessions SRX3161707
(paired-end, ∼46X) and SRX248646 (single-end, ∼34X).
Please refer to Suzuki et al. [24] and 1001 genomes [21] for
further technical specifications regarding these datasets.
The original whole genome sequencing (WGS) data for
A. thaliana Cvi-0 was also obtained, under accession
SRX972441 (paired-end, ∼62X). Both trimmed reads and
alignments from this accession were subject individually
to in silico bisulfite treatment (∼99% conversion rate),
using custom in-house python scripts, to generate corre-
sponding, simulated WGBS datasets.

Read processing and alignment
Reads were assessed with FastQC v0.11.8 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc) and,
where appropriate, trimming performed with cutadapt
v2.5 [25]. WGS alignments were carried out with
BWA v0.7.17-r1188 [26], and WGBS alignments with
BWA-meth v0.2.2 [27]. Read groups were merged with
SAMtools v1.9 [28], where appropriate, and PCR dupli-
cates subsequently marked with Picard MarkDuplicates
v2.21.1 (http://broadinstitute.github.io/picard).

Variant calling
Following the double-masking procedure, variants were
called using GATK v3.8 UnifiedGenotyper [17], Freebayes
v1.3.1-dirty [18], and Platypus v0.8.1.2 [19], in all cases

https://github.com/bio15anu/revelio
https://github.com/EpiDiverse/SNP
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv4.2.1/
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https://1001genomes.org/data/GMI-MPI/releases/v3.1/
https://1001genomes.org/data/GMI-MPI/releases/v3.1/
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Algorithm 1 The double-masking procedure as performed on each alignment.
1: procedure DOUBLEMASKING(M,W , S) � boolean tests M for Mate 1 and W for Watson strand, and a set S of all aligned

base pairs
2: A ← ∅

3: if (M = true andW = true) or (M = false andW = false) then
4: CT ← true � bisulfite conversion in C>T context
5: else
6: CT ← false � bisulfite conversion in G>A context
7: end if
8: for all U ∈ S do
9: (U0,U1,U2) ← U � each aligned pair U is a subset containing the corresponding reference base, query base, and

query base quality, respectively
10: if CT = true and U0 = cytosine and U1 = thymine then
11: U1 ← cytosine
12: U2 ← 0
13: else if CT = false and U0 = guanine and U1 = adenine then
14: U1 ← guanine
15: U2 ← 0
16: else if (CT = true and U1 = thymine) or (CT = false and U1 = adenine) then
17: U2 ← 0
18: end if
19: A ← A ∪ {U} � modified or unmodified pair is added to a new alignment set
20: end for
21: return A
22: end procedure

with a hard filter of 1 on both minimum mapping quality
(MAPQ) and BQ. Variants were called in addition using
Platypus on assembly-mode with BQ≥0. For comparison,
variants from the original bisulfite alignments were called
also with BISCUIT v0.3.16.20200420 (https://github.com/
huishenlab/biscuit), Bis-SNP v1.0.1 [13], BS-SNPer v1.1
[14] andMethylExtract v1.9.1 [16]. Default/recommended
parameter settings were used, with the exception of min-
imum MAPQ and BQ thresholds which in all cases were
set both to 1. Please refer to Supplementary Table S1 for
the complete command line in each case. The resulting
variant calls were normalised, decomposed and otherwise
processed for comparison to the high-quality reference
data using BCFtools v1.9 [28].

Benchmarking
Benchmarking itself was performed with vcfeval of RTG
Tools v3.11 [29], which compares both the substitution
context and estimated genotype of baseline variants from
the truth set to each set of calls from bisulfite data. True
positives, false positives and false negatives are evaluated
in response to varying common filtering thresholds such
as sequencing depth (DP), quality (QUAL) and genotype
quality (GQ). Variantsmust occur with both the same sub-
stitution context and genotype in order to be evaluated as
a true positive. Sensitivity refers to the true positives as a

fraction of the truth set positives, whereas precision refers
to the true positives as a fraction of the discovered vari-
ants (Supplementary Table S2). The F1 score reflects the
balance of precision and sensitivity via the harmonicmean
of both measures, and can be optimised relative to each
filter by taking the maximum value in response to varying
the relevant threshold.

Results
In benchmark data sets for both test species, precision-
sensitivity of the SNPs derived from WGBS data is
demonstrably improved following double-masking in
comparison to existing methods (Fig. 2). Notably, com-
mon filtering metrics such as variant quality (QUAL)
and genotype quality (GQ) behave as could be expected
in conventional sequencing data (Fig. 2; Supplementary
Fig. S1), facilitating in many cases the use of established
best-practice criteria for selecting high-confidence calls.
Additional comparison of SNPs derived from real WGS
data (A. thaliana; accession Cvi-0) and equivalent WGBS
data, following in silico bisulfite conversion (∼99%) of
sequencing reads, removes the variation caused by differ-
ences during sequencing, but not alignment. The resulting
ROC-like curves demonstrate a comparable level of sen-
sitivity (i.e. true positives) in both WGS and WGBS data
following variant calling with Platypus, Freebayes and

https://github.com/huishenlab/biscuit
https://github.com/huishenlab/biscuit
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Fig. 2 Precision-sensitivity of variants called in real data. In response to an increasing variant quality (QUAL) threshold, SNPs derived from published
WGBS data are compared to those derived from established benchmark datasets for A A. thaliana (Cvi-0) and B human (NA12878). Software with
the epi- prefix are intended for conventional DNA sequencing libraries but in this case run after preprocessing with the double-masking procedure.
True and false positives are evaluated based on both the substitution context and the estimated genotype

GATK3.8 UnifiedGenotyper (Fig. 3), however there is a
drop in precision driven in each case by an influx of false
positives. When in silico bisulfite conversion is instead
applied directly to the WGS alignments, thus eliminat-
ing variation due to the alignment of bisulfite-treated
reads, the differences in false positives are reduced for
each tool. All software demonstrate an appreciable perfor-
mance, with GATK3.8 achieving the highest raw number
of both true and false positives, followed by Freebayes and

then Platypus, for both WGS and WGBS data. The total
number of false positives derived from in silico WGBS
alignments however represent only 1.0%, 3.8% and 4.3% of
the total, unfiltered calls for those same tools respectively,
when discounting the fraction shared in the equivalent
WGS data.
The overall balance between precision and sensitivity

can be evaluated using the harmonic mean, to denote
the F1 score, which can be compared between differ-
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Fig. 3 ROC-like comparisons in real and simulated data. In response to an increasing variant quality (QUAL) threshold, SNPs derived from real WGS
data are compared to those derived from equivalent WGBS data after in silico bisulfite conversion of either reads or alignments, followed by
preprocessing with the double-masking procedure, in A. thaliana (Cvi-0). The real WGBS dataset from Figure 2A is also displayed alongside in each
panel for comparison. Panels show results from conventional software A Freebayes, B GATK3.8 and C Platypus (default mode). True and false
positives are evaluated based on both the substitution context and the estimated genotype
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ent software and data types (Table 1). With in silico
WGBS reads, the optimal F1 scores for GATK3.8, Free-
bayes and Platypus were identified at 0.8508, 0.8039 and
0.7709, respectively, with a corresponding QUAL thresh-
old of 80, 41 and 27. The overall best-performing tool
was therefore GATK3.8, achieving 0.8685 sensitivity and
0.8338 precision at the optimal level, followed by Free-
bayes with 0.7335 sensitivity but a higher precision of
0.8894. Freebayes performed more similarly between the
in silico WGBS reads and the real WGBS dataset, how-
ever, suggesting it may account better for differences in
library composition and layout. Platypus performs bet-
ter overall in default mode, despite an optimal precision
level of 0.9436 for WGS and 0.8991 for WGBS data with
assembly-mode enabled (not shown). The reduced over-
all performance due to lower sensitivity may in-part arise
due to the need to set a pre-emptive threshold for Platy-
pus at BQ≥0 (-minBaseQual=0), following the double-
masking procedure, to avoid over-filtering regions during
local assembly.
When considering only those variants called by

GATK3.8 UnifiedGenotyper, the relative fraction of true
and false positive variants shared between each dataset,
before and after filtering according to GATK best-
practices (described in Supplementary Table S3), helps to
further decompose the factors mainly responsible for the
differences observed with WGS and WGBS data (Fig. 4).
For example, among the unfiltered true positives the
majority of variants are similar and shared between all
datasets, with a smaller, secondary, sub-fraction shared
only among the real WGS data and both simulatedWGBS
datasets (paired-end, ∼62X). After filtering, the num-
ber of true positive variants are reduced mainly in the
real WGBS dataset (single-end, ∼34X), suggesting that
variable sequencing library composition is driving these
differences. Upon further inspection, the filter on Stran-
dOddsRatio (SOR) appeared to be excluding the majority
of true positive variants filtered out in the real WGBS
data, likely as a result of an indirect strand-specificity
imposed on potential variant calls by the double-masking

Table 1 Optimised F1 scores in A. thaliana (Cvi-0). In comparison
to the reference SNPs obtained from 1001 genomes consortium
data, scores are derived when using real WGS and WGBS data,
alongside in silico WGBS data derived from the WGS reads and
alignments, respectively

Real data in silico

WGS WGBS reads alignments

GATK3.8 0.9189 0.8177 0.8508 0.9069

Freebayes 0.8247 0.7670 0.8039 0.8247

Platypus (default) 0.7423 0.7026 0.7709 0.7935

Platypus (assembly) 0.6378 0.5980 0.6449 0.6509

procedure. When filtering the true positives in the same
manner from the real WGBS dataset in the NA12878
human line (Fig. 2B; paired-end, ∼46X), however, these
variants were only reduced by ∼13%. With some low-
coverage libraries it might therefore be prudent to relax
the SOR filter when seeking to obtain confident calls from
WGBS data. The false positives, on the other hand, are
reflected primarily in the real WGBS dataset and the
artificial dataset simulated from real WGS reads (subse-
quently aligned as a WGBS library). Here, it is the variant
confidence metrics (i.e. QUAL and QualByDepth) which
are driving the differences after filtering. Taken together
this further suggests that the influx of false positives rela-
tive to real WGS data are driven primarily by differences
in both alignment and library composition, both of which
have a direct influence on variant calling.
This indirect strand-specificity imposed on poten-

tial variant calls by the double-masking procedure can
be expected to reduce the available sequencing depth
required to make confident calls for potential polymor-
phisms involving thymine, in comparison to WGS data.
In the equivalent, in silico WGBS library derived from
WGS reads, this would seem to manifest predominately
as a relative decrease in variant confidence metrics on
true positive SNPs (Supplementary Fig. S2). The number
of true positive variants that would fail the recommended
hard-filtering thresholds (QUAL<30 or QD<2.0), how-
ever, increased only from 1,730 (<0.27%) in WGS data to
9,762 (<1.55%) in the in silico WGBS data. In this simu-
lated, paired-end library there is only a minor increase in
overall strand bias, as measured with the SOR metric in
GATK3.8 UnifiedGenotyper, where true positive variants
that would fail the recommended hard-filtering threshold
(SOR>3) increased from 18,045 (2.79%) in WGS data to
31,487 (5.0%) with simulatedWGBS data. All together the
number of true positive variants lost after hard-filtering
increased from 30,858 (4.77%) to 56,695 (9.0%) due to
the in silico bisulfite conversion, while the total false pos-
itive variants increased from 80,528 (6.81%) to 143,745
(10.24%).
Between all selected variant callers, the proportional

deviation of false positives from in silico WGBS reads,
relative to WGS data, show similar profiles when parti-
tioned by substitution context (Supplementary Fig. S3). A
total of 92.3%, 77.3% and 72.8% of the total false positives
here occur in positions which are homozygous-reference
in the truth set for each of GATK3.8, Freebayes, and
Platypus, respectively, after filtering those shared in the
equivalent WGS data. These positions represent 12.0%,
5.6% and 5.6% of the total, unfiltered calls made by each
tool. The remaining false positives typically comprise true
variants which have been assigned an incorrect genotype
(e.g. homozygous-alternative called as heterozygous), rep-
resenting 2.9%, 4.2% and 4.6% of the total, unfiltered calls.
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Fig. 4 The shared fraction of true and false positive variants in real and simulated data for A. thaliana (Cvi-0), following analysis with GATK
UnifiedGenotyper. Distinct WGBS datasets were simulated from both the real WGS alignments and the real WGS reads, separately. The panels
denote A true positives, before and B after filtering, according to recommended hard-filter thresholds in GATK best-practices, and C false positives,
also before and D after filtering. The thresholds chosen for filtering are further described in Supplementary Table S3

Many of these cases suffer a low GQ likely as a con-
sequence of reduced sequencing depth by limiting calls
in bisulfite contexts to opposite-strand alignments. Such
positions are also considered among the false negatives,
alongside the fraction of true SNPs which are not called
at all from bisulfite data. When considering the sequenc-
ing depth distribution of false negatives from in silico
WGBS alignments, discounting those shared in the WGS
data, there is a peak at ∼4-5x in addition to a larger peak
which correlates with the distribution for the true posi-
tives at ∼18-20x (not shown). Accounting for a minimum
per-position sequencing depth of∼7-10x should generally
therefore be enough tomake a successful call, disregarding
differences due to WGBS alignment or significant devi-
ations from typical sequencing biases (e.g. strand bias).
More generally, aiming for a genome-wide coverage of at

least ∼40X, using a paired-end, directional library, would
appear to be the optimal recommendation for analysis
based on the complete results of this study.

Discussion
Conventional germline variant callers can be broadly
categorised as alignment-based, such as GATK3.8 Uni-
fiedGenotyper, or haplotype-based, such as Freebayes and
Platypus. Both strategies are concerned with correctly
identifying variants at a given locus and inferring proba-
bilistic genotype likelihoods based on allelic count differ-
ences, however they differ in their consideration of proxi-
mal variants to establish phase. Whilst UnifiedGenotyper
considers precise alignment information in a position-
specific, independent manner, Freebayes considers the
literal sequence of each overlapping read to obtain the
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context of local phasing and derive longer haplotypes
for genotyping. Some modern variant callers, includ-
ing for example Platypus and GATK HaplotypeCaller,
expand upon the haplotype-based approach by incorpo-
rating local assembly to aid in resolving potential indels.
Bisulfite sequencing data can be made conceptually com-
patible with each of these described approaches, following
pre-processing with the double-masking procedure, with
the caveat that the chosen software for calling variants
handles base quality specifically during the estimation
of genotype likelihoods, ideally with an option for hard-
filtering. Local assembly presents an added difficulty in
that base quality is often considered additionally for read
trimming during construction of De Bruijn graphs, e.g.
in determination of “ActiveRegions” in GATK Haplotype-
Caller, and is typically codependent on the same param-
eter used for setting its threshold during Bayesian infer-
ence. This can sometimes be circumvented, as demon-
strated herein with Platypus, by allowing even a base
quality of zero during local assembly before relying on
the genotype likelihood model to weight such positions
appropriately during variant calling, but such a case is not
ideal. If masked nucleotides are allowed to be included
in the model for deriving genotype likelihoods then the
allelic balance on each variant will skew towards any
mutations arising from bisulfite conversion, leading to a
greater incidence of false positives.
To the best of our knowledge, the software chosen

for comparison during this benchmark analysis represent
almost the full extent of available, bisulfite-aware vari-
ant callers. In one instance a tool had to be omitted
for both reasons of compatibility and because we were
unable to run the variant calling aspect outside the con-
text of a larger pipeline. gemBS [15] is a pipeline suite
which includes mapping, quality control, variant calling
and extraction of methylation values. Attempts to run
just the variant calling aspect (bs_call) using the standard
alignment files generated in this study were unsuccessful,
meaning we had to re-run the mapping too with gemBS,
thus introducing a discrepancy in comparison to other
tools. Furthermore, the variant output was returned in a
custom, non-standard VCF format whichmade it very dif-
ficult to separate sequence variants from methylated sites
in a manner which was also conducive to a fair, system-
atic comparison with the other variant calling software.
These results were thus omitted so as not to disadvantage
gemBS under an experimental design which may simply
not be elaborate enough in this case for a fair and robust
evaluation of its performance.
Finally, it is important to consider that, unlike most

other bisulfite-aware tools, variant calling with the pre-
sented approach is almost completely dissociated from the
influence of cytosine methylation. The advantage of this
is an improved sensitivity for high-confidence variants

with fewer false positives, whilst preserving the under-
lying model of selected tools, but the methylation level
itself must be evaluated independently. This is akin to
several variant-independent approaches such as Methyl-
Dackel (https://github.com/dpryan79/MethylDackel) and
GATK MethylationTypeCaller which are commonly used
to estimate the methylation level without knowledge of
the underlying SNPs. In combination with the presented
approach it would be feasible to derive accurate variant-
adjusted methylation calls, or even allele-specific methy-
lation without the need for a corresponding genotype
dataset obtained by conventional DNA sequencing.

Conclusion
The double-masking procedure facilitates sensitive and
accurate variant calling directly from bisulfite sequenc-
ing data using software intended for conventional DNA
sequencing libraries. The procedure can be readily
adapted to existing software pipelines and does not neces-
sitate any additional understanding of customised VCF
files. Given sufficient sequencing depth, accurate align-
ment with minimal deviation from expected sequencing
biases, and an appropriate level of filtering based on vari-
ant quality metrics, the SNPs derived from WGBS data
are comparable to those from WGS data. The method
presents a viable, alternative strategy to those who would
otherwise need to sequence corresponding libraries of
each type in order to better understand the role of DNA
methylation in the context of the genetic background.

Availability and requirements
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Any restrictions to use by non-academics: none
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