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Genes expressed at low levels raise false 
discovery rates in RNA samples contaminated 
with genomic DNA
Xiangnan Li1, Peipei Zhang2, Haijian Wang3* and Ying Yu4* 

Abstract 

Background:  RNA preparations contaminated with genomic DNA (gDNA) are frequently disregarded by RNA-seq 
studies. Such contamination may generate false results; however, their effect on the outcomes of RNA-seq analyses is 
unknown. To address this gap in our knowledge, here we added different concentrations of gDNA to total RNA prepa-
rations and subjected them to RNA-seq analysis.

Results:  We found that the contaminating gDNA altered the quantification of transcripts at relatively high concentra-
tions. Differentially expressed genes (DEGs) resulting from gDNA contamination may therefore contribute to higher 
rates of false enrichment of pathways compared with analogous samples lacking numerous DEGs. A strategy was 
developed to correct gene expression levels in gDNA-contaminated RNA samples, which assessed the magnitude of 
contamination to improve the reliability of the results.

Conclusions:  Our study indicates that caution must be exercised when interpreting results associated with low-
abundance transcripts. The data provided here will likely serve as a valuable resource to evaluate the influence of 
gDNA contamination on RNA-seq analysis, particularly related to the detection of putative novel gene elements.
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Background
Genomic DNA (gDNA) contaminates gene expression 
quantification techniques such as reverse transcription 
quantitative PCR (RT-qPCR) and microarray analysis [1, 
2]. Such contamination is caused by incomplete digestion 
of gDNA by DNase during the extraction of total RNA 
[2, 3]. Library preparation for RNA-seq analysis includes 
digesting samples with DNase to remove contamination 
with gDNA that may degrade the quality of quantitative 

gene expression data (Fig.  1). This would introduce 
gDNA into RNA-seq experiment. In fact, the Sequenc-
ing Quality Control (SEQC) project found a low mapping 
ratio within an intergenic region, suggesting gDNA con-
tamination of RNA-seq analyses [4]. Unfortunately, the 
assessment of gDNA contamination may be neglected in 
RNA-seq studies, although it is the focus of intense scru-
tiny in RT-qPCR studies [5–7]. For example, Zhou et al. 
proposed an extracellular RNA sequencing (exRNA-seq) 
strategy to determine disease status without accounting 
for gDNA contamination [8]. However, Verwilt et al. [6] 
argues that gDNA contamination may be introduced dur-
ing exRNA-seq analysis, which may significantly influ-
ence the results [9]. Further, numerous studies [10–14] 
using RNA-seq do not report whether gDNA contamina-
tion influenced their data.
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Contamination with gDNA may generate misleading 
data inadvertently attributed to the identification of puta-
tive novel transcribed elements through comparisons of 
known genomic elements. Moreover, our knowledge of 
completely sequenced genomes is incomplete. There-
fore, claims of the detection of novel transcribed ele-
ments must be accompanied by rigorous quality control. 
To address this problem, Iyer et al. developed a strategy 
to filter gDNA reads to avoid false detection of puta-
tive novel long non-coding RNAs (lncRNAs) in RNA-
seq data [15]. Further, gDNA contamination may result 
in inaccurate quantitation of gene expression levels that 
identify differentially expressed genes (DEGs).

Accurate quantitation of authentic gene expression 
levels using cDNAs may be significantly compromised 
by gDNA contamination. To address this problem, 
ValidPrime was developed to estimate gDNA back-
ground in RT-qPCR data [5], and several other methods 
are available to detect gDNA contamination in sam-
ples subjected to RT-qPCR [6, 7]. However, the influ-
ence of gDNA contamination on the quantitation of 
gene expression levels is unknown, which hinders the 

development of strategies to correct for this artifact. 
Further, although the incomplete digestion of gDNA by 
DNase is widely used to remove DNA from RNA sam-
ples, the exact concentration of residual DNA in total 
RNA preparations used for RNA-seq, to our knowledge, 
is not estimated.

To our knowledge, the effects of gDNA contamina-
tion of RNA-seq have not been systematically studied. To 
approach this problem, the first and critically important 
step is to identify genes whose expression levels are read-
ily influenced by gDNA and to address the consequences 
of artifactual data. Moreover, the residual gDNA con-
centration must be determined, which will contribute 
to implementing a correction strategy. To this end, we 
designed an RNA-seq experiment employing different 
gDNA concentrations added to samples of total RNAs 
used to prepare libraries. We employed frequently used 
methods to prepare libraries for RNA-seq as follows: 
enrichment of polyadenylated transcripts (Poly (A) Selec-
tion) and depletion of ribosomal RNA (Ribo-Zero). Here 
we show that low-abundance transcripts account for 
inaccuracies in RNA-seq data. We therefore determined 

Fig. 1  Genomic DNA contamination in RNA-seq raises concerns about the reliability of RNA-seq results. Diagram showing that genomic DNA 
(gDNA) contamination may affect RNA-seq results. Most RNA-seq studies focus on mRNA and/or noncoding RNA in cells or tissues, while these 
RNAs account for a small part of total cellular RNA. When enriching for such RNAs, gDNA will be enriched as well and eventually contaminate 
RNA-seq data. In extracted total RNA, the sample consists of a large amount of rRNA, small amounts of mRNAs and noncoding RNAs, and a small 
amount of gDNA. During library preparation, particularly using the ribosomal depletion method, most rRNA in the total RNA sample is removed, 
which results in high enrichment of mRNA and noncoding RNAs together with gDNA. These gDNAs will contaminate RNA-seq data and ultimately 
affect analyzing results, such as falsely increasing gene expression levels that may influence the DEG detection. When detecting DEGs between 
Treatment and Control groups, there are roughly four situations for one specific gene. Situations 1: both the Treatment and Control are not 
contaminated by gDNA; Situation 2: only Control is contaminated by gDNA contamination; Situation 3: only Treatment is contaminated by gDNA; 
Situation 4: both Treatment and Control are contaminated by gDNA. Different contaminating situations would result in different DEG detecting 
results for genes, e.g. gene A
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the residual gDNA concentrations and propose a data-
correction strategy. The data presented here may serve as 
a valuable resource to evaluate the effects of gDNA con-
tamination on the authenticity of detection of putative 
novel genetic elements.

Results
Study design
We designed an RNA-seq experiment in which we added 
different gDNA concentrations to total RNA for Poly 
(A) Selection and Ribo-Zero used to prepare the librar-
ies (Fig. 2). Briefly, gDNA and total RNA were extracted 
from human HapMap lymphoblast cell lines. Total RNA 
was divided into DNase treatment or no treatment 
groups. Different amounts of gDNA were then added to 
DNase-treated RNA to prepare solutions ranging from 0 
to 10% gDNA. These RNA/DNA mixtures together with 
RNA without DNase treatment were prepared for Poly 
(A) Selection and Ribo-Zero sequencing libraries (three 
replicates per mixture). The sequencing libraries (n = 36) 
were harvested, and 50-bp sequences were determined 
using an Illumina HiSeq 2000.

A small amount of residual DNA in total RNA after DNase 
digestion
A simple linear regression model was used to fit the 
predicted mapping ratio within the intergenic region 

according to the gDNA concentration. This analysis 
estimated the residual DNA contamination in total 
RNA after DNA digestion. Approximately 1.8% of 
residual gDNA contamination was estimated. There 
was not a significant association of Poly (A) Selection 
between the mapping ratio and gDNA concentration 
(See Supplementary Table S1, Additional File 1). How-
ever, the intercept term (referred to as α · cDNAIR_PA 
in the Methods section) was statistically significant and 
therefore used to estimate the concentration of cDNAs 
of unannotated RNA transcripts. A significant regres-
sion equation was found for Ribo-Zero (F(1,13) = 241.6, 
p < 0.001, R2 = 0.949) (See Supplementary Table  S2, 
Additional File 1). After estimating the cDNA concen-
trations of unannotated RNA transcripts, the fitted 
regression model was represented by the equation as 
follows:

where 0.018 corresponds to the residual DNA in total 
RNA after DNase digestion, which indicates approxi-
mately 1.8% gDNA contamination of total RNA after 
DNase treatment; 0.658 corresponds to the product of α · 
cRZ · pIR, and 0.035 corresponds to the product of α · 
1+

nnon−coding

ncoding
· cDNAIR_RZ.

mapping_ratioIR_RZ = 0.658 ⋅DNAa + 0.658 ⋅ 0.018

+ 0.035 + �

Fig. 2  Study design. Here we aimed to investigate and reduce the influence of gDNA contamination on gene expression. Total RNA and gDNA 
were extracted from a human HapMap lymphoblast cell line, and total RNA was divided into two groups: one treated with DNase and the other not 
treated with DNase. The gDNA was added to the DNase-treated RNA to achieve concentrations of 0% to 10%. These RNA/DNA mixtures and the 
non-DNase-treated RNA were prepared to construct the RNA-seq libraries using the Ribo-Zero and Poly (A) Selection methods. Each treatment was 
performed in triplicate, and 36 libraries were prepared. Sequencing data (50-bp reads) were generated using an Illumina HiSeq2000
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This function was used to predict gDNA contamina-
tion of Ribo-Zero libraries according to the equation as 
follows:

where the gDNA corresponds to total gDNA contami-
nation of total RNA used to prepare RNA-seq libraries.

Higher gDNA contamination affects Ribo‑Zero to a greater 
extent than Poly (A) Selection
Hierarchical cluster analysis (HCA) and principal com-
ponent analysis (PCA) were used to determine the 
fluctuations in expression profiling caused by gDNA 
contamination of Poly (A) Selection and Ribo-Zero. 
Expression profiling showed that Ribo-Zero suffered 
from gDNA contamination to a significantly higher 
extent compared with Poly (A) Selection (Fig.  3a). For 
Poly (A) Selection, gDNA contamination did not sig-
nificantly affect expression profiling, because most 
libraries mutually clustered, except those not treated 
with DNase. For Ribo-Zero, high gDNA levels of gDNA 
contamination (1% and 10%) and not treated with 
DNase, the libraries closely clustered. Though three 
replicates of 0.1% gDNA seemed clustered, they clus-
tered with two replicates of 0.01% gDNA. The PCA 
and HCA results were similar for Poly (A) Selection 
closely clustered libraries, and Ribo-Zero libraries with 
1% and 10% gDNA contamination were distinguished 
from the other libraries according to principal com-
ponent 2 (Fig. 3b). The HCA and PCA results indicate 
that expression profiling using Ribo-Zero is more sensi-
tive to gDNA contaminations compared with Poly (A) 
selection.

In single gene expression analysis, more genes cor-
related with gDNA in Ribo-Zero compared with Poly 
(A) Selection (510 and 2 genes for Ribo-Zero and Poly 
(A) Selection, respectively) (Fig.  3c and Supplementary 
Figure S1, Additional File 2). When we analyzed genes 
with expression levels that correlated to the gDNA con-
centrations (p < 0.05, two-sided, Bonferroni adjusted), 
we found that 94.1% that correlated with gDNA were 
expressed at levels < 0 (log2 FPKM (Fragments per kilo-
base of transcript per million read pairs)) (See Supple-
mentary Figure S1, Additional File 2) using Ribo-Zero 
(at 0% gDNA contamination). The two genes that cor-
related with gDNA using Poly (A) Selection were 
expressed at values > 0 or < 0, respectively. The number of 
genes that correlated with gDNA support the conclusion 
that Ribo-Zero was more sensitive to gDNA contamina-
tion compared with Poly (A) Selection, according to the 
expression of a single gene.

gDNA =
mapping_ratioIR_RZ − 0.035

0.658
+ ε

Genomic DNA alters the quantitation of low‑abundance 
transcripts, leading to false‑positive results using 
Ribo‑Zero
DEGs were detected in libraries with > 0% gDNA (Treat-
ment) and libraries with 0% gDNA (Control). The num-
ber of DEGs increased as the gDNA contamination 
increased using Ribo-Zero and were approximately 
constant using Poly (A) Selection (Fig.  4a and Supple-
mentary Figure S2, Additional File 2). For Ribo-Zero, 
the numbers of DEGs were 504 and 477 at low gDNA 
concentrations (0.01% and 0.1%), respectively. When 
gDNA contamination was increased to 1%, the num-
ber of DEGs significantly increased to 1134; and 5533 
DEGs were detected when gDNA contamination was 
10%, and to 867 for libraries without DNase treatment 
(Fig.  4a). For Poly (A) Selection, the number of DEGs 
averaged 303, and for libraries without DNase treatment, 
530 DEGs were detected (See Supplementary Figure S2, 
Additional File 2).

Although the number of DEGs increased as gDNA 
contamination increased, the DEGs detected using Ribo-
Zero cannot be attributed to gDNA contamination sim-
ply because of background noise. Hence, the DEGs were 
divided according to whether one gene correlated with 
gDNA as follows: “Correlated” and “Not Correlated” 
DEGs, which represented DEGs with expression levels 
significantly correlated with gDNA contamination con-
centration (p < 0.05, two-sided, Bonferroni adjusted) and 
those not correlated with gDNA contamination concen-
tration. The “Correlated” DEGs were most likely caused 
by gDNA contamination, and the “Not Correlated” DEGs 
were detected because of gDNA contamination, back-
ground noise, or both. For DEGs between libraries with 
0.01% and 0% gDNA as well as those between libraries 
with 0.1% and 0% gDNA, there were few DEGs classi-
fied as “Correlated” DEGs (0.6% and 0.2%). For DEGs 
between libraries with 1% and 0% gDNA and between 
libraries with 10% and 0% gDNA, there were approxi-
mately 14.2% and 9.1% DEGs, respectively, classified as 
“Correlated” DEGs. For DEGs between libraries without 
DNase treatment and with 0% gDNA, 0.8% DEGs were 
classified as “Correlated” DEGs. Considering that the 
number of DEGs increased in the presence of 1% gDNA, 
these results suggest that when present at relatively high 
concentrations, gDNA contamination may alter gene 
quantitation.

There were low levels of DEGs attributable to gDNA 
and background noise (Fig.  4b). Expression levels of 
most “Correlated” and “Not Correlated” DEGs were > 0 
(log2[FPKM]) in the Treatment and Control groups. 
These DEGs generated false Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [16] enrichment results 
in pathway analysis (Fig.  4c). The “Correlated” DEGs 
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were enriched in 1 and 15 pathways with 0.01% and 10% 
gDNA contamination, respectively; and the “Not Cor-
related” DEGs were enriched in 2 and 17 pathways at 
0.1% and 10% gDNA contamination, respectively. When 
we considered “Correlated” and “Not Correlated” DEGs 
together, more enriched pathways were identified only 
at 10% gDNA contamination that 35 enriched path-
ways were identified. These results indicate that gDNA 

contamination altered the quantitation of low-abundance 
transcripts and led to the enrichment of false-positive 
pathways.

Insignificant contribution of gDNA contributes to Pathway 
Enrichment Analysis
Though gDNA contamination may alter the quantita-
tion of expression levels, particularly of low-abundance 

Fig. 3  Higher gDNA contamination affects Ribo-Zero to a greater extent than Poly (A) Selection. a) Different library preparation methods clustered 
separately; and Poly (A) Selection mutually clustered, while Ribo-Zero gDNA clustered closely by the treatments. For Poly (A) Selection, different 
treatments clustered together regardless of gDNA concentrations, except for no-DNase treatment, while closely clustered by gDNA concentrations 
particularly at high gDNA concentrations for Ribo-Zero. b) PCA showed results similar to those shown in panel a). Different library preparation 
methods separately clustered. For Poly (A) selection, different gDNA contamination treatments tightly clustered, which reflected that gDNA exerted 
a small amount of influence on gene expression levels. For Ribo-Zero, different treatments tightly clustered on PC1 and sporadically on PC2, 
which reflects the different extents of influence of gDNA on gene expression levels. c) More genes were affected by gDNA, indicated by changes 
in their expression levels in Ribo-Zero compared with Poly (A) Selection. These samples were enriched in genes expressed at low expressed in 
Ribo-Zero (See Supplementary Figure S1, Additional File 2). Each line represents the mean expression level of one gene from three replicates at 
different contaminating gDNA concentrations. The x-axis represents different amounts of gDNA contamination, and the y-axis represents the gene 
expression value. The light red line represents gene expression levels that significantly correlated with gDNA contamination, and the gray line 
represents gene expression levels that did not. Left (Ribo-Zero), right (Poly (A) Selection)
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transcripts, we found that it insignificantly contributed to 
the pathway enrichment results when comparing two dis-
tinct samples (Fig. 5a). When we compared libraries pre-
pared using Ribo-Zero to those with 0% gDNA prepared 
using Poly (A) Selection, the DEG-enriched pathways 
largely overlapped. There were 25 overlapping enriched 
pathways regardless of gDNA concentration (Fig.  5a) 
among 48 enriched pathways shared between Ribo-Zero 
and Poly (A) Selection. Further, we detected only one 
overlapping pathway between enriched pathways by com-
paring Ribo-Zero libraries to Poly (A) Selection libraries 
with 0% gDNA and by comparing Ribo-Zero libraries 
with 10% gDNA to libraries with 0% gDNA (Fig.  5b). 
These small overlaps may be explained by an over-abun-
dance of DEGs (Fig. 5c). That is, too many DEGs in the 
background of enrichment analysis (See Supplementary 
Figure S3a, Additional File 2) between Ribo-Zero and 
Poly (A) Selection resulted in the pathways that enriched 
in the comparison between Ribo-Zero libraries did not 
enriched statistically significant. For example, there were 
many overlapping DEGs (See Supplementary Figure S3b, 
Additional File 2) between those identified through the 
comparison between libraries prepared using Ribo-Zero 
and Poly (A) Selection and DEGs from the comparison 
between libraries with 0% and 10% gDNA prepared using 
Ribo-Zero in pathway “hsa04740”. However, the pathway 
“hsa04740” was involved with numerous background 
DEGs from the former which lead to an insignificant 
enrichment (See Supplementary Figure S3c, Additional 
File 2). These results suggest that if the two groups were 
vastly different, the intrinsic difference between the two 
conditions would dilute the contribution of gDNA to 
pathway enrichment.

Adjusting expression levels reduces the alteration 
of quantitation of expression levels using Ribo‑Zero
Gene expression levels were adjusted by subtract-
ing FPKM associated with gDNA from FPKM calcu-
lated using the quantitation software. The number of 
DEGs was largely reduced for 1% and 10% gDNA with 

Ribo-Zero. The number of DEGs decreased from 1134 to 
333 and from 5533 to 799 in the presence of 1% and 10% 
gDNA, respectively (Fig.  6). However, this strategy was 
judged not suitable for Poly (A) Selection, because the 
number of DEGs increased after FPKM adjustment (See 
Supplementary Figure S4, Additional File 2).

Discussion
Contamination of gene expression libraries is a common 
yet important problem inherent in gene quantitation 
technologies; however, the effects of gDNA contamina-
tion associated with RNA-seq analysis are infrequently 
discussed. While gDNA contamination had led to 
debates about doubtable results in exRNA sequencing [8, 
9], it should attract more attentions. Here, we designed 
an experiment employing different gDNA concentrations 
in RNA-seq libraries to evaluate the effects of gDNA con-
tamination on gene expression levels. We show here that 
contamination with gDNA altered the quantitation of 
low-abundance transcripts, which generated false results. 
These findings will serve as a valuable resource to deter-
mine the effects of gDNA contamination in studies aimed 
to discover novel genetic elements.

There is always a small amount of gDNA contamina-
tion in RNA-seq libraries and the extent of gDNA con-
tamination could be estimated. Here we found that RNAs 
used for RNA-seq were contaminated with approxi-
mately 1.8% of gDNA after DNA digestion through a sim-
ple linear regression model. This result may have been 
an overestimate, because the intergenic region defined 
here was not sufficiently extensive, and therefore unan-
notated transcripts were considered gDNA contami-
nants. However, this finding is consistent with those of 
other gene quantitation methods that do not completely 
remove gDNA using DNase [2, 6, 7]. The linear regres-
sion model was used to estimate the gDNA contamina-
tion of one sequenced Ribo-Zero library. Contamination 
with gDNA is a critically important problem for cancer 
research, because most clinical tumor specimens are 
formalin-fixed, paraffin-embedded (FFPE) tissues [17] 

(See figure on next page.)
Fig. 4  Genomic DNA alters the expression of low-abundance transcripts and leads to false results in Ribo-Zero. a) Genomic DNA significantly 
altered the quantitation of gene expression levels in Ribo-Zero. The bar plot shows the number of DEGs in Ribo-Zero at different concentrations of 
contaminating gDNA. The “Correlated” DEGs were considered genes with altered expression levels caused by gDNA contamination, and the “Not 
Correlated” DEGs were considered genes with altered levels caused by gDNA and/or background noise. The DEGs were detected by comparing 
libraries with > 0% (Treatment) and 0% (Control) gDNA. The x-axis represents different treatments; the y-axis represents the number of DEGs in 
each comparison (t test, two-sided, p < 0.05 and |log2(fold-change)|> 1). The red and gray bars represent “Correlated” and “Not Correlated” DEGs, 
respectively. b) The “Correlated” and “Not Correlated” DEGs were expressed at low levels in the Treatment and Control. Most “Correlated” and “Not 
Correlated” DEGs in Treatment and Control showed expression levels < 0. The distribution of expression levels of “Correlated” DEGs between libraries 
with 0.1% and 0% gDNA contamination is not displayed, because only one “Correlated” DEG was detected. The x-axis represents the expression 
value (log2[FPKM]); the y-axis represents density. The blue line represents Control, the red line represents Treatment. c) “Correlated” and “Not 
Correlated” DEGs give “false” enrichment results. The plot shows the number of enriched KEGG pathways of DEGs between Treatment and Control in 
Ribo-Zero. The x-axis represents different treatments; the y-axis represents the number of enriched pathways. The red, gray, and blue bars represent 
“Correlated”, “Not Correlated,” and all DEG-enriched pathways, respectively
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Fig. 4  (See legend on previous page.)
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containing degraded RNA [18]. The ribosomal deple-
tion method employed for FFPE samples might introduce 
more gDNA contamination. This is because the gradual 
fragmentation of DNA sequences in FFPE samples dur-
ing storage [19, 20] makes the length of fragmented DNA 
sequences close to the desired length of RNA fragments, 
which would give the fragmented DNA sequences a high 
chance to be co-extracted with RNA and lead to higher 
DNA contamination. Indeed, we found 2.2%–7.5% gDNA 
contamination of Ribo-Zero libraries prepared from 
some FFPE samples of triple-negative breast cancer [10]. 
Besides, with unknown sample types, we found a higher 
gDNA contamination, ranging from 0.7% to 22.7%, of 
Ribo-Zero libraries prepared from normal human adult 
and human fetal tissue samples.

RNAs used to prepare libraries were contaminated 
with gDNA if prepared using Ribo-Zero but not Poly 
(A) Selection. Relatively high concentrations of gDNA 
contamination would cause clustering of the libraries 
from Ribo-Zero, whereas libraries prepare using Poly (A) 
Selection mutually clustered (Fig. 3a, b). This result indi-
cates that gDNA contamination of total RNA would read-
ily persist in a ribosomal RNA-depleted library, but not 
in a library enriched in polyadenylated transcripts. This 
conclusion is consistent with the view of gDNA contami-
nation in RNA-seq analysis [21]. The molecular reason 
behind this could be attributed to the differences in target 
RNA capturing methods between Poly (A) Selection and 

Fig. 5  Genomic DNA contributes little to pathway enrichment analysis when comparing two distinct methods. a) Enriched pathways showed a 
large overlap regardless of gDNA concentration. The Venn diagram shows the number of DEG-enriched pathways compared with Ribo-Zero and 
Poly (A) Selection. Twenty-five (52.1%) of enriched pathways were shared, regardless of gDNA contamination. b) Most enriched pathways associated 
with gDNA did not appear in the comparison of Ribo-Zero and Poly (A) Selection. The Venn diagram shows the number of all enriched pathways in 
the comparison of Ribo-Zero with > 0% and 0% gDNA and Ribo-Zero and Poly (A) selection. The pathway enriched between Ribo-Zero with > 0% 
and 0% gDNA were considered associated with gDNA. c) Many more DEGs between Ribo-Zero and Poly (A) Selection than between Ribo-Zero 
libraries. The DEGs were detected by comparing Ribo-Zero libraries (0% to 10% gDNA) and Poly (A) Selection libraries (0% gDNA) and between 
Ribo-Zero libraries with 10% and with 0% gDNA. PA: Poly (A) Selection; RZ: Ribo-Zero

Fig. 6  Adjusting expression levels reduces number of DEGs. The 
DEGs were detected by comparing libraries with > 0% (Treatment) 
gDNA and those with 0% (Control) gDNA for Ribo-Zero libraries. 
The red and blue bars represent DEGs detected before and after 
adjustment, respectively. The x-axis represents different treatments; 
the y-axis represents the number of DEGs in each comparison. (t test, 
two-sided, p < 0.05 and |log2(fold-change)|> 1)
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Ribo-Zero. Poly (A) Selection uses oligo-T probes to cap-
ture mature mRNAs with a ~ 250  bp Poly-A tail located 
in the 3’ end. The gDNA fragments had a low chance to 
carry a 3’ Poly-A tail with ~ 250 bp, which lead to a low 
capturing rate by oligo-T probe. Thus, Poly (A) Selection 
was less prone to be contaminated by gDNA. The tar-
get RNA capturing method of Ribo-Zero is removing all 
rRNA from total RNA and the remaining RNAs are con-
sidered as target RNA. So any gDNA sequences in total 
RNA would have a relatively high chance to be captured, 
which led to Ribo-Zero libraries were contaminated with 
gDNA.

Genomic DNA contamination of total RNA is associ-
ated with gene expression. Thus, our present analysis 
of the expression levels of certain genes correlated with 
gDNA contamination (Fig. 3c). However, the alterations 
in expression levels of these genes were low until gDNA 
contamination reached 10%, indicating that gDNA influ-
ences the quantitation of expression levels when present 
at a relatively high concentration. Further, we found no 
significant difference in GC contents between these con-
sistently altered genes and other genes (t test, p = 0.531, 
two-sided), indicating “GC content bias”, which indicates 
that regions with high GC content tend to yield more 
read coverage [22], and further that RNA-seq may not 
contribute to the increase in expression levels of these 
genes. Moreover, the number of DEGs increased as a 
function of an increase in gDNA concentrations (Fig. 4a). 
Though the noise associated with RNA-seq technol-
ogy may increase the number of false-positive DEGs [4], 
the number of DEGs caused by noise was proximately 
equal in libraries prepared in the presence of 0.01% or 
0.1% gDNA, indicating that numerous DEGs detected in 
libraries contaminated with 1% or 10% may be explained 
by contamination with gDNA.

Low-abundance transcripts identified as DEGs were 
most frequently associated with libraries contaminated 
with gDNA sequences. Though small, gDNA contami-
nation is expected to have limited influence on analy-
sis of gene expression data. Genes are defined as DEGs 
if their levels exhibit a log2 (fold-change) with an abso-
lute value > 1 [23, 24]. For this reason, the levels of highly 
expressed genes must change by a relatively big amount, 
and difficult for them, to be detected as a DEG. Here we 
show (Fig.  4b) that with 10% gDNA contamination, the 
FPKMs of most DEGs (“Correlated” and “Not Corre-
lated” DEGs), were < 0 (log2) in the Treatment and Con-
trol groups. If the gDNA contamination of sequenced 
samples was not assessed, any DEGs expressed at low 
levels, or novel weakly-expressed transcripts, in both 
comparison groups should be regarded as suspicious.

False DEG discoveries may arise from the expression of 
altered genes. Here we show that gDNA contamination 

led to the discovery of false DEGs (Fig.  4a). Although 
the noise intrinsic to RNA-seq analysis may also lead to 
the identification of false DEGs [4], the number of these 
DEGs may be reflected by the number of DEGs in analy-
ses using Poly (A) Selection (See Supplementary Figure 
S2, Additional File 2) and Ribo-Zero, with gDNA con-
tamination < 1%. In contrast, the number of DEGs rap-
idly increased in RNA samples contaminated with ≥ 1% 
gDNA, indicating that such DEGs were the result of 
gDNA contamination.

The other false discoveries were made in the DEG-
enriched pathways. When we compared samples with 
or without gDNA contamination, many DEG-enriched 
pathways were identified (Fig.  4c). When the samples 
were distinct, such as those prepared employing libraries 
from Poly (A) Selection and Ribo-Zero, fewer enriched 
pathways were associated with gDNA concentrations. 
Instead, many shared pathways were identified, regard-
less of gDNA concentrations (Fig. 5a). These findings may 
be explained by the large numbers of DEGs identified 
using Poly (A) Selection or Ribo-Zero, which contrib-
uted differences that were not significant (e.g., p > 0.05) in 
pathway enrichment analysis (See Supplementary Figure 
S3c and S3d, Additional File 2). These results also indi-
cate that pathway enrichment was sensitive to gDNA 
contamination when samples exhibited similar expres-
sion profiles because of the small number of DEGs (See 
Supplementary Figure S3c and S3d, Additional File 2). 
Further, in most cases, comparison of samples prepared 
from the same tissue did not detect a significant differ-
ence. Moreover, when experimental conditions are simi-
lar, gDNA contamination may result in the identification 
of falsely enriched pathways. Notably, other enrichment 
analyses such as Gene Ontology that only require a DEG 
list, would also be subject to gDNA contamination.

The false discoveries caused by gDNA contamination 
may be eliminated by adjusting gene expression levels. 
Although simply excluding genes at low levels decreases 
the detection of false DEGs (See Supplementary Fig-
ure S5, Additional File 2), authentic DEGs expressed at 
low levels may not be identified. We therefore adjusted 
expression levels here rather than simply eliminating 
low-abundance transcripts. Further, we show here that 
such adjustments effectively reduced the number of false 
DEGs in libraries prepared using Ribo-Zero (Fig. 6).

Our findings suggest that a small amount of resid-
ual gDNA contamination is present in total RNA after 
DNase digestion and that gDNA contamination of RNA-
seq libraries will alter the quantitation of the expression 
levels of low-abundance transcripts, culminating in false-
positive results. The linear regression model built in this 
study provided a way to quantitate gDNA contamina-
tion, as the assessment of gDNA contamination was not 
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sufficiently reported in numerous RNA-seq articles [10–
14, 25]. The higher gDNA contamination in Ribo-Zero 
compared to Poly (A) Selection suggested that When 
studying mRNA, for the samples with good mRNA qual-
ity, Poly-A enrichment library construction should be 
employed; considering the even higher gDNA contami-
nation in RNA from FFPE samples when studying non-
coding RNA, the library constriction method have to be 
Ribosomal depletion, however, it is better to choose cell 
line samples and/or FFPE samples in a short storage time. 
Further, the alteration of gene expression levels may be 
eliminated by adjusting expression levels according to the 
mapping ratio within the intergenic region. The present 
data may facilitate estimates of the contribution of gDNA 
contamination to gene detection, novel transcript discov-
ery, or to the identification of the functions of unanno-
tated RNAs.

Our study has the limitations as follows:

1. The limited number of concentrations skewed 
toward 0%. These limited concentrations may influ-
ence the estimated accuracy of linear regression; 
however, the trend was obvious between the inter-
genic region-mapping ratio and gDNA concentra-
tion, and the core finding that the expression levels 
of low-abundance transcripts altered by gDNA were 
not significantly associated with these limited con-
centrations.
2. The estimated number of unannotated transcripts 
in Ribo-Zero. The number of estimated unannotated 
transcripts in Ribo-Zero libraries may influence the 
estimation of residual gDNA contamination. Ideally, 
the unannotated transcripts in Ribo-Zero libraries 
should be estimated using libraries exclusively pre-
pared using Ribo-Zero. However, it is difficult to dis-
tinguish reads from gDNA and cDNA after reverse 
transcription. Alternatively, we used the unanno-
tated transcripts in Poly (A) Selection libraries to 
approximate the unannotated transcripts in Ribo-
Zero libraries using the ratio of annotated coding 
genes to noncoding genes.
3. The generality of the defined intergenic region. 
The definition of an intergenic region may influence 
the quantitation of gDNA contamination. The gene 
expression data are tissue/cell type-specific and may 
therefore lose accuracy for estimating the expression 
caused by gDNA contamination of tissues/cells other 
than blastoma cells. Though several assumptions 
were made here, most are basic to RNA-seq analysis.

To further estimate gDNA contamination in RNA-seq 
with increased accuracy, a more complicated experiment 

should be performed, such as adding more concentra-
tion gradients without bias toward one specific con-
centration. Moreover, a target intergenic region should 
be defined to more accurately estimate the magnitude 
gDNA contamination inherent in RNA-seq; and more 
important, to accurately estimate the proportion of 
gDNA contamination of any type of test material sub-
jected to RNA-seq. To achieve this type of intergenic 
region, more tissue/cell types should be included to 
identify a comprehensive transcribed region. It follows 
that more accurate adjustment of gene expression levels 
will be achieved.

Another direct approach to adjust gene expression 
levels is to distinguish the reads of gDNA and reverse-
transcribed cDNAs and delete gDNA reads from RNA-
seq data, which is a much more difficult way to find a 
solution. Nowadays, extracellular RNAs (exRNAs) are 
emerging as potential biomarkers of disease, and gDNA 
contamination is a major problem to solve [9]. The exper-
imental strategy provided here will be useful for this 
purpose.

Our results emphasized that analysing results of low-
abundance transcripts should be carefully interpreted. 
In addition to the alteration in levels of low-abundance 
transcripts caused by gDNA contamination, the noise 
of RNA-seq technology hinders their accurate quantita-
tion [4, 26]. Studies using microarray technology exclude 
probes with low intensities to increase the reliability of 
results [23, 27], because such probes may exhibit higher 
variances than high-intensity probes [28]. Further, RT-
qPCR analysis, which is likely contaminated with gDNA, 
such contamination may exert more influence on the 
characterization of genes expressed at low levels [5]. 
These facts prevent the characterization of features of 
these genes, requiring great care in interpreting their 
analysis.

Conclusions
The results of our present study fill a gap in our knowl-
edge regarding how gDNA contamination influences the 
quantitation of transcriptional profiles using technolo-
gies such as RNA-seq. Further, the results of the present 
study support the finding that DNase does completely 
digest DNA, and more important, provides a strategy 
to estimate the residual gDNA after DNase digestion. 
Moreover, the proposed methods developed to correct 
expression data may help yield reliable results. In conclu-
sion, we show here that gDNA contamination altered the 
quantitation of low-abundance transcripts. Moreover, 
great caution should be exercised when interpreting the 
results associated with such genes.
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Methods
Cell culture
HapMap lymphoblast cell lines were purchased from 
the Coriell Institute. Lymphoblasts were cultured at 
37  °C in RPMI 1640 medium supplemented with 15% 
Fetal Bovine Serum and 2 mM L-glutamate in a humidi-
fied incubator with an atmosphere of 5% CO2. On day 
0, lymphoblasts were seeded at 200,000 cells /ml in T75 
flasks (50-ml medium/flask) with loose caps and incu-
bated in an upright position. On day 2, lymphoblasts 
were centrifuged at 100  g for 10  min and suspended in 
fresh medium. On day 4, when the lymphoblast con-
centration reached 600,000–800,000/ml, cells were har-
vested (centrifugation at 100  g for 10  min) and washed 
once with fresh medium.

Genomic DNA isolation
Cell pellets (1.0 × 107 cells) were resuspended in 18 ml of 
solution I (4.5 ml of 20% [w/v] glucose, 2.5 ml of 1 M Tris–
HCl pH 8.0, 2 ml 0.5 M EDTA pH 8.0, lysozyme 2.5 g, and 
91 ml of ddH2O). The samples incubated at room tempera-
ture for 10 min, 36 ml of ice-cold solution II (20 ml of 1 M 
NaOH, 10 ml of 10% SDS, 70 ml of ddH2O) was added to 
the samples with gentle inversion, and the samples were 
placed on ice for 10 min. Next, 27 ml of ice-cold Solution 
III (60 ml 5 M potassium acetate, 11.5 ml of glacial acetic 
acid, 28.5 ml of ddH2O) was added to the sample followed 
by thorough mixing. After placing in ice for 10  min, the 
samples were centrifuged at 11,300 g for 10 min (Beckman 
J2-21, JA10 rotor). The supernatant was poured through 
sterile cheesecloth, 50  ml of isopropanol was added, and 
the samples were placed on ice for 10 min. The supernatant 
was discarded after centrifugation at 11,300  g for 10  min 
(Beckman, J2-21, JA10 rotor). The residual white pel-
let was washed with 75% ethanol, dried, and dissolved in 
adding 9 ml of TE buffer (10 mM Tris–HCl pH 7.5, 1 mM 
EDTA pH 8.0). Cesium chloride (CsCl, Sigma-Aldrich) and 
ethidium bromide (10 mg/ml in TE buffer) were added to 
the samples, 8.5 g and 0.125 ml, respectively. The tube was 
then covered with foil to protect against light and centri-
fuged at 2,100 g for 10 min at room temperature (IEC clini-
cal centrifuge). The supernatant was transfer to a 5/8 " × 3-" 
Quick Seal tube, heat-sealed and centrifuged at 447,000 g 
at 20 °C for 18 h (Beckman ultracentrifuge, rotor VTi 80). 
The DNA was visualized with UV light and placed in a 
1/2" × 2" Quick Seal tube. The tube was filled with CsCl 
(1 g/ml in TE buffer) and then centrifuged at 645,000 g at 
20 °C for 6 h (Beckman ultracentrifuge, rotor VTi 90). DNA 
bands were collected under UV light and washed with 
saturated butanol until the pink color disappeared under 
UV light. Next, 2.5 volumes of 100% ethanol were added to 
the extract followed by the addition of 0.1 volume of 5 M 

NaCl. The tube was then gently inverted until white strands 
of DNA appeared. The tube was centrifuged at 16,000 g at 
4  °C for 10 min (Spectrafuge 16 M, National Labnet Co.) 
to collect the DNA, and the DNA pellet was washed once 
with 75% ethanol and dried in a speed vacuum for 2 min 
(Eppendorf Vacufuge, Brinkman Instruments, Inc.). The 
DNA pellet was resuspended in TE buffer. DNA concen-
trations and the 260/280 ratios were determined using a 
NanoDrop.

Total RNA isolation
An RNeasy Mini Kit (250) was purchased from QIA-
GEN, and manufacturer’s protocol was followed with 
minor modification. Briefly, the pellet (1.0 × 107 cells) was 
resuspended in 1,200 µl of RLT buffer, the lysate was fur-
ther homogenized five times by passage through a blunt 
20-gage, and 1,200  µl of 70% ethanol was added. The 
homogenized lysate was centrifuged in a RNeasy spin col-
umn at 10,000  g for 15  s, washed once with RWI buffer 
once and twice with RPE buffer. Total RNA was collected 
using two elutions with 50 µl of RNase-free H2O and then 
centrifugation at 8,000 g for 1 min. Total RNA concentra-
tions and 260/280 ratios were measured using a NanoDrop. 
RINs were determined using a 2100 Bioanalyzer (Agilent). 
The DNase digestion was not performed during RNA 
isolation.

RNA/DNA mixing, library construction and sequencing
DNA were added to and mixed with RNA after DNase 
treatment according to their concentrations (µg/µl) as 
shown in Fig.  2. RiboMinus Eukaryote Kit for RNA-seq 
(Invitrogen) was used to remove ribosomal RNA. Sequenc-
ing libraries were generated using this rRNA-depleted 
RNA using a TruSeq Stranded Total RNA Library Prep 
Kit. A TruSeq RNA Library Prep Kit (Illumina) was used 
to enrich for polyadenylated mRNA and to generate poly-
adenylated transcript-sequencing libraries. All procedures 
followed the manufacturer’s instructions. Sequencing was 
performed using an Illumina HiSeq 2000.

Estimating gDNA contamination in RNA‑seq samples
Genomic DNA contamination were estimated using a 
simple linear regression model built using the gDNA con-
centration as the input and the mapping ratio within the 
intergenic region as the outcome. The two parameters of 
the regression model that described library features after 
certain derivations are discussed below. For convenience, 
we derived the regression model as follows:

Let Mapping_ratioIR represents the mapping ratio 
within the intergenic region, DNAa represents the DNA 

Mapping_ratioIR = � ⋅ c ⋅ pIR ⋅DNAa + � ⋅ c ⋅ pIR ⋅DNAr

+ � ⋅ cDNAIR + �
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concentration of an RNA/DNA mixture, DNAr repre-
sents the residual DNA concentration in total RNA after 
DNase digestion, and cDNAIR represents the concentra-
tion of the cDNA produced by unannotated transcripts 
located within an intergenic region. The coefficient α 
describes the relation between mapping_ratioIR and 
DNA proportion from the intergenic region, c repre-
sents the DNA capture coefficient during library prepara-
tion, and pIR represents the proportion of the intergenic 
region of the complete genome.

The main assumptions employed to construct this 
model were as follows: 1) Mapped reads (million mapped 
reads per million reads, i.e., mapping ratio) of the target 
region are a linear function of the proportion of DNA 
from that region after library preparation. 2) The pro-
portions of DNAs representing intergenic and coding 
regions in the added and residual DNAs are the same 
among all replicates and correspond to their proportions 
in the complete genome. 3) The efficiencies of capturing 
DNA during target RNA capturing steps (enrichment 
of polyadenylated transcripts or depletion of ribosomal 
RNA) are the same for intergenic and coding regions 
among replicates, prepared using polyadenylated mRNA 
enrichment and ribosomal depletion library preparation 
methods, respectively. A brief description of components 
of each step during library preparation is presented in 
Supplementary Figure S6, Additional File 2.

The derivation of the equation started with assumption 
1 for a sequenced sample as follows:

where mapped_readstarget represents the mapped 
reads of the target region, mapping_ratiotarget– repre-
sents the mapping ratio of the target region, and propor-
tiontarget represents the proportion of DNA of the target 
region. For the intergenic region, the proportion of DNA 
comprises gDNA of the intergenic region, captured dur-
ing target RNA capture, and cDNAs of transcripts from 
the intergenic region. Thus, Eq. (2) was derived from (1) 
as follows:

where DNAcaptured_IR represents the proportion of 
DNA in the intergenic region representing the added and 
residual DNAs, and cDNAIR represents the proportion of 
DNA from the cDNA of the intergenic region.

The added and residual DNAs comprise DNAs of the 
intergenic and coding regions. Therefore, we calculated 
the total proportion of intergenic DNA according to 
assumption 2) as follows:

(1)

mapped_readstarget = mapping_ratiotarget

=

(

� ⋅ proportiontarget + �

)

(2)
mapping_ratioIR = α ·

(

DNAcaptured_IR + cDNAIR

)

+ ε

where DNAIR represents the proportion of DNA of 
intergenic region and DNAa and DNAr represent the 
proportions of the added DNA and residual DNAs, 
respectively.

The target RNA is captured during library preparation. 
DNA contamination is enriched during this step. Accord-
ing to assumption 3), the captured DNA of the intergenic 
region during the target enrichment step is represented 
by the equation as follows:

Substituting Eq. (4) into (2) generates the model func-
tion described above:

For Poly (A) Selection and Ribo-Zero:

where footnoted coefficients containing PA and 
RZ correspond to Poly (A) Selection and Ribo-Zero, 
respectively.

For unannotated transcripts, we simply assumed 
that Ribo-Zero retains all Poly (A) Selection-enriched 
unannotated transcripts, because the latter specifically 
enriches polyadenylated transcripts, and Ribo-Zero 
theoretically captures all transcripts. Thus, after reverse 
transcription, the relationship between the proportions 
of cDNA of the intergenic region during Ribo-Zero and 
Poly (A) Selection is as follows:

where cDNAIR_RZ and cDNAIR_PA represent the pro-
portions of cDNA of the intergenic region of Ribo-Zero 
and Poly (A) Selection, respectively, and cDNAIR_RZ_

unique represents proportion of unannotated transcripts 
unlikely captured by Poly (A) Selection.

Poly (A) Selection is less likely to contribute to DNA 
contamination, and it is therefore possible to first esti-
mate cDNAIR_PA and then cDNAIR_RZ_unique. The rela-
tionship between cDNAIR_PA and cDNAIR_RZ_unique is 
defined assuming that the relative abundances of tran-
scripts (from coding and noncoding genes) are similar 
in annotated and unannotated regions. Assuming Poly 

(3)DNAIR = pIR · (DNAa +DNAr)

(4)
DNAcaptured_IR = c ·DNAIR = c · pIR · (DNAa +DNAr)

(5)
Mapping_ratioIR = � ⋅ c ⋅ pIR ⋅DNAa + � ⋅ c ⋅ pIR ⋅DNAr

+ � ⋅ cDNAIR + �

(6)

Mapping_ratioIR_PA = � ⋅ cPA ⋅ pIR ⋅DNAa + � ⋅ cPA ⋅ pIR ⋅DNAr

+ � ⋅ cDNAIR_PA + �

(7)

Mapping_ratioIR_RZ = � ⋅ cRZ ⋅ pIR ⋅DNAa + � ⋅ cRZ ⋅ pIR ⋅DNAr

+ � ⋅ cDNAIR_RZ + �

(8)
cDNAIR_RZ = cDNAIR_PA + cDNAIR_RZ_unique
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(A) Selection enriches for coding genes and Ribo-Zero 
enriches for coding as well as noncoding genes in the 
intergenic region, the ratio cDNAIR_PA to cDNAIR_RZ_

unique is approximately the ratio between coding and non-
coding genes in the annotated region as follows:

where ncoding and nnoncoding represent the numbers of 
annotated coding and noncoding genes, respectively, in a 
gene transfer format (GTF) file. Substituting Eqs. (8) and 
(9) into (7) yields the equation as follows:

By combining the fit determined using linear regression 
of Poly (A) Selection and Ribo-Zero, the residual DNA 
contamination in RNA-seq (DNAr) can be estimated.

After the linear regression model is built, the total 
gDNA contamination of one sequenced sample is esti-
mated by transforming the above linear regression model 
as follows:

where gDNA corresponds to total gDNA 
contamination.

Sequencing data quality control and trimming
FastQC [29] and FastQScreen [30] were used to evaluate 
the quality of sequencing data and to identify potential 
contamination of RNA-seq. Trimmomatic [31] were used 
for trimming and filtering reads. Parameters of tools used 
in this section were provided in Additional File 3.

Quantitation of gene expression and the intergenic region
HISAT2, StringTie, and Ballgown pipeline [32] were used 
to map reads to the human genome and to quantify gene 
expression. The reference genome GRCh38 (version 84) 
and the gene annotation file (GTF format) were down-
loaded from GENCODE (version 22). We used FPKM to 
normalize gene expression levels, and a constant = 0.01 
was added to gene expression levels of all samples before 
further downstream analysis. Genes with expression lev-
els < 0.02 in 30% of samples were excluded for Poly (A) 
Selection and Ribo-Zero. The Student t test was used to 
identify DEGs. A gene was considered a DEG with unad-
justed p < 0.05 and absolute value of log2(fold-change) > 1. 
Correlation tests based on the Pearson correlation in R 

(9)cDNAIR_RZ_unique =
nnoncoding

ncoding
· cDNAIR_PA

(10)

Mapping_ratioIR_RZ = � ⋅ cRZ ⋅ pIR ⋅DNAa + � ⋅ cRZ ⋅ pIR ⋅DNAr

+ � ⋅

(

1 +
nnon−coding

ncoding

)

⋅ cDNAIR_PA + �

(11)

gDNA =
mapping_ratioIR_RZ − α · cDNAIR_RZ

α · cRZ · pIR
+ ε

[33] were used to determine if the expression levels of a 
gene correlated with gDNA concentrations (p < 0.05, two-
sided, Bonferroni adjusted).

The intergenic regions were defined as genomic regions 
not overlapped by annotated genes or newly identified 
annotated transcripts in all libraries of Poly (A) Selection 
and libraries of Ribo-Zero with 0% DNA. New transcripts 
were identified and merged using StringTie using the ref-
erence gene annotation file. BEDTools [34] were used to 
generate the bed file of intergenic regions. SAMtools [35] 
was used to count the reads mapped to intergenic regions 
and total mapped reads. The mapping ratio of intergenic 
regions was then calculated. Parameters of tools used in 
this section were provided in Additional File 3.

KEGG pathway enrichment analysis
DEGs were subjected to KEGG pathway enrichment 
analysis using enrichKEGG() function and default 
parameters of the R package clusterProfiler [36].

Adjusting gene expression according to reads mapped 
within the intergenic region
To adjust gene expression levels, the value of genomic 
DNA should be discarded from the total. Thus, specific 
transcription of one gene is calculated as follows:

where FPKMDNA and FPKMRNA represent the expres-
sion level values of gDNA and RNA, and FPKMtotal 
represents the expression value calculated using quanti-
tation software. Here, the expression values were given 
by Ballgown.

According to the definition of FPKM, the expression 
of a single gene in contaminated DNA is calculated as 
follows:

where mapped_fragmentDNA represents the number 
of mapped fragments generated from DNA contami-
nation, total_readsM represents the number of reads 
mapped to the genome per million, and gene_lenkb rep-
resents 1 gene/kb.

Assuming that reads derived from DNA contamination 
are uniformly distributed throughout the genome, the 
fragments originating from DNA contamination mapped 
to the intergenic region, as well as to a specific gene, are 
therefore identical. Thus, FPKMDNA of one specific gene 
can be estimated by estimating FPKMDNA of the inter-
genic region as follows:

(12)FPKMRNA = FPKMtotal − FPKMDNA

(13)FPKMDNA =
mapped_f ragmentDNA

total_readsM · gene_lenkb
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where FPKMDNA_gen and FPKMDNA_IR represent the 
expression values specific to contamination with DNA 
of a specific gene and of an intergenic region, mapped_
fragmentDNA_IR represents the number of mapped frag-
ments originating from DNA contamination of the 
intergenic region, and intergenic_lenkb is the length of 
the intergenic region per kilobase.

If the newly identified unannotated transcripts are 
excluded from the intergenic region, the mapped frag-
ments of the intergenic region should be identical to the 
mapped fragments originating from DNA contamina-
tion of the intergenic region. Thus, using mapped frag-
ments within the intergenic region, the expression value 
is adjusted by subtracting FPKMDNA_gen from FPKMtotal. 
SAMtools [35] was used to extract fragments mapped to 
the intergenic region according to the HISAT2 mapping 
results.

Statistical analysis
Statistical analysis was performed using R [33]. The func-
tions hclust() and pca() were used to for HCA and PCA. 
Statistical analyses were performed using the functions 
cor.test(), fisher.test(), and t.test(); Fisher’s exact test; 
and the Student t test. The GC content of each gene was 
determined using the biomaRt package [37]. The scripts 
that reproduce all the steps of this study are available on 
GitHub (https://​github.​com/​HaiGe​nBuSh​ang/​Genom​ic_​
DNA_​in_​RNA_​seq).
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