Method | Statistical model | Population structure matrix D | Kinship matrix K |
---|---|---|---|
ANOVA | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{e}_{i}$ | - | - |
K | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{g}_{i}^{\ast}+{e}_{i}$ | - | SPAGeDi |
Q_{1}K | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | STRUCTURE; ΔK criterion | SPAGeDi |
Q_{2}K | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | STRUCTURE; Log likelihood | SPAGeDi |
PK | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | Principal components; explaining simultaneously 25% of the variance | SPAGeDi |
K_{ T } | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{g}_{i}^{\ast}+{e}_{i}$ | - |
${K}_{Tij}=\frac{{S}_{ij}-1}{1-T}+1$; T = 0,0.025, ..., 0.975 |
Q_{1}K_{ T } | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | STRUCTURE; ΔK criterion | T = 0,0.025, ..., 0.975 |
Q_{2}K_{ T } | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | STRUCTURE; Log likelihood | T = 0,0.025, ..., 0.975 |
PK_{ T } | ${M}_{i}=\mu +{\alpha}^{\prime}{X}_{i}+{\displaystyle {\sum}_{u=1}^{z}{D}_{iu}{v}_{u}+}{g}_{i}^{\ast}+{e}_{i}$ | Principal components; explaining simultaneously 25% of the variance | T = 0,0.025, ..., 0.975 |