Skip to main content

Table 2 The correspondence between DB(G A , G B , k) and BP(G A , G B , k) (under the single-stranded representation).

From: What is the difference between the breakpoint graph and the de Bruijn graph?

  DB(GA, GB, k) BP(GA, GB, k)
(k-1)-mer vertex black directed edge (E1)
k-mer directed edge directed edge (E2)
color red/blue/green directed edge blue in G A , red in G B , green in both G A and G B red/blue/green directed edge (E2) blue in G A , red in G B , green in both G A and G B
glue vertex E 1
synteny block as a path vertex-green edge-. . .-vertex E1 -green E2-. . .-E1
breakpoint region as a path red edge-vertex. . .-red edge
blue edge-vertex-. . .-blue edge
red E2 -E1-. . .-red E2
blue E2 -E1-. . .-blue E2
condensing paths into edges red edge-vertex-red edge → red edge
blue edge-vertex-blue edge → blue edge
green edge-vertex-green edge → green edge
red E2 -E1-red E2 → red E2 blue E2-E1-blue E2 → blue E2
green E2-E1-green E2 → green E2
after condensation CDB(G A , G B , k) CBP(G A , G B , k)
synteny block in condensed graph vertex-green edge-vertex E1-green E2-E1
breakpoint region in condensed graph red edge
blue edge
red E2
blue E2
  1. We refer to black directed edges in the de Bruijn graph as E1-edges and to colored directed edges as E2-edges