Skip to main content
Fig. 5 | BMC Genomics

Fig. 5

From: Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA

Fig. 5

APOBEC1 is the only mouse APOBEC cytidine deaminase capable of mutating nuclear and 5-methylcytidine containing DNA. a Western blot analysis of V5-tagged mouse APOBEC cytidine deaminases in quail QT6 cells. β-actin probing was used as loading control. b Confocal microscopy analysis of V5-tagged mouse APOBEC cytidine deaminases in QT6 cells, 24 h post transfection. Nuclei are stained with DAPI. c Graphical representation of nuclear DNA editing by mouse APOBEC cytidine deaminases. The last retrieved bands by CMYC specific 3DPCR amplification are represented on the gradient. d Double strand breaks formation upon mouse APOBEC cytidine deaminases transfection in QT6 cells by flow cytometry analysis of γH2AX staining in V5 transfected cells 48 h post-transfection. Human APOBEC3A (hA3A) was used as positive control. Error bars represent the standard deviations of three independent transfections. Differences compared to human APOBEC3A catalytic mutant hA3A C106S were calculated using student t test (** P < 0.01). e Annexin V staining of apoptosis upon mouse APOBEC cytidine deaminases transfection in HeLa cells by flow cytometry analysis in V5 transfected cells 36 h post-transfection. Differences compared to human APOBEC3A catalytic mutant hA3A C106S were calculated using student t test (** P < 0.01). f Graphical representation of HIV-1 V1 V2 specific 3D-PCR amplification after QT6 transfections with APOBEC cytidine deaminases plasmids along with a cytidine (dC) or 5-methylcytidine (5Me-dC) containing HIV-1 env DNA. g Dinucleotide analysis of mouse A1 deamination context performed on HIV-1 V1 V2 sequences obtained at 81.2 °C from DNA containing either cytidine (dC) or 5-methylcytidine (5Me-dC). Dinucleotide context expected values, based on the dinucleotide composition of DNA sequences are represented by white histograms. * Significant deviation from expected values (χ2-test, P < 0.05)

Back to article page