Skip to main content

Table 3 Performance of different machine-learning methods for predicting AMR on Africa data

From: Generalizability of machine learning in predicting antimicrobial resistance in E. coli: a multi-country case study in Africa

Antibiotic

Model

Accuracy

Precision

Recall

f1_score

auc_roc

CIP

Logistic Regression

0.55

0.59

0.16

0.25

0.48

Random Forest

0.50

0.48

0.68

0.56

0.53

SVM

0.50

0.31

0.05

0.08

0.38

Gradient Boosting

0.52

0.49

0.32

0.39

0.49

XGBoost

0.57

0.67

0.17

0.27

0.56

LightGBM

0.55

0.62

0.12

0.20

0.51

CatBoost

0.56

0.61

0.17

0.27

0.58

Feed-Forward NN (Keras)

0.56

0.71

0.12

0.21

0.49

AMP

Logistic Regression

0.94

0.95

0.99

0.97

0.60

Random Forest

0.38

0.93

0.38

0.54

0.34

SVM

0.86

0.94

0.91

0.93

0.57

Gradient Boosting

0.59

0.96

0.59

0.73

0.68

XGBoost

0.82

0.96

0.84

0.90

0.62

LightGBM

0.34

0.89

0.35

0.50

0.38

CatBoost

0.39

0.98

0.36

0.53

0.64

Feed-Forward NN (Keras)

0.66

0.95

0.67

0.79

0.62

CTX

Logistic Regression

0.39

0.96

0.29

0.45

0.70

Random Forest

0.20

0.88

0.08

0.14

0.61

SVM

0.25

1.00

0.12

0.21

0.68

Gradient Boosting

0.22

1.00

0.09

0.16

0.57

XGBoost

0.44

0.94

0.36

0.52

0.65

LightGBM

0.45

0.95

0.38

0.54

0.63

CatBoost

0.24

0.86

0.13

0.23

0.55

Feed-Forward NN (Keras)

0.15

0.00

0.00

0.00

0.63