Bonin A, Taberlet P, Miaud C, Pompanon F: Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol. 2006, 23: 773-783. 10.1093/molbev/msj087.
Article
CAS
PubMed
Google Scholar
Meyer CL, Vitalis R, Saumitou-Laprade P, Castric V: Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Mol Ecol. 2009, 18: 2050-2062. 10.1111/j.1365-294X.2009.04159.x.
Article
PubMed
Google Scholar
Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ: Sympatric speciation in palms on an oceanic island. Nature. 2006, 441: 210-213. 10.1038/nature04566.
Article
CAS
PubMed
Google Scholar
Nosil P, Egan SP, Funk DJ: Heterogeneous genomic differentiation between walking-stick ecotypes: "Isolation by adaptation" and multiple roles for divergent selection. Evolution. 2008, 62: 316-336. 10.1111/j.1558-5646.2007.00299.x.
Article
PubMed
Google Scholar
Emelianov I, Marec F, Mallet J: Genomic evidence for divergence with gene flow in host races of the larch budmoth. P Roy Soc B-Biol Sci. 2004, 271: 97-105. 10.1098/rspb.2003.2574.
Article
Google Scholar
Campbell D, Bernatchez L: Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol. 2004, 21: 945-956. 10.1093/molbev/msh101.
Article
CAS
PubMed
Google Scholar
Galindo J, Morán P, Rolán-Alvarez E: Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis . Molecular Ecology. 2009, 18: 919-930. 10.1111/j.1365-294X.2008.04076.x.
Article
CAS
PubMed
Google Scholar
Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J: Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica . Mol Ecol. 2006, 15: 3469-3480. 10.1111/j.1365-294X.2006.03027.x.
Article
CAS
PubMed
Google Scholar
Mealor BA, Hild AL: Potential selection in native grass populations by exotic invasion. Mol Ecol. 2006, 15: 2291-2300. 10.1111/j.1365-294X.2006.02931.x.
Article
CAS
PubMed
Google Scholar
Bonin A: Population genomics: a new generation of genome scans to bridge the gap with functional genomics. Mol Ecol. 2008, 17: 3583-3584. 10.1111/j.1365-294X.2008.03854.x.
Article
PubMed
Google Scholar
Stinchcombe JR, Hoekstra HE: Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2008, 100: 158-170. 10.1038/sj.hdy.6800937.
Article
CAS
PubMed
Google Scholar
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P: The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003, 4: 981-994. 10.1038/nrg1226.
Article
CAS
PubMed
Google Scholar
Wood HM, Grahame JW, Humphray S, Rogers J, Butlin RK: Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol. 2008, 17: 3123-3135. 10.1111/j.1365-294X.2008.03755.x.
Article
CAS
PubMed
Google Scholar
Lacey LA: Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc. 2007, 23: 133-163. 10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62: 775-806.
PubMed Central
CAS
PubMed
Google Scholar
Bravo A, Gill SS, Soberón M: Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007, 49: 423-435. 10.1016/j.toxicon.2006.11.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pérez C, Fernandez LE, Sun JG, Folch JL, Gill SS, Soberón M, Bravo A: Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci USA. 2005, 102: 18303-18308. 10.1073/pnas.0505494102.
Article
PubMed Central
PubMed
Google Scholar
Poncet S, Delecluse A, Klier A, Rapoport G: Evaluation of synergistic interactions among the CryIVa, CryIVb, and CryIVd toxic components of Bacillus thuringiensis subsp. israelensis crystals. J Invertebr Pathol. 1995, 66: 131-135. 10.1006/jipa.1995.1075.
Article
CAS
Google Scholar
Georghiou GP, Wirth MC: Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol. 1997, 63: 1095-1101.
PubMed Central
CAS
PubMed
Google Scholar
Griffitts JS, Aroian RV: Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays. 2005, 27: 614-624. 10.1002/bies.20239.
Article
PubMed
Google Scholar
Boyer S, Tilquin M, Ravanel P: Differential sensitivity to Bacillus thuringiensis var. israelensis and temephos in field mosquito populations of Ochlerotatus cataphylla (Diptera: Culicidae): toward resistance?. Environ Toxicol Chem. 2007, 26: 157-162. 10.1897/06-205R.1.
Article
CAS
PubMed
Google Scholar
Paul A, Harrington LC, Zhang L, Scott JG: Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc. 2005, 21: 305-309. 10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Saleh MS, El-Meniawi FA, Kelada NL, Zahran HM: Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis. J Appl Entomol. 2003, 127: 29-32. 10.1046/j.1439-0418.2003.00703.x.
Article
Google Scholar
Casacuberta JM, Santiago N: Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene. 2003, 311: 1-11. 10.1016/S0378-1119(03)00557-2.
Article
CAS
PubMed
Google Scholar
Tu ZJ: Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti . Mol Biol Evol. 2000, 17: 1313-1325.
Article
CAS
PubMed
Google Scholar
Beaumont MA, Nichols RA: Evaluating loci for use in the genetic analysis of population structure. P Roy Soc B-Biol Sci. 1996, 263: 1619-1626. 10.1098/rspb.1996.0237.
Article
Google Scholar
Pigott CR, Ellar DJ: Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev. 2007, 71: 255-281. 10.1128/MMBR.00034-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsui M, Fowler JH, Walling LL: Leucine aminopeptidases: diversity in structure and function. Biol Chem. 2006, 387: 1535-1544. 10.1515/BC.2006.191.
Article
CAS
PubMed
Google Scholar
Shi LM, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, Guo L, Croner LJ, Boysen C, Fang H, et al: The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics. 2008, 9 (Suppl 9): 10-10.1186/1471-2105-9-S9-S10.
Article
Google Scholar
Ferré J, Van Rie J: Biochemistry and genetics of insect resistance to Bacillus thuringiensis . Annu Rev Entomol. 2002, 47: 501-533. 10.1146/annurev.ento.47.091201.145234.
Article
PubMed
Google Scholar
Huffman DL, Abrami L, Sasik R, Corbeil J, Goot van der FG, Aroian RV: Mitogen-activated protein kinase pathways defends against bacterial pore-forming toxins. Proc Natl Acad Sci USA. 2004, 101: 10995-11000. 10.1073/pnas.0404073101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barret P, Brinkman M, Beckert M: A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. Genome. 2006, 49: 1399-1407. 10.1139/G06-109.
Article
CAS
PubMed
Google Scholar
Kikuchi K, Terauchi K, Wada M, Hirano HY: The plant MITE mPing is mobilized in anther culture. Nature. 2003, 421: 167-170. 10.1038/nature01218.
Article
CAS
PubMed
Google Scholar
Benjak A, Boué S, Forneck A, Casacuberta JM: Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol Evol. 2009, 2009: 75-84. 10.1093/gbe/evp009.
Google Scholar
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi ZY, Megy K, Grabherr M, et al: Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007, 316: 1718-1723. 10.1126/science.1138878.
Article
CAS
PubMed
Google Scholar
Przeworski M: The signature of positive selection at randomly chosen loci. Genetics. 2002, 160: 1179-1189.
PubMed Central
PubMed
Google Scholar
Storz JF: Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol. 2005, 14: 671-688. 10.1111/j.1365-294X.2005.02437.x.
Article
CAS
PubMed
Google Scholar
Nielsen R: Molecular signatures of natural selection. Annu Rev Genet. 2005, 39: 197-218. 10.1146/annurev.genet.39.073003.112420.
Article
CAS
PubMed
Google Scholar
Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L: Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2004, 2: 1591-1599. 10.1371/journal.pbio.0020286.
Article
CAS
Google Scholar
Ford MJ: Applications of selective neutrality tests to molecular ecology. Mol Ecol. 2002, 11: 1245-1262. 10.1046/j.1365-294X.2002.01536.x.
Article
CAS
PubMed
Google Scholar
Otto SP: Detecting the form of selection from DNA sequence data. Trends Genet. 2000, 16: 526-529. 10.1016/S0168-9525(00)02141-7.
Article
CAS
PubMed
Google Scholar
Depaulis F, Mousset S, Veuille M: Power of neutrality tests to detect bottlenecks and hitchhiking. J Mol Evol. 2003, 57 (Suppl 1): 190-200. 10.1007/s00239-003-0027-y.
Article
Google Scholar
Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics. 1993, 133: 693-709.
PubMed Central
CAS
PubMed
Google Scholar
Fay JC, Wu CI: Hitchhiking under positive Darwinian selection. Genetics. 2000, 155: 1405-1413.
PubMed Central
CAS
PubMed
Google Scholar
Fay JC, Wu CI: A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol Biol Evol. 1999, 16: 1003-1005.
Article
CAS
PubMed
Google Scholar
Bel Y, Siqueira HAA, Siegfried BD, Ferré J, Escriche B: Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance. Insect Biochem Mol Biol. 2009, 39: 218-223. 10.1016/j.ibmb.2008.11.005.
Article
CAS
PubMed
Google Scholar
Gahan LJ, Gould F, Heckel DG: Identification of a gene associated with Bt resistance in Heliothis virescens . Science. 2001, 293: 857-860. 10.1126/science.1060949.
Article
CAS
PubMed
Google Scholar
Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, et al: Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA. 2003, 100: 5004-5009. 10.1073/pnas.0831036100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jurat-Fuentes JL, Adang MJ: Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem. 2004, 271: 3127-3135. 10.1111/j.1432-1033.2004.04238.x.
Article
CAS
PubMed
Google Scholar
Kumaraswami NS, Maruyama T, Kurabe S, Kishimoto T, Mitsui T, Hori H: Lipids of brush border membrane vesicles (BBMV) from Plutella xylostella resistant and susceptible to Cry1Ac d-endotoxin of Bacillus thuringiensis. Comp Biochem Physiol B-Biochem Mol Biol. 2001, 129: 173-183. 10.1016/S1096-4959(01)00327-X.
Article
CAS
PubMed
Google Scholar
Rokas A, Abbot P: Harnessing genomics for evolutionary insights. Trends Ecol Evol. 2009, 24: 192-200. 10.1016/j.tree.2008.11.004.
Article
PubMed
Google Scholar
van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, Poel van der H, van Oeveren J, Verstegen H, van Eijk MJT: Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE. 2007, 2: e1172-10.1371/journal.pone.0001172.
Article
PubMed Central
PubMed
Google Scholar
Namroud MC, Beaulieu J, Juge N, Laroche J, Bousquet J: Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol. 2008, 17: 3599-3613. 10.1111/j.1365-294X.2008.03840.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tilquin M, Paris M, Reynaud S, Despres L, Ravanel P, Geremia RA, Gury J: Long lasting persistence of Bacillus thuringiensis subsp. israelensis (Bti) in mosquito natural habitats. PLoS ONE. 2008, 3: e3432-10.1371/journal.pone.0003432.
Article
PubMed Central
PubMed
Google Scholar
Bonin A, Paris M, Després L, Tetreau G, David JP, Kilian A: A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection. BMC Genomics. 2008, 9: 459-10.1186/1471-2164-9-459.
Article
PubMed Central
PubMed
Google Scholar
Raymond M, Prato G, Ratsira D: Probability analysis of mortality assays displaying quantal response, version 3.3. 1995, Praxeme, Saint-Georges d'Orques, France
Google Scholar
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A: Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA. 2004, 101: 9915-9920. 10.1073/pnas.0401076101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhivotovsky LA: Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol. 1999, 8: 907-913. 10.1046/j.1365-294x.1999.00620.x.
Article
CAS
PubMed
Google Scholar
Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I: Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol. 2002, 11: 139-151. 10.1046/j.0962-1083.2001.01415.x.
Article
CAS
PubMed
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
de Maagd RA, Bravo A, Crickmore N: How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001, 17: 193-199. 10.1016/S0168-9525(01)02237-5.
Article
CAS
PubMed
Google Scholar
Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH: Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem. 1997, 272: 23473-23476. 10.1074/jbc.272.38.23473.
Article
CAS
PubMed
Google Scholar
Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberón M: A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J. 2006, 394: 77-84. 10.1042/BJ20051517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abdullah MAF, Valaitis AP, Dean DH: Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem. 2006, 7: 16-10.1186/1471-2091-7-16.
Article
PubMed Central
PubMed
Google Scholar
Griffitts JS, Huffman DL, Whitacre JL, Barrows BD, Marroquin LD, Muller R, Brown JR, Hennet T, Esko JD, Aroian RV: Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem. 2003, 278: 45594-45602. 10.1074/jbc.M308142200.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-2. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123: 585-595.
PubMed Central
CAS
PubMed
Google Scholar
Hudson RR: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002, 18: 337-338. 10.1093/bioinformatics/18.2.337.
Article
CAS
PubMed
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: e45-10.1093/nar/29.9.e45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hudson RR: Gene genealogies and the coalescent process. Oxf Surv Evol Biol. 1990, 7: 1-44.
Google Scholar