Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC: The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res. 2006, D332-334. 10.1093/nar/gkj145. 34 Database

Bernal A, Ear U, Kyrpides N: Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res. 2001, 29 (1): 126-127. 10.1093/nar/29.1.126.

Article
CAS
PubMed Central
PubMed
Google Scholar

Muro S, Takemasa I, Oba S, Matoba R, Ueno N, Maruyama C, Yamashita R, Sekimoto M, Yamamoto H, Nakamori S: Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data. Genome Biol. 2003, 4 (3): R21-10.1186/gb-2003-4-3-r21.

Article
PubMed Central
PubMed
Google Scholar

Perou CM, Sorlie T, Eisen MB, Rijn van de M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA: Molecular portraits of human breast tumours. Nature. 2000, 406 (6797): 747-752. 10.1038/35021093.

Article
CAS
PubMed
Google Scholar

Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005, 21 (5): 631-643. 10.1093/bioinformatics/bti033.

Article
CAS
PubMed
Google Scholar

Imai K, Kawai M, Tada M, Nagase T, Ohara O, Koga H: Temporal change in mKIAA gene expression during the early stage of retinoic acid-induced neurite outgrowth. Gene. 2005, 364: 114-122. 10.1016/j.gene.2005.05.037.

Article
CAS
PubMed
Google Scholar

Raab RM: Incorporating genome-scale tools for studying energy homeostasis. Nutr Metab (Lond). 2006, 3: 40-10.1186/1743-7075-3-40.

Article
Google Scholar

Fellenberg K, Busold CH, Witt O, Bauer A, Beckmann B, Hauser NC, Frohme M, Winter S, Dippon J, Hoheisel JD: Systematic interpretation of microarray data using experiment annotations. BMC Genomics. 2006, 7: 319-10.1186/1471-2164-7-319.

Article
PubMed Central
PubMed
Google Scholar

Hoheisel JD: Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006, 7 (3): 200-210. 10.1038/nrg1809.

Article
CAS
PubMed
Google Scholar

DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997, 278 (5338): 680-686. 10.1126/science.278.5338.680.

Article
CAS
PubMed
Google Scholar

Clarke JD, Zhu T: Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J. 2006, 45 (4): 630-650. 10.1111/j.1365-313X.2006.02668.x.

Article
CAS
PubMed
Google Scholar

Zhang W, Rekaya R, Bertrand K: A method for predicting disease subtypes in presence of misclassification among training samples using gene expression: application to human breast cancer. Bioinformatics. 2006, 22 (3): 317-325. 10.1093/bioinformatics/bti738.

Article
CAS
PubMed
Google Scholar

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 403 (6769): 503-511. 10.1038/35000501.

Article
CAS
PubMed
Google Scholar

Pham T, Wells C, Crane D: Analysis of microarray gene expression data. Current Bioinformatics. 2006, 1 (1): 37-53. 10.2174/157489306775330642.

Article
CAS
Google Scholar

Asyali MH, Colak D, Demirkaya O, Inan MS: Gene expression profile classification: A review. Current Bioinformatics. 2006, 1 (1): 55-73. 10.2174/157489306775330615.

Article
CAS
Google Scholar

Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N: Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res. 2004, 64 (19): 6883-6891. 10.1158/0008-5472.CAN-04-0695.

Article
CAS
PubMed Central
PubMed
Google Scholar

Gruzdz A, Ihnatowicz A, Slezak D: Interactive gene clustering - a case study of breast cancer microarray data. Inf Syst Front. 2006, 8: 21-27. 10.1007/s10796-005-6100-x.

Article
Google Scholar

Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H: Normalization strategies for cDNA microarrays. Nucleic Acids Res. 2000, 28 (10): E47-10.1093/nar/28.10.e47.

Article
CAS
PubMed Central
PubMed
Google Scholar

Everitt B: Cluster Analysis. 1974, Heinemann Educ

Google Scholar

Hartigan JA, Wong MA: k-means. Applied Statistics. 1979, 28: 100-115. 10.2307/2346830.

Article
Google Scholar

Kohonen T: Self-organized formation of topologically correct feature maps. Biol Cybern. 1982, 43: 59-69. 10.1007/BF00337288.

Article
Google Scholar

Kohonen T: Self-Organizing Maps. 2001, Springer, 3

Chapter
Google Scholar

Mardia K, Kent J, Bibby J: Multivariate Analysis. 1979, Academic Press

Google Scholar

Wang D, Lv Y, Guo Z, Li X, Li Y, Zhu J, Yang D, Xu J, Wang C, Rao S: Effects of replacing the unreliable cDNA microarray measurements on the disease classification based on gene expression profiles and functional modules. Bioinformatics. 2006, 22 (23): 2883-2889. 10.1093/bioinformatics/btl339.

Article
CAS
PubMed
Google Scholar

Grużdź A, Ihnatowicz A, Ślęzak D: Gene Expression Clustering: Dealing with the Missing Values. Intelligent Information Processing and Web Mining. 2005, 521-

Google Scholar

Fix E, Hodges J: Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine. 1951, Randolph Field, Texas

Google Scholar

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB: Missing value estimation methods for DNA microarrays. Bioinformatics. 2001, 17 (6): 520-525. 10.1093/bioinformatics/17.6.520.

Article
CAS
PubMed
Google Scholar

Kim KY, Kim BJ, Yi GS: Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics. 2004, 5: 160-10.1186/1471-2105-5-160.

Article
PubMed Central
PubMed
Google Scholar

Bo TH, Dysvik B, Jonassen I: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004, 32 (3): e34-10.1093/nar/gnh026.

Article
PubMed Central
PubMed
Google Scholar

Oba S, Sato MA, Takemasa I, Monden M, Matsubara K, Ishii S: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics. 2003, 19 (16): 2088-2096. 10.1093/bioinformatics/btg287.

Article
CAS
PubMed
Google Scholar

Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I: Continuous representations of time-series gene expression data. J Comput Biol. 2003, 10 (3-4): 341-356. 10.1089/10665270360688057.

Article
CAS
PubMed
Google Scholar

Schliep A, Schonhuth A, Steinhoff C: Using hidden Markov models to analyze gene expression time course data. Bioinformatics. 2003, 19 (Suppl 1): i255-263. 10.1093/bioinformatics/btg1036.

Article
PubMed
Google Scholar

Tuikkala J, Elo L, Nevalainen OS, Aittokallio T: Improving missing value estimation in microarray data with gene ontology. Bioinformatics. 2006, 22 (5): 566-572. 10.1093/bioinformatics/btk019.

Article
CAS
PubMed
Google Scholar

Kim DW, Lee KY, Lee KH, Lee D: Towards clustering of incomplete microarray data without the use of imputation. Bioinformatics. 2007, 23 (1): 107-113. 10.1093/bioinformatics/btl555.

Article
PubMed
Google Scholar

Hu J, Li H, Waterman MS, Zhou XJ: Integrative missing value estimation for microarray data. BMC Bioinformatics. 2006, 7: 449-10.1186/1471-2105-7-449.

Article
PubMed Central
PubMed
Google Scholar

Jornsten R, Ouyang M, Wang HY: A meta-data based method for DNA microarray imputation. BMC Bioinformatics. 2007, 8: 109-10.1186/1471-2105-8-109.

Article
PubMed Central
PubMed
Google Scholar

Gan X, Liew AW, Yan H: Microarray missing data imputation based on a set theoretic framework and biological knowledge. Nucleic Acids Res. 2006, 34 (5): 1608-1619. 10.1093/nar/gkl047.

Article
CAS
PubMed Central
PubMed
Google Scholar

Hua D, Lai Y: An ensemble approach to microarray data-based gene prioritization after missing value imputation. Bioinformatics. 2007, 23 (6): 747-754. 10.1093/bioinformatics/btm010.

Article
CAS
PubMed
Google Scholar

Wang X, Li A, Jiang Z, Feng H: Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme. BMC Bioinformatics. 2006, 7: 32-10.1186/1471-2105-7-32.

Article
PubMed Central
PubMed
Google Scholar

Feten G, Almoy T, Aastveit AH: Prediction of missing values in microarray and use of mixed models to evaluate the predictors. Stat Appl Genet Mol Biol. 2005, 4: Article10-

PubMed
Google Scholar

Nguyen DV, Wang N, Carroll RJ: Evaluation of Missing Value Estimation for Microarray Data. Journal of Data Science. 2004, 2: 347-370.

Google Scholar

Ouyang M, Welsh WJ, Georgopoulos P: Gaussian mixture clustering and imputation of microarray data. Bioinformatics. 2004, 20 (6): 917-923. 10.1093/bioinformatics/bth007.

Article
CAS
PubMed
Google Scholar

Jornsten R, Wang HY, Welsh WJ, Ouyang M: DNA microarray data imputation and significance analysis of differential expression. Bioinformatics. 2005, 21 (22): 4155-4161. 10.1093/bioinformatics/bti638.

Article
PubMed
Google Scholar

Sehgal MS, Gondal I, Dooley LS: Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data. Bioinformatics. 2005, 21 (10): 2417-2423. 10.1093/bioinformatics/bti345.

Article
CAS
PubMed
Google Scholar

Scheel I, Aldrin M, Glad IK, Sorum R, Lyng H, Frigessi A: The influence of missing value imputation on detection of differentially expressed genes from microarray data. Bioinformatics. 2005, 21 (23): 4272-4279. 10.1093/bioinformatics/bti708.

Article
CAS
PubMed
Google Scholar

Tsiporkova E, Boeva V: Two-pass imputation algorithm for missing value estimation in gene expression time series. J Bioinform Comput Biol. 2007, 5 (5): 1005-1022. 10.1142/S0219720007003053.

Article
CAS
PubMed
Google Scholar

Bras LP, Menezes JC: Dealing with gene expression missing data. Syst Biol (Stevenage). 2006, 153 (3): 105-119.

Article
CAS
Google Scholar

Bras LP, Menezes JC: Improving cluster-based missing value estimation of DNA microarray data. Biomol Eng. 2007, 24 (2): 273-282. 10.1016/j.bioeng.2007.04.003.

Article
CAS
PubMed
Google Scholar

de Brevern AG, Hazout S, Malpertuy A: Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics. 2004, 5: 114-10.1186/1471-2105-5-114.

Article
PubMed Central
PubMed
Google Scholar

Wong DS, Wong FK, Wood GR: A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics. 2007, 23 (8): 998-1005. 10.1093/bioinformatics/btm053.

Article
CAS
PubMed
Google Scholar

Ogawa N, DeRisi J, Brown PO: New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell. 2000, 11 (12): 4309-4321.

Article
CAS
PubMed Central
PubMed
Google Scholar

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000, 11 (12): 4241-4257.

Article
CAS
PubMed Central
PubMed
Google Scholar

Bohen SP, Troyanskaya OG, Alter O, Warnke R, Botstein D, Brown PO, Levy R: Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc Natl Acad Sci USA. 2003, 100 (4): 1926-1930. 10.1073/pnas.0437875100.

Article
CAS
PubMed Central
PubMed
Google Scholar

Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C: Early expression of yeast genes affected by chemical stress. Mol Cell Biol. 2005, 25 (5): 1860-1868. 10.1128/MCB.25.5.1860-1868.2005.

Article
CAS
PubMed Central
PubMed
Google Scholar

Brock GN, Shaffer JR, Blakesley RE, Lotz MJ, Tseng GC: Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics. 2008, 9: 12-10.1186/1471-2105-9-12.

Article
PubMed Central
PubMed
Google Scholar

Tuikkala J, Elo LL, Nevalainen OS, Aittokallio T: Missing value imputation improves clustering and interpretation of gene expression microarray data. BMC Bioinformatics. 2008, 9: 202-10.1186/1471-2105-9-202.

Article
PubMed Central
PubMed
Google Scholar

Kim H, Golub GH, Park H: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics. 2005, 21 (2): 187-198. 10.1093/bioinformatics/bth499.

Article
CAS
PubMed
Google Scholar

Cox B, Kislinger T, Emili A: Integrating gene and protein expression data: pattern analysis and profile mining. Methods. 2005, 35 (3): 303-314. 10.1016/j.ymeth.2004.08.021.

Article
CAS
PubMed
Google Scholar

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA. 1999, 96 (6): 2907-2912. 10.1073/pnas.96.6.2907.

Article
CAS
PubMed Central
PubMed
Google Scholar

Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.

Article
CAS
PubMed Central
PubMed
Google Scholar

Herrero J, Valencia A, Dopazo J: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001, 17 (2): 126-136. 10.1093/bioinformatics/17.2.126.

Article
CAS
PubMed
Google Scholar

Dopazo J, Carazo JM: Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. J Mol Evol. 1997, 44 (2): 226-233. 10.1007/PL00006139.

Article
CAS
PubMed
Google Scholar

Yin L, Huang CH, Ni J: Clustering of gene expression data: performance and similarity analysis. BMC Bioinformatics. 2006, 7 (Suppl 4): S19-10.1186/1471-2105-7-S4-S19.

Article
PubMed Central
PubMed
Google Scholar

Fu X, Teng L, Li Y, Chen W, Mao Y, Shen IF, Xie Y: Finding dominant sets in microarray data. Front Biosci. 2005, 10: 3068-3077. 10.2741/1763.

Article
CAS
PubMed
Google Scholar

Tseng GC, Wong WH: Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics. 2005, 61 (1): 10-16. 10.1111/j.0006-341X.2005.031032.x.

Article
PubMed
Google Scholar

Ben-Dor A, Shamir R, Yakhini Z: Clustering gene expression patterns. J Comput Biol. 1999, 6 (3-4): 281-297. 10.1089/106652799318274.

Article
CAS
PubMed
Google Scholar

Qu Y, Xu S: Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics. 2004, 20 (12): 1905-1913. 10.1093/bioinformatics/bth177.

Article
CAS
PubMed
Google Scholar

Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL: Model-based clustering and data transformations for gene expression data. Bioinformatics. 2001, 17 (10): 977-987. 10.1093/bioinformatics/17.10.977.

Article
CAS
PubMed
Google Scholar

Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene expression data. Bioinformatics. 2001, 17 (4): 309-318. 10.1093/bioinformatics/17.4.309.

Article
CAS
PubMed
Google Scholar

Kim J, Kim H: Clustering of Change Patterns Using Fourier Coefficients. Bioinformatics. 2007

Google Scholar

Huttenhower C, Flamholz AI, Landis JN, Sahi S, Myers CL, Olszewski KL, Hibbs MA, Siemers NO, Troyanskaya OG, Coller HA: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. BMC Bioinformatics. 2007, 8: 250-10.1186/1471-2105-8-250.

Article
PubMed Central
PubMed
Google Scholar

Fu L, Medico E: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics. 2007, 8: 3-10.1186/1471-2105-8-3.

Article
PubMed Central
PubMed
Google Scholar

Lelandais G, Vincens P, Badel-Chagnon A, Vialette S, Jacq C, Hazout S: Comparing gene expression networks in a multi-dimensional space to extract similarities and differences between organisms. Bioinformatics. 2006, 22 (11): 1359-1366. 10.1093/bioinformatics/btl087.

Article
CAS
PubMed
Google Scholar

Datta S, Datta S: Evaluation of clustering algorithms for gene expression data. BMC Bioinformatics. 2006, 7 (Suppl 4): S17-10.1186/1471-2105-7-S4-S17.

Article
PubMed Central
PubMed
Google Scholar

Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006, 7 (1): 55-65. 10.1038/nrg1749.

Article
CAS
PubMed
Google Scholar

Handl J, Knowles J, Kell DB: Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005, 21 (15): 3201-3212. 10.1093/bioinformatics/bti517.

Article
CAS
PubMed
Google Scholar

Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ: Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat Genet. 2002, 31 (3): 255-265. 10.1038/ng906.

Article
CAS
PubMed
Google Scholar

Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics. 2006, 22 (19): 2405-2412. 10.1093/bioinformatics/btl406.

Article
CAS
PubMed
Google Scholar

Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kellam P: Consensus clustering and functional interpretation of gene-expression data. Genome Biol. 2004, 5 (11): R94-10.1186/gb-2004-5-11-r94.

Article
PubMed Central
PubMed
Google Scholar

Zhang X, Song X, Wang H, Zhang H: Sequential local least squares imputation estimating missing value of microarray data. Comput Biol Med. 2008, 38: 1112-1120. 10.1016/j.compbiomed.2008.08.006.

Article
PubMed
Google Scholar

Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Hernandez-Boussard T, Jin H, Kaloper M, Matese JC: The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 2003, 31 (1): 94-96. 10.1093/nar/gkg078.

Article
CAS
PubMed Central
PubMed
Google Scholar

Ihaka R, Gentleman R: R: a language for data analysis and graphics. J Comput Graph Stat. 1996, 5: 299-314. 10.2307/1390807.

Google Scholar

Quackenbush J: Computational analysis of microarray data. Nat Rev Genet. 2001, 2 (6): 418-427. 10.1038/35076576.

Article
CAS
PubMed
Google Scholar

Meunier B, Dumas E, Piec I, Bechet D, Hebraud M, Hocquette JF: Assessment of hierarchical clustering methodologies for proteomic data mining. J Proteome Res. 2007, 6 (1): 358-366. 10.1021/pr060343h.

Article
CAS
PubMed
Google Scholar