Kuhn-Nentwig L: Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 2003, 60: 2651-2668. 10.1007/s00018-003-3106-8.
Article
CAS
PubMed
Google Scholar
Hoffman DR: Hymenoptera venom allergens. Clin Rev Allergy Immunol. 2006, 30: 109-128. 10.1385/CRIAI:30:2:109.
Article
CAS
PubMed
Google Scholar
Wiese MD, Chataway TK, Davies NW, Milne RW, Brown SGA, Gai W-P, Heddle RJ: Proteomic analysis of Myrmecia pilosula (jack jumper) ant venom. Toxicon. 2006, 47: 208-217. 10.1016/j.toxicon.2005.10.018.
Article
CAS
PubMed
Google Scholar
Kolarich D, Loos A, Léonard R, Mach L, Marzban G, Hemmer W, Altmann F: A proteomic study of the major allergens from yellow jacket venoms. Proteomics. 2007, 7: 1615-1623. 10.1002/pmic.200600800.
Article
CAS
PubMed
Google Scholar
Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J, Jacobs FJ: The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta. 2005, 1752: 1-5.
Article
CAS
PubMed
Google Scholar
Padavattan S, Schmidt M, Hoffman DR, Marković-Housley Z: Crystal structure of the major allergen from fire ant venom, Sol i 3. J Mol Biol. 2008, 383: 178-185. 10.1016/j.jmb.2008.08.023.
Article
CAS
PubMed
Google Scholar
de Graaf DC, Aerts M, Danneels E, Devreese B: Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteomics. 2009, 72: 145-154. 10.1016/j.jprot.2009.01.017.
Article
CAS
PubMed
Google Scholar
Pennacchio F, Strand MR: Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol. 2006, 51: 233-258. 10.1146/annurev.ento.51.110104.151029.
Article
CAS
PubMed
Google Scholar
Whitfield JB: Phylogenetic insights into the evolution of parasitism in Hymenoptera. Adv Parasitol. 2003, 54: 69-100. full_text.
Article
PubMed
Google Scholar
Doury G, Bigot Y, Periquet G: Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J Insect Physiol. 1997, 43: 69-81. 10.1016/S0022-1910(96)00053-4.
Article
CAS
PubMed
Google Scholar
Nakamatsu Y, Tanaka T: Venom of ectoparasitoid, Euplectrus sp near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separata (Lepidoptera: Noctuidae) host as a food resource. J Insect Physiol. 2003, 49: 149-159. 10.1016/S0022-1910(02)00261-5.
Article
CAS
PubMed
Google Scholar
Abt M, Rivers DB: Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Invertebr Pathol. 2007, 94: 108-118. 10.1016/j.jip.2006.09.004.
Article
CAS
PubMed
Google Scholar
Beckage NE, Gelman DB: Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol. 2004, 49: 299-330. 10.1146/annurev.ento.49.061802.123324.
Article
CAS
PubMed
Google Scholar
Asgari S: Venom proteins from polydnavirus-producing endoparasitoids: their role in host-parasite interactions. Arch Insect Biochem Physiol. 2006, 61: 146-156. 10.1002/arch.20109.
Article
CAS
PubMed
Google Scholar
Asgari S: Endoparasitoid venom proteins as modulators of host immunity and development. Recent Advances in the Biochemistry, Toxicity, and Mode of Action of Parasitic Wasp Venoms. Edited by: Rivers D, Yoder J. 2007, Kerala: Research Signpost, 57-73.
Google Scholar
Poirié M, Carton Y, Dubuffet A: Virulence strategies in parasitoid Hymenoptera as an example of adaptive diversity. C R Biol. 2009, 332: 311-320.
Article
PubMed
Google Scholar
Moreau SJM, Huguet E, Drezen JM: Polydnaviruses as tools to deliver wasp virulence factors to impair lepidopteran host immunity. Insect Infection and Immunity: Evolution, Ecology and Mechanisms. Edited by: Rolff J, Reynolds SE. 2009, Oxford: Oxford University Press, 137-158. full_text.
Chapter
Google Scholar
Soller M, Lanzrein B: Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J Insect Physiol. 1996, 42: 471-481. 10.1016/0022-1910(95)00132-8.
Article
CAS
Google Scholar
Zhang G, Schmidt O, Asgari S: A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J Biol Chem. 2004, 279: 41580-41585. 10.1074/jbc.M406865200.
Article
CAS
PubMed
Google Scholar
Asgari S, Zareie R, Zhang G, Schmidt O: Isolation and characterization of a novel venom protein from an endoparasitoid, Cotesia rubecula (Hym: Braconidae). Arch Insect Biochem Physiol. 2003, 53: 92-100. 10.1002/arch.10088.
Article
CAS
PubMed
Google Scholar
Asgari S, Zhang G, Zareie R, Schmidt O: A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol. 2003, 33: 1017-1024. 10.1016/S0965-1748(03)00116-4.
Article
CAS
PubMed
Google Scholar
Colinet D, Dubuffet A, Cazes D, Moreau S, Drezen JM, Poirié M: A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev Comp Immunol. 2009, 33: 681-689. 10.1016/j.dci.2008.11.013.
Article
CAS
PubMed
Google Scholar
Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, Drezen J-M, Poirie M: A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem Mol Biol. 2005, 35: 93-103. 10.1016/j.ibmb.2004.10.004.
Article
CAS
PubMed
Google Scholar
Zhang GM, Schmidt O, Asgari S: A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev Comp Immunol. 2006, 30: 756-764. 10.1016/j.dci.2005.11.001.
Article
CAS
PubMed
Google Scholar
Richards EH, Dani MP: Biochemical isolation of an insect haemocyte anti-aggregation protein from the venom of the endoparasitic wasp, Pimpla hypochondriaca, and identification of its gene. J Insect Physiol. 2008, 54: 1041-1049. 10.1016/j.jinsphys.2008.04.003.
Article
CAS
PubMed
Google Scholar
Colinet D, Schmitz A, Depoix D, Crochard D, Poirié M: Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 2007, 3: e203-10.1371/journal.ppat.0030203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau SJM, Guillot S: Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem Molec Biol. 2005, 35: 1209-1223. 10.1016/j.ibmb.2005.07.003.
Article
CAS
Google Scholar
de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, Devreese B: Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol. 2010, 19 (Suppl. 1): 11-26. 10.1111/j.1365-2583.2009.00914.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J-Y, Fang Q, Wang L, Hu C, Ye G-Y: Proteomic analysis of the venom from the endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Arch Insect Biochem Physiol. 2010, 75: 28-44. 10.1002/arch.20380.
Article
CAS
PubMed
Google Scholar
Parkinson N, Smith I, Weaver R, Edwards JP: A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol. 2001, 31: 57-63. 10.1016/S0965-1748(00)00105-3.
Article
CAS
PubMed
Google Scholar
Parkinson NM, Conyers C, Keen JN, MacNicoll AD, Weaver ISR: cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp Biochem Physiol C. 2003, 134: 513-520.
Google Scholar
Parkinson NM, Conyers C, Keen J, MacNicoll A, Smith I, Audsley N, Weaver RJ: Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol. 2004, 34: 565-571. 10.1016/j.ibmb.2004.03.003.
Article
CAS
PubMed
Google Scholar
Crawford AM, Brauning R, Smolenski G, Ferguson C, Barton D, Wheeler TT, McCulloch A: The constituents of Microctonus sp. parasitoid venoms. Insect Mol Biol. 2008, 17: 313-324. 10.1111/j.1365-2583.2008.00802.x.
Article
CAS
PubMed
Google Scholar
Stettler P, Trenczek T, Wyler T, Pfister-Wilhelm R, Lanzrein B: Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J Insect Physiol. 1998, 44: 817-831. 10.1016/S0022-1910(98)00014-6.
Article
CAS
PubMed
Google Scholar
Kaeslin M, Pfister-Wilhelm R, Lanzrein B: Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development. J Insect Physiol. 2005, 51: 1330-1339. 10.1016/j.jinsphys.2005.08.003.
Article
CAS
PubMed
Google Scholar
Grossniklaus-Bürgin C, Pfister-Wilhelm R, Meyer V, Treiblmayr K, Lanzrein B: Physiological and endocrine changes associated with polydnavirus/venom in the parasitoid host system Chelonus inanitus-Spodoptera littoralis. J Insect Physiol. 1998, 44: 305-321.
Article
PubMed
Google Scholar
Pfister-Wilhelm R, Lanzrein B: Stage dependent influences of polydnaviruses and the parasitoid larva on host ecdysteroids. J Insect Physiol. 2009, 55: 707-715. 10.1016/j.jinsphys.2009.04.018.
Article
CAS
PubMed
Google Scholar
Kaeslin M, Reinhard M, Bühler D, Roth T, Pfister-Wilhelm R, Lanzrein B: Venom of the egg-larval parasitoid Chelonus inanitus is a complex mixture and has multiple biological effects. J Insect Physiol. 2010, 56: 686-694. 10.1016/j.jinsphys.2009.12.005.
Article
CAS
PubMed
Google Scholar
Jones D, Sawickill G, Wozniak M: Sequence, structure, and expression of a wasp venom protein with a negatively charged signal peptide and a novel repeating internal structure. J Biol Chem. 1992, 267: 14871-14878.
CAS
PubMed
Google Scholar
Krishnan A, Nair PN, Jones D: Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J Biol Chem. 1994, 269: 20971-20976.
CAS
PubMed
Google Scholar
Wagstaff SC, Harrison RA: Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel 91 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. Gene. 2006, 377: 21-32. 10.1016/j.gene.2006.03.008.
Article
CAS
PubMed
Google Scholar
Baek JH, Woo TH, Kim CB, Park JH, Kim H, Lee S, Lee SH: Differential gene expression profiles in the venom gland/sac of Orancistrocerus drewseni (Hymenoptera: Eumidae). Archives Insect Biochem Physiol. 2009, 71: 205-222. 10.1002/arch.20316.
Article
CAS
Google Scholar
Leluk J, Schmidt J, Jones D: Comparative studies on the protein composition of Hymenopteran venom reservoirs. Toxicon. 1989, 27: 105-114. 10.1016/0041-0101(89)90410-8.
Article
CAS
PubMed
Google Scholar
Taylor T, Jones D: Isolation and characterization of the 32.5 kDa protein from the venom of an endoparasitic wasp. Biochim Biophys Acta. 1990, 1035: 37-43.
Article
CAS
PubMed
Google Scholar
Kramer KJ, Muthukrishnan S: Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol. 1997, 27: 887-900. 10.1016/S0965-1748(97)00078-7.
Article
CAS
PubMed
Google Scholar
de la Vega H, Specht CA, Liu Y, Robbins PW: Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol Biol. 1998, 7: 233-239. 10.1111/j.1365-2583.1998.00065.x.
Article
CAS
PubMed
Google Scholar
Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S: Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol. 2008, 38: 452-466. 10.1016/j.ibmb.2007.06.010.
Article
CAS
PubMed
Google Scholar
Henrissat B: Classification of chitinases modules. EXS. 1999, 87: 137-156.
CAS
PubMed
Google Scholar
Zhang H, Huang X, Fukamizo T, Muthukrishnan S, Kramer KJ: Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase. Insect Biochem Mol Biol. 2002, 32: 1477-1488. 10.1016/S0965-1748(02)00068-1.
Article
CAS
PubMed
Google Scholar
Wang X, Ding X, Gopalakrishnan B, Morgan TD, Johnson L, White FF, Muthukrishnan S, Kramer KJ: Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem Mol Biol. 1996, 26: 1055-1064. 10.1016/S0965-1748(96)00056-2.
Article
CAS
Google Scholar
Girard C, Jouanin L: Molecular cloning of a gut-specific chitinase cDNA from the beetle Phaedon cochleariae. Insect Biochem Mol Biol. 1999, 29: 549-556. 10.1016/S0965-1748(99)00029-6.
Article
CAS
PubMed
Google Scholar
Han JH, Lee KS, Li J, Kim I, Je YH, Kim DH, Sohn HD, Jin BR: Cloning and expression of a fat body-specific chitinase cDNA from the spider, Araneus ventricosus. Comp Biochem Physiol B Biochem Mol Biol. 2005, 140: 427-435. 10.1016/j.cbpc.2004.11.009.
Article
CAS
PubMed
Google Scholar
Cônsoli FL, Lewis D, Keeley L, Vinson SB: Characterization of a cDNA encoding a putative chitinase from teratocytes of the endoparasitoid Toxoneuron nigriceps. Entomol Exp Appl. 2007, 122: 271-278.
Article
CAS
Google Scholar
de F Fernandes-Pedrosa, de LM Junqueira-de-Azevedo, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV: Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics. 2008, 9: 279-10.1186/1471-2164-9-279.
Article
CAS
Google Scholar
Chen J, Zhao L, Jiang L, Meng E, Zhang Y, Xiong X, Liang S: Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon. 2008, 52: 794-806. 10.1016/j.toxicon.2008.08.003.
Article
CAS
PubMed
Google Scholar
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, Rodriguez de la Vega RC: The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009, 10: 483-511. 10.1146/annurev.genom.9.081307.164356.
Article
CAS
PubMed
Google Scholar
Watanabe T, Uchida M, Kobori K, Tanaka H: Site-directed mutagenesis of the Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulans WL-12. Biosci Biotechnol Biochem. 1994, 58: 2283-2285. 10.1271/bbb.58.2283.
Article
CAS
PubMed
Google Scholar
Lu Y, Zen KC, Muthukrishnan S, Kramer KJ: Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol. 2002, 32: 1369-1382. 10.1016/S0965-1748(02)00057-7.
Article
CAS
PubMed
Google Scholar
Varela PF, Llera AS, Mariuzza RA, Tormo J: Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster. J Biol Chem. 2002, 277: 13229-13236. 10.1074/jbc.M110502200.
Article
CAS
PubMed
Google Scholar
Kanost MR, Zepp MK, Ladendorff NE, Andersson LA: Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph of Manduca sexta larvae. Arch Insect Biochem Physiol. 1994, 27: 123-136. 10.1002/arch.940270205.
Article
CAS
PubMed
Google Scholar
Calvo E, Pham VM, Marinotti O, Andersen JF, Ribeiro JM: The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics. 2009, 10: 57-10.1186/1471-2164-10-57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albert S, Klaudiny J: The MRJP/YELLOW protein family of Apis mellifera: Identification of new members in the EST library. J Insect Physiol. 2004, 50: 51-59. 10.1016/j.jinsphys.2003.09.008.
Article
CAS
PubMed
Google Scholar
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R: Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res. 2006, 16: 1385-1394. 10.1101/gr.5012006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dani MP, Edwards JP, Richards EH: Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca. Comp Biochem Physiol B Biochem Mol Biol. 2005, 141: 373-381. 10.1016/j.cbpc.2005.04.010.
Article
CAS
PubMed
Google Scholar
Rivers DB, Denlinger DL: Venom-induced alterations in fly lipid-metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J Invertebr Pathol. 1995, 66: 104-110. 10.1006/jipa.1995.1071.
Article
CAS
Google Scholar
Rawlings ND, Barrett AJ: Evolutionary families of metallopeptidases. Methods Enzymol. 1995, 248: 183-228. full_text.
Article
CAS
PubMed
Google Scholar
Parkinson N, Conyers C, Smith I: A venom protein from the endoparasitoid wasp Pimpla hypochondriaca is similar to snake venom reprolysin-type metalloproteases. J Invertebr Pathol. 2002, 79: 129-131. 10.1016/S0022-2011(02)00033-2.
Article
CAS
PubMed
Google Scholar
Price DR, Bell HA, Hinchliffe G, Fitches E, Weaver R, Gatehouse JA: A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracae). Insect Mol Biol. 2009, 18: 195-202. 10.1111/j.1365-2583.2009.00864.x.
Article
CAS
PubMed
Google Scholar
Ondetti MA, Cushman DW: Enzymes of the rennin-angiotensin system and their inhibitors. Annu Rev Biochem. 1982, 51: 283-308. 10.1146/annurev.bi.51.070182.001435.
Article
CAS
PubMed
Google Scholar
Isaac RE, Schoofs L, Williams TA, Corvol P, Veelaert D, Sajid M, Coates D: Toward a role for angiotensin-converting enzyme in insects. Ann N Y Acad Sci. 1998, 839: 288-292. 10.1111/j.1749-6632.1998.tb10777.x.
Article
CAS
PubMed
Google Scholar
Macours N, Hens K: Zinc-metalloproteases in insects: ACE and ECE. Insect Biochem Mol Biol. 2004, 34: 501-510. 10.1016/j.ibmb.2004.03.007.
Article
CAS
PubMed
Google Scholar
Isaac RE, Bland ND, Shirras AD: Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen Comp Endocrinol. 2009, 162: 8-17. 10.1016/j.ygcen.2008.12.011.
Article
CAS
PubMed
Google Scholar
Dani MP, Richards EH, Isaac RE, Edwards JP: Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). J Insect Physiol. 2003, 49: 945-954. 10.1016/S0022-1910(03)00163-X.
Article
CAS
PubMed
Google Scholar
Serbielle C, Moreau S, Veillard F, Voldoire E, Mannucci M-A, Volkoff A-N, Drezen J-M, Lalmanach G, Huguet E: Identification of parasite-responsive cysteine proteases in Manduca sexta. Biol Chem. 2009, 390: 493-502. 10.1515/BC.2009.061.
Article
CAS
PubMed
Google Scholar
Lee S, Nalini M, Kim Y: A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes. Comp Biochem Physiol Part A Mol Integr Physiol. 2008, 149: 351-361. 10.1016/j.cbpa.2008.01.007.
Article
CAS
Google Scholar
Forêt S, Wanner KW, Maleszka R: Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol. 2007, 37: 19-28.
Article
CAS
PubMed
Google Scholar
Tegoni M, Campanacci V, Cambillau C: Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci. 2004, 29: 257-264. 10.1016/j.tibs.2004.03.003.
Article
CAS
PubMed
Google Scholar
Xu YL, He P, Zhang L, Fang SQ, Dong SL, Zhang YJ, Li F: Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics. 2009, 10: 632-10.1186/1471-2164-10-632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gmachl M, Kreil G: Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc Natl Acad Sci USA. 1993, 90: 3569-3573. 10.1073/pnas.90.8.3569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu G, Villalba M, Coscia MR, Hoffman DR, King TP: Sequence analysis and antigenic cross-reactivity of a venom allergen, antigen 5, from hornets, wasps, and yellow jackets. J Immunol. 1993, 150: 2823-2830.
CAS
PubMed
Google Scholar
Fang KSY, Vitale M, Fehlner P, King TP: cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. Proc Natl Acad Sci USA. 1988, 85: 895-899. 10.1073/pnas.85.3.895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff AN, Lanzrein B, Drezen JM: Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science. 2009, 323: 926-930.
Article
CAS
PubMed
Google Scholar
Kaeslin M, Wehrle I, Grossnikluas-Bürgin C, Wyler T, Guggisberg U, Schittny JC, Lanzrein B: Stage-dependent strategies of host invasion in the egg-larval parasitoid Chelonus inanitus. J Insect Physiol. 2005, 51: 287-296. 10.1016/j.jinsphys.2004.11.015.
Article
CAS
PubMed
Google Scholar
Grimaldi D, Engel MS: Evolution of the insects. 2005, New York: Cambridge University Press
Google Scholar
The Nasonia Genome Working Group, et al: Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 2010, 327: 343-348. 10.1126/science.1178028.
Article
CAS
PubMed Central
Google Scholar
Johner A, Lanzrein B: Characterization of two genes of the polydnavirus of Chelonus inanitus and their stage-specific expression in the host Spodoptera littoralis. J Gen Virol. 2002, 83: 1075-1085.
Article
CAS
PubMed
Google Scholar
Johner A, Stettler P, Gruber A, Lanzrein B: Presence of polydnavirus transcripts in an egg-larval parasitoid and its lepidopterous host. J Gen Virol. 1999, 80: 1847-1854.
Article
CAS
PubMed
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J: TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003, 19: 651-652. 10.1093/bioinformatics/btg034.
Article
CAS
PubMed
Google Scholar
Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res. 1999, 9: 868-877. 10.1101/gr.9.9.868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gene Ontology Consortium: The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006, D322-D326. 10.1093/nar/gkj021. 34 Database
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Basic Local Alignment Search Tool. [http://www.ncbi.nlm.nih.gov/blast]
ORF Finder. [http://www.ncbi.nlm.nih.gov/projects/gorf/]
SignalP 3.0 Server. [http://www.cbs.dtu.dk/services/SignalP]
Pfam 24.0 home page. [http://pfam.sanger.ac.uk/]
ELM server. [http://elm.eu.org/]
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res. 2002, 30: 3059-3066. 10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clamp M, Cuff J, Searle SM, Barton GJ: The Jalview Java alignment editor. Bioinformatics. 2004, 20: 426-427. 10.1093/bioinformatics/btg430.
Article
CAS
PubMed
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-552.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19: 1572-1574. 10.1093/bioinformatics/btg180.
Article
CAS
PubMed
Google Scholar
Phylogeny.fr: Home. [http://www.phylogeny.fr]
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36: 465-469. 10.1093/nar/gkn180.
Article
CAS
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: Selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar