Deshaies RJ, Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009, 78: 399-434. 10.1146/annurev.biochem.78.101807.093809.
Article
CAS
PubMed
Google Scholar
Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK: Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev. 2005, 19: 776-781. 10.1101/gad.1289405.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hall TM: Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol. 2005, 15: 367-373. 10.1016/j.sbi.2005.04.004.
Article
CAS
PubMed
Google Scholar
Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD: The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics. 2000, 66: 76-86. 10.1006/geno.2000.6199.
Article
CAS
PubMed
Google Scholar
Ko A, Lee EW, Yang MR, Yeh JY, Moon JS, Song J: Mkrn1 induces the degradation of West Nile virus capsid protein by functioning as an E3 ligase. J Virol. 2009, 84: 426-436. 10.1128/JVI.00725-09.
Article
PubMed Central
Google Scholar
Lee EW, Lee MS, Camus S, Ghim J, Yang MR, Oh W, Ha NC, Lane DP, Song J: Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. Embo J. 2009, 28: 2100-2113. 10.1038/emboj.2009.164.
Article
CAS
PubMed Central
PubMed
Google Scholar
Salvatico J, Kim JH, Chung IK, Muller MT: Differentiation linked regulation of telomerase activity by Makorin-1. Mol Cell Biochem. 2010, 342: 241-250. 10.1007/s11010-010-0490-x.
Article
CAS
PubMed
Google Scholar
Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L: Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine. 2006, 29: 363-373. 10.1385/ENDO:29:2:363.
Article
CAS
PubMed
Google Scholar
Shimada H, Shiratori T, Yasuraoka M, Kagaya A, Kuboshima M, Nomura F, Takiguchi M, Ochiai T, Matsubara H, Hiwasa T: Identification of Makorin 1 as a novel SEREX antigen of esophageal squamous cell carcinoma. BMC Cancer. 2009, 9: 232-10.1186/1471-2407-9-232.
Article
PubMed Central
PubMed
Google Scholar
Yoshida N, Yano Y, Yoshiki A, Ueno M, Deguchi N, Hirotsune S: Identification of a new target molecule for a cascade therapy of polycystic kidney. Hum Cell. 2003, 16: 65-72. 10.1111/j.1749-0774.2003.tb00132.x.
Article
PubMed
Google Scholar
Knowles LM, Smith JW: Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer. BMC Genomics. 2007, 8: 168-10.1186/1471-2164-8-168.
Article
PubMed Central
PubMed
Google Scholar
National Center for Biotechnology Information Conserved domains. [http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml]
Jong MT, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, Stewart CL, Rinchik EM, Nicholls RD: Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet. 1999, 8: 795-803. 10.1093/hmg/8.5.795.
Article
CAS
PubMed
Google Scholar
Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD: A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999, 8: 783-793. 10.1093/hmg/8.5.783.
Article
CAS
PubMed
Google Scholar
Kanber D, Giltay J, Wieczorek D, Zogel C, Hochstenbach R, Caliebe A, Kuechler A, Horsthemke B, Buiting K: A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur J Hum Genet. 2009, 17: 582-590. 10.1038/ejhg.2008.232.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gray TA, Wilson A, Fortin PJ, Nicholls RD: The putatively functional Mkrn1-p1 pseudogene is neither expressed nor imprinted, nor does it regulate its source gene in trans. Proc Natl Acad Sci USA. 2006, 103: 12039-12044. 10.1073/pnas.0602216103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gray TA, Azama K, Whitmore K, Min A, Abe S, Nicholls RD: Phylogenetic conservation of the makorin-2 gene, encoding a multiple zinc-finger protein, antisense to the RAF1 proto-oncogene. Genomics. 2001, 77: 119-126. 10.1006/geno.2001.6627.
Article
CAS
PubMed
Google Scholar
Cheung WK, Yang PH, Huang QH, Chen Z, Chen SJ, Lin MCM, Kung HF: Identification of protein domains required for Makorin-2-mediated neurogenesis inhibition in Xenopus embryos. Biochem Biophys Res Commun. 2010, 394: 18-23. 10.1016/j.bbrc.2010.02.041.
Article
CAS
PubMed
Google Scholar
Yang PH, Cheung WK, Peng Y, He ML, Wu GQ, Xie D, Jiang BH, Huang QH, Chen Z, Lin MC, Kung HF: Makorin-2 is a neurogenesis inhibitor downstream of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signal. J Biol Chem. 2008, 283: 8486-8495. 10.1074/jbc.M704768200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tree families database. [http://www.treefam.org/cgi-bin/TFinfo.pl?ac=TF315108]
Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, et al: The medaka draft genome and insights into vertebrate genome evolution. 2007, 447: 714-719.
Google Scholar
Jaillon O, Aury J-M, Brunet F, Petit J-L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. 2004, 431: 946-957.
Google Scholar
Aparicio S, Chapman J, Stupka E, Putnam N, Chia J-m, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, et al: Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002, 297: 1301-1310. 10.1126/science.1072104.
Article
CAS
PubMed
Google Scholar
Ensembl Genome Browser. [http://www.ensembl.org/index.html]
Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, et al: Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol. 2007, 5: e101-10.1371/journal.pbio.0050101.
Article
PubMed Central
PubMed
Google Scholar
Ohno S: Evolution by gene duplication. 1970, New York: Springer Verlag
Book
Google Scholar
Van de Peer Y, Maere S, Meyer A: The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009, 10: 725-732. 10.1038/nrg2600.
Article
CAS
PubMed
Google Scholar
Dehal P, Boore JL: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005, 3: e314-10.1371/journal.pbio.0030314.
Article
PubMed Central
PubMed
Google Scholar
Ravi V, Lam K, Tay BH, Tay A, Brenner S, Venkatesh B: Elephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes. Proc Natl Acad Sci USA. 2009, 106: 16327-16332. 10.1073/pnas.0907914106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kaneko S, Aki I, Tsuda K, Mekada K, Moriwaki K, Takahata N, Satta Y: Origin and evolution of processed pseudogenes that stabilize functional Makorin1 mRNAs in mice, primates and other mammals. Genetics. 2006, 172: 2421-2429. 10.1534/genetics.105.052910.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vanin EF: Processed pseudogenes: Characteristics and evolution. Annu Rev Genet. 1985, 19: 253-272. 10.1146/annurev.ge.19.120185.001345.
Article
CAS
PubMed
Google Scholar
Tingaud-Sequeira A, Chauvigné F, Lozano J, Agulleiro MJ, Asensio E, Cerdà J: New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics. 2009, 10: 434-10.1186/1471-2164-10-434.
Article
PubMed Central
PubMed
Google Scholar
Abrams EW, Mullins MC: Early zebrafish development: it's in the maternal genes. Curr Opin Genet Dev. 2009, 19: 396-403. 10.1016/j.gde.2009.06.002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lindeman RE, Pelegri F: Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev. 2010, 77: 299-313.
CAS
PubMed Central
PubMed
Google Scholar
Aizawaa K, Shimadab A, Naruseb K, Mitania H, Shimaa A: The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns. 2003, 3: 43-47. 10.1016/S1567-133X(02)00075-3.
Article
Google Scholar
Kane DA, Kimmel CB: The zebrafish midblastula transition. Development. 1993, 119: 447-456.
CAS
PubMed
Google Scholar
Esnault C, Maestre J, Heidmann T: Human LINE retrotransposons generate processed pseudogenes. Nat Genet. 2000, 24: 363-373. 10.1038/74184.
Article
CAS
PubMed
Google Scholar
Goncalves I, Duret L, Mouchiroud D: Nature and structure of human genes that generate retropseudogenes. Genome Res. 2000, 10: 672-678. 10.1101/gr.10.5.672.
Article
CAS
PubMed Central
PubMed
Google Scholar
Luo J, Megee S, Dobrinski I: Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol. 2009, 220: 460-468. 10.1002/jcp.21789.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chianese R, Scarpa D, Berruti G, Cobellis G, Pierantoni R, Fasano S, Meccariello R: Expression and localization of the deubiquitinating enzyme UBPy in wobbler mouse testis during spermiogenesis. Gen Comp Endocrinol. 2010, 166: 289-295. 10.1016/j.ygcen.2009.09.014.
Article
CAS
PubMed
Google Scholar
Nian H, Zhang W, Shi H, Zhao Q, Xie Q, Liao S, Zhang Y, Zhang Z, Wang C, Han C: Mouse RING finger protein Rnf133 is a testis-specific endoplasmic reticulum-associated E3 ubiquitin ligase. Cell Res. 2008, 18: 800-802. 10.1038/cr.2008.73.
Article
CAS
PubMed
Google Scholar
Caldwell JC, Joiner ML, Sivan-Loukianova E, Eberl DF: The role of the RING-finger protein Elfless in Drosophila spermatogenesis and apoptosis. Fly(Austin). 2008, 2: 269-279.
Google Scholar
Ribarski I, Lehavi O, Yogev L, Hauser R, B B-SM, Botchan A, Paz G, Yavetz H, Kleiman SE: USP26 gene variations in fertile and infertile men. Hum Reprod. 2009, 24: 477-484. 10.1093/humrep/den374.
Article
CAS
PubMed
Google Scholar
Chen D, Wang Q, Huang H, Xia L, Jiang X, Kan L, Sun Q, Chen D: Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Development. 2009, 136: 4133-4142. 10.1242/dev.039032.
Article
CAS
PubMed
Google Scholar
Mo S, Song P, Lv D, Chen Y, Zhou W, Gong W, Zhu Z: Zebrafish z-otu, a novel Otu and Tudor domain-containing gene, is expressed in early stages of oogenesis and embryogenesis. Biochim Biophys Acta. 2005, 1732: 1-7.
Article
CAS
PubMed
Google Scholar
Gu YQ, Chen QJ, Gu Z, Shi Y, Yao YW, Wang J, Sun ZG, Tso JK: Ubiquitin carboxyl-terminal hydrolase L1 contributes to the oocyte selective elimination in prepubertal mouse ovaries. Sheng Li Xue Bao. 2009, 61: 175-184.
CAS
PubMed
Google Scholar
Kaido M, Wada H, Shindo M, Hayashi S: Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes Cells. 2009, 14: 1067-1077. 10.1111/j.1365-2443.2009.01335.x.
Article
CAS
PubMed
Google Scholar
Knowlton MN, Chan BM, Kelly GM: The zebrafish band 4.1 member Mir is involved in cell movements associated with gastrulation. Dev Biol. 2003, 264: 407-429. 10.1016/j.ydbio.2003.09.001.
Article
CAS
PubMed
Google Scholar
Borden KL, Lally JM, Martin SR, O'Reilly NJ, Etkin LD, Freemont PS: Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J. 1995, 14: 5947-5956.
CAS
PubMed Central
PubMed
Google Scholar
Bellini M, Lacroix J-C, Gall JG: A zinc-binding domain is required for targeting the maternal nuclear protein PwA33 to lampbrush chromosome loops. J Cell Biol. 1995, 131: 563-570. 10.1083/jcb.131.3.563.
Article
CAS
PubMed
Google Scholar
Röttinger E, Besnardeau L, Lepage T: Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expr Patterns. 2006, 6: 864-872.
Article
PubMed
Google Scholar
Nüsslein-Vollhard C, Dahm R: Zebrafish: a practical approach. 2002, Oxford University Press, USA
Google Scholar
Iwamatsu T: Stages of normal development in the medaka Oryzias latipes. Mech Dev. 2004, 121: 605-618. 10.1016/j.mod.2004.03.012.
Article
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203: 253-310.
Article
CAS
PubMed
Google Scholar
National Center for Biotechnology Information Basic Local Alignment Search Tool BLAST. [http://blast.ncbi.nlm.nih.gov/Blast.cgi]
Branchiostoma floridae v1.0. [http://genome.jgi-psf.org/Brafl1/Brafl1.home.html]
Elephant shark genome project. [http://esharkgenome.imcb.a-star.edu.sg/]
SoftBerry FGENESH. [http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind]
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5: 113-10.1186/1471-2105-5-113.
Article
PubMed Central
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
CAS
PubMed Central
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: ClustalW and ClustalX version 2. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010, 59: 307-321. 10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Muffato M, Louis A, Poisnel CE, Crollius HR: Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics. 2010, 26: 1119-1121. 10.1093/bioinformatics/btq079.
Article
CAS
PubMed Central
PubMed
Google Scholar
Catchen JM, Conery JS, Postlethwait JH: Automated identification of conserved synteny after whole genome duplication. Genome Res. 2009, 19: 1497-1505. 10.1101/gr.090480.108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Motif Scan. [http://myhits.isb-sib.ch/cgi-bin/motif_scan]
Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J: KaKs Calculator: Calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics. 2006, 4: 259-263. 10.1016/S1672-0229(07)60007-2.
Article
CAS
PubMed
Google Scholar
Miller Lab Software LASTZ alignment program. [http://www.bx.psu.edu/miller_lab/]
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time auantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar