Kruger NJ: Carbohydrate synthesis and degradation. Plant Metabolism. Edited by: Dennis DT, Turpin DH, Lefebvre DD, Layzell DB. 1997, Harlow: Longman, 83-104.
Google Scholar
Farrar JF: The whole plant: Carbon partitioning during development. Carbon Partition within and Between Organisms. Edited by: Pollock CJ, Farrar JF, Gordon AJ. 1992, Oxford: Bios Scientific publishers, 163-179.
Google Scholar
Sweetlove LJ, Kossmann J, Riesmeier JW, Trethewey RN, Hill SA: The control of source to sink carbon flux during tuber development in potato. Plant J. 1998, 15: 697-706. 10.1046/j.1365-313x.1998.00247.x.
Article
CAS
Google Scholar
Zrenner R, Krause KP, Apel P, Sonnewald U: Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 1996, 9: 671-681. 10.1046/j.1365-313X.1996.9050671.x.
Article
CAS
PubMed
Google Scholar
Riesmeier JW, Willmitzer L, Frommer WB: Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 1994, 13: 1-7.
CAS
PubMed Central
PubMed
Google Scholar
Kühn C, Quick WP, Schulz A, Riesmeier JW, Sonnewald U, Frommer WB: Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Enviro. 1996, 19: 1115-1123. 10.1111/j.1365-3040.1996.tb00426.x.
Article
Google Scholar
Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer WB, Riesmeier JW, Willmitzer L, Fernie AR: Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta. 2003, 217: 158-167.
CAS
PubMed
Google Scholar
Sweetlove LJ, Hill SA: Source metabolism dominates the control of source to sink carbon flux in tuberizing potato plants throughout the diurnal cycle and under a range of environmental conditions. Plant Cell Environ. 2000, 23: 523-529. 10.1046/j.1365-3040.2000.00567.x.
Article
CAS
Google Scholar
Geigenberger P, Stitt M: Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant J. 2000, 23: 795-806. 10.1046/j.1365-313x.2000.00848.x.
Article
CAS
PubMed
Google Scholar
Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ: Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001, 13: 385-1398. 10.1105/tpc.13.2.385.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U: Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995, 7: 97-107. 10.1046/j.1365-313X.1995.07010097.x.
Article
CAS
PubMed
Google Scholar
Fettke J, Albrecht T, Hejazi M, Mahlow S, Nakamura Y, Steup M: Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. New Phytol. 2009, 185 (3): 663-675. 10.1111/j.1469-8137.2009.03126.x.
Article
PubMed
Google Scholar
Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flügge UI: Molecular Characterization of a Carbon Transporter in Plastids from Heterotrophic Tissues: The Glucose 6-Phosphate/Phosphate Antiporter. Plant Cell. 1998, 10: 105-118. 10.1105/tpc.10.1.105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tjaden J, Möhlmann T, Kampfenkel K, Henrichs G, Neuhaus HE: Altered plastidic ATP/ADP-transporter acitivity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J. 1998, 16: 531-540. 10.1046/j.1365-313x.1998.00317.x.
Article
CAS
Google Scholar
Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F: Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J. 2008, 6: 453-464. 10.1111/j.1467-7652.2008.00332.x.
Article
CAS
PubMed
Google Scholar
Tauberger E, Fernie AR, Emmermann M, Renz A, Kossmann J, Willmitzer L, Trethewey RN: Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J. 2000, 23: 43-53. 10.1046/j.1365-313x.2000.00783.x.
Article
CAS
PubMed
Google Scholar
Müller-Röber B, Sonnewald U, Willmitzer L: Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992, 11: 1229-1238.
PubMed Central
PubMed
Google Scholar
Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM: Regulation of the Amount of Starch in Plant Tissues by ADP Glucose Pyrophosphorylase. Science. 1992, 258: 287-292. 10.1126/science.258.5080.287.
Article
CAS
PubMed
Google Scholar
Sweetlove LJ, Burrell MM, ap Rees T: Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADP glucose pyrophosphorylase. Biochem J. 1996, 320: 493-498.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lloyd JR, Landschütze V, Kossmann J: Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem J. 1999, 338: 515-521. 10.1042/0264-6021:3380515.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hovenkamp-Hermelink JHM, Jacobsen E, Ponstein AS, Visser RGF, Vos-Scheperkeuter GH, Bijmolt EW, De Vries JN, Witholt B, Feenstra WJ: Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theor Appl Genet. 1987, 75: 217-221. 10.1007/BF00249167.
Article
Google Scholar
Roldán I, Wattebled F, Mercedes Lucas M, Delvallé D, Planchot V, Jiménez S, Pérez R, Ball S, D'Hulst C, Mérida A: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 2007, 49: 492-504. 10.1111/j.1365-313X.2006.02968.x.
Article
PubMed
Google Scholar
Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldán I, Montero M, Muñoz FJ, Ovecka M, Bahaji A, Planchot V, Pozueta-Romero J, D'Hulst C, Mérida A: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant J. 2009, 21: 2443-2457.
CAS
Google Scholar
Kossmann J, Visser RG, Müller-Röber B, Willmitzer L, Sonnewald U: Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for co-expression of starch biosynthetic genes. Mol Gen Genet. 1991, 230: 39-44. 10.1007/BF00290648.
Article
CAS
PubMed
Google Scholar
Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi YC, Gidley MJ, Jobling SA: Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol. 2000, 18: 551-554. 10.1038/75427.
Article
CAS
PubMed
Google Scholar
Kloosterman BA, Vorst OFJ, Hall RD, Visser RGF, Bachem CWB: Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J. 2005, 505-519. 10.1111/j.1467-7652.2005.00141.x.
Google Scholar
Han L, Dutilleul P, Prasher SO, Beaulieu C, Smith : Assessment of common scab-inducing pathogen effects on potato underground organs via computed tomography scanning. Phytopathology. 2008, 98: 1118-1125. 10.1094/PHYTO-98-10-1118.
Article
CAS
PubMed
Google Scholar
Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM: Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol. 2004, 136: 2687-2699. 10.1104/pp.104.044347.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S, Bánfalvi Z, Hammond JP, Geigenberger P, Nielsen KL, Visser RG, Bachem CW: Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics. 2008, 4: 329-340. 10.1007/s10142-008-0083-x.
Article
Google Scholar
Arce AL, Cabello JV, Chan RL: Patents on plant transcription factors. Recent Pat Biotechnol. 2008, 2: 209-217. 10.2174/187220808786241024.
Article
CAS
PubMed
Google Scholar
Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C: Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 2008, 26: 1301-1318. 10.1038/nbt.1506.
Article
CAS
PubMed
Google Scholar
Scheidig A, Fröhlich A, Schulze S, Lloyd JR, Kossmann J: Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves. Plant J. 2002, 30: 581-91. 10.1046/j.1365-313X.2002.01317.x.
Article
CAS
PubMed
Google Scholar
Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M: The starch-related R1 protein is an alpha -glucan, water dikinase. PNAS. 2002, 10: 7166-7171. 10.1073/pnas.062053099.
Article
Google Scholar
Baunsgaard L, Lütken H, Mikkelsen R, Glaring MA, Pham TT, Blennow A: A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated alpha-glucans and is involved in starch degradation in Arabidopsis. Plant J. 2005, 9: 595-605. 10.1111/j.1365-313X.2004.02322.x.
Article
Google Scholar
Kötting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M, Ritte G, Zeeman SC: STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell. 2009, 21: 334-346. 10.1105/tpc.108.064360.
Article
PubMed Central
PubMed
Google Scholar
Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC: A previously unknown maltose transporter essential for starch degradation in leaves. Science. 2004, 303: 87-89. 10.1126/science.1091811.
Article
PubMed
Google Scholar
Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM: A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J. 2004, 37: 853-863. 10.1111/j.1365-313X.2003.02012.x.
Article
CAS
PubMed
Google Scholar
Lloyd JR, Blennow A, Burhenne K, Kossmann J: Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiol. 2004, 134: 1347-1354. 10.1104/pp.103.038026.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M: Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell. 2005, 17: 3257-3281. 10.1105/tpc.105.035261.
Article
PubMed Central
PubMed
Google Scholar
Osuna D, Usadel B, Morcuende R, Gibon Y, Bläsing OE, Höhne M, Günter M, Kamlage B, Trethewey R, Scheible WR, Stitt M: Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J. 2007, 49: 463-491. 10.1111/j.1365-313X.2006.02979.x.
Article
CAS
PubMed
Google Scholar
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000, 290: 2110-2113. 10.1126/science.290.5499.2110.
Article
CAS
PubMed
Google Scholar
Lu Y, Gehan JP, Sharkey TD: Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol. 2005, 138: 2280-2291. 10.1104/pp.105.061903.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tenorio G, Orea A, Romero JM, Mérida A: Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle. Plant Mol Biol. 2003, 51: 949-958. 10.1023/A:1023053420632.
Article
CAS
PubMed
Google Scholar
Merida A, Rodrıguez-Galan JM, Vincent C, Romero JM: Expression of the Granule-Bound Starch Synthase I (Waxy) Gene from Snapdragon Is Developmentally and Circadian Clock Regulated. Plant Physiol. 1999, 120: 401-409. 10.1104/pp.120.2.401.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dian W, Jiang H, Chen Q, Liu F, Wu P: Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta. 2003, 218: 261-268. 10.1007/s00425-003-1101-9.
Article
CAS
PubMed
Google Scholar
Visser RG, Stolte A, Jacobsen E: Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol. 1991, 17: 691-699. 10.1007/BF00037054.
Article
CAS
PubMed
Google Scholar
Lohaus G, Winter H, Riens B, Heldt HW: Further studies of the phloem loading process in leaves of barley and spinach - the comparison of the metabolite concentration in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta. 1995, 108; 270-275.
Google Scholar
Engels CH, Marschner H: Allocation of photosynthate to individual tubers of Solanum tuberosum L. II. Relationship between growth rate, carbohydrate concentration and 14C-partitioning within tubers. J Exp Bot. 1986, 37: 1804-1812. 10.1093/jxb/37.12.1804.
Article
CAS
Google Scholar
Ral JP, Colleoni C, Wattebled F, Dauvillée D, Nempont C, Deschamps P, Li Z, Morell MK, Chibbar R, Purton S, d'Hulst C, Ball SG: Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol. 2006, 142: 305-317. 10.1104/pp.106.081885.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM: Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot. 2005, 56: 1651-1663. 10.1093/jxb/eri162.
Article
CAS
PubMed
Google Scholar
Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, Stitt M: Expression data of Arabidopsis thaliana rosettes in an extended night. [http://mapman.mpimp-golm.mpg.de/supplement/xn/]
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D: Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell. 2006, 18: 1121-1133. 10.1105/tpc.105.039834.
Article
CAS
PubMed Central
PubMed
Google Scholar
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Article
CAS
Google Scholar
Logemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987, 163: 16-20. 10.1016/0003-2697(87)90086-8.
Article
CAS
PubMed
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, W71-74. 10.1093/nar/gkm306. 35 Web Server
Pfaffl MW: A new mathematical model for relative quantification in real-time PT-PCR. Nucleic Acid Res. 29: 2002-2007.
Feldkamp LA, Davis L, Kress J: Practical Cone-beam Algorithm. J Opt Soc Am. 1984, 1: 612-619. 10.1364/JOSAA.1.000612.
Article
Google Scholar
Hanke R, Fuchs T, Uhlmann N: X-ray based methods for non-destructive testing and material characterization. Nucl Instr and Meth in Phys Res A. 2008, 591: 14-18. 10.1016/j.nima.2008.03.016.
Article
CAS
Google Scholar