Clayton DF, Balakrishnan CN, London SE: Integrating genomes, brain and behavior in the study of songbirds. Curr Biol. 2009, 19 (18): R865-873. 10.1016/j.cub.2009.07.006.
CAS
PubMed
PubMed Central
Google Scholar
Jarvis ED: Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci. 2004, 1016: 749-777. 10.1196/annals.1298.038.
PubMed
PubMed Central
Google Scholar
Miller DB: Acoustic Basis of Mate Recognition by Female Zebra Finches (Taeniopygia-Guttata). Animal Behaviour. 1979, 27 (May): 376-380.
Google Scholar
Miller DB: Long-Term Recognition of Fathers Song by Female Zebra Finches. Nature. 1979, 280 (5721): 389-391. 10.1038/280389a0.
Google Scholar
Clayton NS: Song Discrimination-Learning in Zebra Finches. Animal Behaviour. 1988, 36: 1016-1024. 10.1016/S0003-3472(88)80061-7.
Google Scholar
Stripling R, Kruse AA, Clayton DF: Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. Journal of Neurobiology. 2001, 48 (3): 163-180. 10.1002/neu.1049.
CAS
PubMed
Google Scholar
Mello CV, Vicario DS, Clayton DF: Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA. 1992, 89 (15): 6818-6822. 10.1073/pnas.89.15.6818.
CAS
PubMed
PubMed Central
Google Scholar
Mello C, Nottebohm F, Clayton D: Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. J Neurosci. 1995, 15 (10): 6919-6925.
CAS
PubMed
PubMed Central
Google Scholar
Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F: For whom the bird sings: context-dependent gene expression. Neuron. 1998, 21 (4): 775-788. 10.1016/S0896-6273(00)80594-2.
CAS
PubMed
Google Scholar
Clayton DF: The genomic action potential. Neurobiol Learn Mem. 2000, 74 (3): 185-216. 10.1006/nlme.2000.3967.
CAS
PubMed
Google Scholar
Kruse AA, Stripling R, Clayton DF: Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiol Learn Mem. 2004, 82 (2): 99-108. 10.1016/j.nlm.2004.05.001.
CAS
PubMed
Google Scholar
Vignal C, Andru J, Mathevon N: Social context modulates behavioural and brain immediate early gene responses to sound in male songbird. Eur J Neurosci. 2005, 22 (4): 949-955. 10.1111/j.1460-9568.2005.04254.x.
PubMed
Google Scholar
Woolley SC, Doupe AJ: Social context-induced song variation affects female behavior and gene expression. PLoS Biol. 2008, 6 (3): e62-10.1371/journal.pbio.0060062.
PubMed
PubMed Central
Google Scholar
Dong S, Replogle KL, Hasadsri L, Imai BS, Yau PM, Rodriguez-Zas S, Southey BR, Sweedler JV, Clayton DF: Discrete molecular states in the brain accompany changing responses to a vocal signal. Proc Natl Acad Sci USA. 2009, 106 (27): 11364-11369. 10.1073/pnas.0812998106.
CAS
PubMed
PubMed Central
Google Scholar
London SE, Dong S, Replogle K, Clayton DF: Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. Dev Neurobiol. 2009, 69 (7): 437-450. 10.1002/dneu.20719.
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH: Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006, 29: 77-103. 10.1146/annurev.neuro.29.051605.112839.
CAS
PubMed
Google Scholar
Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH: Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA. 2006, 103 (39): 14385-14389. 10.1073/pnas.0603529103.
CAS
PubMed
PubMed Central
Google Scholar
Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH: Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006, 38 (12): 1375-1377. 10.1038/ng1914.
CAS
PubMed
Google Scholar
Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S: MicroRNA expression in the adult mouse central nervous system. RNA. 2008, 14 (3): 432-444. 10.1261/rna.783108.
CAS
PubMed
PubMed Central
Google Scholar
Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS: A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003, 9 (10): 1274-1281. 10.1261/rna.5980303.
CAS
PubMed
PubMed Central
Google Scholar
Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR: Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004, 5 (9): R68-10.1186/gb-2004-5-9-r68.
PubMed
PubMed Central
Google Scholar
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004, 5 (3): R13-10.1186/gb-2004-5-3-r13.
PubMed
PubMed Central
Google Scholar
Li N, Bates DJ, An J, Terry DA, Wang E: Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging. 2009
Google Scholar
Schratt G: Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol. 2009, 19 (2): 213-219. 10.1016/j.conb.2009.05.015.
CAS
PubMed
Google Scholar
Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, et al: microRNA modulation of circadian-clock period and entrainment. Neuron. 2007, 54 (5): 813-829. 10.1016/j.neuron.2007.05.017.
CAS
PubMed
PubMed Central
Google Scholar
Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME: A brain-specific microRNA regulates dendritic spine development. Nature. 2006, 439 (7074): 283-289. 10.1038/nature04367.
CAS
PubMed
Google Scholar
Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G: Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 2009, 28 (6): 697-710. 10.1038/emboj.2009.10.
CAS
PubMed
PubMed Central
Google Scholar
Creighton CJ, Reid JG, Gunaratne PH: Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009, 10 (5): 490-497. 10.1093/bib/bbp019.
CAS
PubMed
PubMed Central
Google Scholar
Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, et al: Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5'-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Res. 2008, 18 (10): 1571-1581. 10.1101/gr.078246.108.
CAS
PubMed
PubMed Central
Google Scholar
Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18 (4): 610-621. 10.1101/gr.7179508.
CAS
PubMed
PubMed Central
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007, 129 (7): 1401-1414. 10.1016/j.cell.2007.04.040.
CAS
PubMed
PubMed Central
Google Scholar
Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001, 294 (5543): 862-864. 10.1126/science.1065329.
CAS
PubMed
Google Scholar
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, et al: The genome of a songbird. Nature. 2010, 464 (7289): 757-762. 10.1038/nature08819.
CAS
PubMed
PubMed Central
Google Scholar
Park KH, Clayton DF: Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. Behav Brain Res. 2002, 136 (1): 185-191. 10.1016/S0166-4328(02)00129-8.
PubMed
Google Scholar
Bailey D, Wade J: Differential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch. Brain Res Mol Brain Res. 2003, 116 (1-2): 147-154.
CAS
PubMed
Google Scholar
Kánstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, et al: Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Molecular Ecology. 2010, 19 (SUPPL. 1): 266-276.
Google Scholar
Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, Van Nas A, Replogle K, Band MR, Clayton DF, et al: Dosage compensation is less effective in birds than in mammals. J Biol. 2007, 6 (1): 2-10.1186/jbiol53.
PubMed
PubMed Central
Google Scholar
Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP: Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Research. 2010, 20 (4): 512-518. 10.1101/gr.102343.109.
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233. 10.1016/j.cell.2009.01.002.
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wang XJ, Tannenhauser J, Podell S, Mukherjee P, Hertel M, Biane J, Masuda S, Nottebohm F, Gaasterland T: Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc Natl Acad Sci USA. 2007, 104 (16): 6834-6839. 10.1073/pnas.0701619104.
CAS
PubMed
PubMed Central
Google Scholar
Chandrasekar V, Dreyer JL: microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci. 2009, 42 (4): 350-362. 10.1016/j.mcn.2009.08.009.
CAS
PubMed
Google Scholar
Visvanathan J, Lee S, Lee B, Lee JW, Lee SK: The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007, 21 (7): 744-749. 10.1101/gad.1519107.
CAS
PubMed
PubMed Central
Google Scholar
Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12 (4): 399-408. 10.1038/nn.2294.
CAS
PubMed
PubMed Central
Google Scholar
Yu JY, Chung KH, Deo M, Thompson RC, Turner DL: MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 2008, 314 (14): 2618-2633. 10.1016/j.yexcr.2008.06.002.
CAS
PubMed
PubMed Central
Google Scholar
Goldman SA, Nottebohm F: Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America. 1983, 80: 2390-2394. 10.1073/pnas.80.8.2390.
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Buylla A, Theelen M, Nottebohm F: Proliferation "hot spots" in adult avian ventricular zone reveal radial cell division. Neuron. 1990, 5 (1): 101-109. 10.1016/0896-6273(90)90038-H.
CAS
PubMed
Google Scholar
Alvarez-Buylla A, Kirn JR: Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. Journal of Neurobiology. 1997, 33: 585-601. 10.1002/(SICI)1097-4695(19971105)33:5<585::AID-NEU7>3.0.CO;2-0.
CAS
PubMed
Google Scholar
Barnea A: Interactions between environmental changes and brain plasticity in birds. General and Comparative Endocrinology. 2009, 163 (1-2): 128-134. 10.1016/j.ygcen.2009.03.031.
CAS
PubMed
Google Scholar
Kirn JR: The relationship of neurogenesis and growth of brain regions to song learning. Brain and Language. 2010, 115 (1): 29-44. 10.1016/j.bandl.2009.09.006.
PubMed
Google Scholar
Nottebohm F, O'Loughlin B, Gould K, Yohay K, Alvarez-Buylla A: The life span of new neurons in a song control nucleus of the adult canary brain depends on time of year when these cells are born. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91 (17): 7849-7853. 10.1073/pnas.91.17.7849.
CAS
PubMed
PubMed Central
Google Scholar
Wilbrecht L, Crionas A, Nottebohm F: Experience affects recruitment of new neurons but not adult neuron number. Journal of Neuroscience. 2002, 22 (3): 825-831.
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.
CAS
PubMed
Google Scholar
Levine TD, Gao F, King PH, Andrews LG, Keene JD: Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol. 1993, 13 (6): 3494-3504.
CAS
PubMed
PubMed Central
Google Scholar
Abe R, Yamamoto K, Sakamoto H: Target specificity of neuronal RNA-binding protein, Mel-N1: direct binding to the 3' untranslated region of its own mRNA. Nucleic Acids Res. 1996, 24 (11): 2011-2016. 10.1093/nar/24.11.2011.
CAS
PubMed
PubMed Central
Google Scholar
Ma WJ, Chung S, Furneaux H: The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res. 1997, 25 (18): 3564-3569. 10.1093/nar/25.18.3564.
CAS
PubMed
PubMed Central
Google Scholar
Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, Sakakibara S, Miura M, Matsuo N, Darnell RB, Okano H: Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci USA. 1999, 96 (17): 9885-9890. 10.1073/pnas.96.17.9885.
CAS
PubMed
PubMed Central
Google Scholar
Hambardzumyan D, Sergent-Tanguy S, Thinard R, Bonnamain V, Masip M, Fabre A, Boudin H, Neveu I, Naveilhan P: AUF1 and Hu proteins in the developing rat brain: implication in the proliferation and differentiation of neural progenitors. J Neurosci Res. 2009, 87 (6): 1296-1309. 10.1002/jnr.21957.
CAS
PubMed
Google Scholar
Sillje HH, Takahashi K, Tanaka K, Van Houwe G, Nigg EA: Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. EMBO J. 1999, 18 (20): 5691-5702. 10.1093/emboj/18.20.5691.
CAS
PubMed
PubMed Central
Google Scholar
Sillje HH, Nigg EA: Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol. 2001, 11 (13): 1068-1073. 10.1016/S0960-9822(01)00298-6.
CAS
PubMed
Google Scholar
Blackwell TK, Walker AK: Transcription elongation: TLKing to chromatin?. Curr Biol. 2003, 13 (23): R915-916. 10.1016/j.cub.2003.11.013.
CAS
PubMed
Google Scholar
Carrera P, Moshkin YM, Gronke S, Sillje HH, Nigg EA, Jackle H, Karch F: Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes Dev. 2003, 17 (20): 2578-2590. 10.1101/gad.276703.
CAS
PubMed
PubMed Central
Google Scholar
Rouault JP, Puisieux A, Samarut C, Guehenneux F, Berthet C, Rimokh R, Falette N, Magaud JP: Involvement of the BTG genes family in the control of cell cycle and DNA repair. Experimental Hematology. 1997, 25 (8): 229-229.
Google Scholar
Corjay MH, Kearney MA, Munzer DA, Diamond SM, Stoltenborg JK: Antiproliferative gene BTG1 is highly expressed in apoptotic cells in macrophage-rich areas of advanced lesions in Watanabe heritable hyperlipidemic rabbit and human. Laboratory Investigation. 1998, 78 (7): 847-858.
CAS
PubMed
Google Scholar
Li F, Liu J, Park ES, Jo M, Curry TE: The B cell translocation gene (BTG) family in the rat ovary: hormonal induction, regulation, and impact on cell cycle kinetics. Endocrinology. 2009, 150 (8): 3894-3902. 10.1210/en.2008-1650.
CAS
PubMed
PubMed Central
Google Scholar
Hall JA, Georgel PT: CHD proteins: a diverse family with strong ties. Biochem Cell Biol. 2007, 85 (4): 463-476. 10.1139/O07-063.
CAS
PubMed
Google Scholar
Marfella CG, Imbalzano AN: The Chd family of chromatin remodelers. Mutat Res. 2007, 618 (1-2): 30-40.
CAS
PubMed
PubMed Central
Google Scholar
Bandres E, Malumbres R, Cubedo E, Honorato B, Zarate R, Labarga A, Gabisu U, Sola JJ, Garcia-Foncillas J: A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients. Oncology Reports. 2007, 17 (5): 1089-1094.
CAS
PubMed
Google Scholar
Kulkarni S, Nagarajan P, Wall J, Donovan DJ, Donell RL, Ligon AH, Venkatachalam S, Quade BJ: Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A. 2008, 146A (9): 1117-1127. 10.1002/ajmg.a.32178.
CAS
PubMed
PubMed Central
Google Scholar
Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S: Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene. 2009, 28 (8): 1053-1062. 10.1038/onc.2008.440.
CAS
PubMed
PubMed Central
Google Scholar
Bustin M, Reeves R: High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Progress in Nucleic Acid Research and Molecular Biology. 1996, 54: 35-100. Vol 54
CAS
PubMed
Google Scholar
Grasser KD: HMG1 and HU proteins: architectural elements in plant chromatin. Trends in Plant Science. 1998, 3 (7): 260-265. 10.1016/S1360-1385(98)01259-X.
Google Scholar
Hall J, Thomas KL, Everitt BJ: Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: Selective activation of hippocampal CA1 neurons during the recall of contextual memories. Journal of Neuroscience. 2001, 21 (6): 2186-2193.
CAS
PubMed
Google Scholar
Bustin M: At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE. 2002, 2002 (151): pe39-
PubMed
Google Scholar
Guazzi S, Strangio A, Franzi AT, Bianchi ME: HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expression Patterns. 2003, 3 (1): 29-33. 10.1016/S1567-133X(02)00093-5.
CAS
PubMed
Google Scholar
Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M, Viani P, Sparatore B, Melloni E, Riboni L: HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. Journal of Neuro-Oncology. 2008, 87 (1): 23-33. 10.1007/s11060-007-9488-y.
CAS
PubMed
Google Scholar
Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA: Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr Biol. 2004, 14 (7): 606-610. 10.1016/j.cub.2004.03.038.
CAS
PubMed
Google Scholar
Yip YP, Kronstadt-O'Brien P, Capriotti C, Cooper JA, Yip JW: Migration of sympathetic preganglionic neurons in the spinal cord is regulated by reelin-dependent Dab1 tyrosine phosphorylation and CrkL. Journal of Comparative Neurology. 2007, 502 (4): 635-643. 10.1002/cne.21318.
CAS
Google Scholar
Matsuki T, Pramatarova A, Howell BW: Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. J Cell Sci. 2008, 121 (Pt 11): 1869-1875.
CAS
PubMed
Google Scholar
Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, et al: Ensembl 2009. Nucleic Acids Res. 2009, 37 (Database): D690-697. 10.1093/nar/gkn828.
CAS
PubMed
Google Scholar
Brennan PA, Schellinck HM, Keverne EB: Patterns of expression of the immediate-early gene egr-1 in the accessory olfactory bulb of female mice exposed to pheromonal constituents of male urine. Neuroscience. 1999, 90 (4): 1463-1470. 10.1016/S0306-4522(98)00556-9.
CAS
PubMed
Google Scholar
Schafer M, Brauer AU, Savaskan NE, Rathjen FG, Brummendorf T: Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. Molecular and Cellular Neuroscience. 2005, 29 (4): 580-590. 10.1016/j.mcn.2005.04.010.
PubMed
Google Scholar
Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S: IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Research. 2008, 1224: 1-11.
CAS
PubMed
Google Scholar
Ishii N, Wanaka A, Tohyama M: Increased expression of NLRR-3 mRNA after cortical brain injury in mouse. Brain Res Mol Brain Res. 1996, 40 (1): 148-152.
CAS
PubMed
Google Scholar
Bormann P, Roth LWA, Andel D, Ackermann M, Reinhard E: zfNLRR, a novel leucine-rich repeat protein is preferentially expressed during regeneration in zebrafish. Molecular and Cellular Neuroscience. 1999, 13 (3): 167-179. 10.1006/mcne.1999.0742.
CAS
PubMed
Google Scholar
Josephson A, Trifunovski A, Scheele C, Widenfalk J, Wahlestedt C, Brene S, Olson L, Spenger C: Activity-induced and developmental downregulation of the Nogo receptor. Cell Tissue Res. 2003, 311 (3): 333-342.
CAS
PubMed
Google Scholar
Endo T, Spenger C, Tominaga T, Brene S, Olson L: Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain. 2007, 130 (Pt 11): 2951-2961.
PubMed
Google Scholar
Dong S, Clayton DF: Habituation in songbirds. Neurobiol Learn Mem. 2009, 92 (2): 183-188. 10.1016/j.nlm.2008.09.009.
PubMed
Google Scholar
Replogle K, Arnold AP, Ball GF, Band M, Bensch S, Brenowitz EA, Dong S, Drnevich J, Ferris M, George JM, et al: The Songbird Neurogenomics (SoNG) Initiative: community-based tools and strategies for study of brain gene function and evolution. BMC Genomics. 2008, 9: 131-10.1186/1471-2164-9-131.
PubMed
PubMed Central
Google Scholar
Cheng HY, Clayton DF: Activation and habituation of extracellular signal-regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation. Journal of Neuroscience. 2004, 24 (34): 7503-7513. 10.1523/JNEUROSCI.1405-04.2004.
CAS
PubMed
Google Scholar
Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, et al: Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008, 22 (10): 2336-2352. 10.1210/me.2008-0142.
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, Han DY, Harris RA, Coarfa C, Gunaratne PH: Correction: GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline. PLoS Genet. 2009, 5 (12):
Schuster P, Fontana W, Stadler PF, Hofacker IL: From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci. 1994, 255 (1344): 279-284. 10.1098/rspb.1994.0040.
CAS
PubMed
Google Scholar
Kalafus KJ, Jackson AR, Milosavljevic A: Pash: efficient genome-scale sequence anchoring by Positional Hashing. Genome Res. 2004, 14 (4): 672-678. 10.1101/gr.1963804.
CAS
PubMed
PubMed Central
Google Scholar
Coarfa C, Milosavljevic A: Pash 2.0: scaleable sequence anchoring for next-generation sequencing technologies. Pac Symp Biocomput. 2008, 102-113.
Google Scholar
Thomson T, Lin H: The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009, 25: 355-376. 10.1146/annurev.cellbio.24.110707.175327.
CAS
PubMed
PubMed Central
Google Scholar
Royo H, Cavaille J: Non-coding RNAs in imprinted gene clusters. Biol Cell. 2008, 100 (3): 149-166. 10.1042/BC20070126.
CAS
PubMed
Google Scholar
Gu P, Reid JG, Gao X, Shaw CA, Creighton C, Tran PL, Zhou X, Drabek RB, Steffen DL, Hoang DM, et al: Novel microRNA candidates and miRNA-mRNA pairs in embryonic stem (ES) cells. PLoS One. 2008, 3 (7): e2548-10.1371/journal.pone.0002548.
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
CAS
PubMed
Google Scholar