Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA: Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics. 2010
Google Scholar
Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS: Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics (Oxford, England). 2002
Google Scholar
Lander ES: Array of hope. Nature Genetics. 1999
Google Scholar
Sims AH: Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us?. Journal of Clinical Pathology. 2009
Google Scholar
Sims AH, Ong KR, Clarke RB, Howell A: High-throughput genomic technology in research and clinical management of breast cancer. Exploiting the potential of gene expression profiling: is it ready for the clinic?. Breast Cancer Research. 2006
Google Scholar
Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG: Common genetic variants account for differences in gene expression among ethnic groups. Nature Genetics. 2007
Google Scholar
Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G: The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics. 2001
Google Scholar
Akey JM, Biswas S, Leek JT, Storey JD: On the design and analysis of gene expression studies in human populations. Nature Genetics. 2007
Google Scholar
Baggerly KA, Coombes KR: Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproducible Research in High-Throughput Biology. Annals of Applied Statistics. 2009
Google Scholar
Baggerly K, Coombes K, Neeley E: Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2008
Google Scholar
MAQC Consortium: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology. 2006
Google Scholar
Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, Guo L, Croner LJ, Boysen C, Fang H, Qian F, Amur S, Bao W, Barbacioru CC, Bertholet V, Cao XM, Chu TM, Collins PJ, Fan XH, Frueh FW, Fuscoe JC, Guo X, Han J, Herman D, Hong H, Kawasaki ES, Li QZ, Luo Y, Ma Y, Mei N, Peterson RL, Puri RK, Shippy R, Su Z, Sun YA, Sun H, Thorn B, Turpaz Y, Wang C, Wang SJ, Warrington JA, Willey JC, Wu J, Xie Q, Zhang L, Zhang L, Zhong S, Wolfinger RD, Tong W: The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics. 2008
Google Scholar
Guo L, Lobenhofer EK, Wang C, Shippy R, Harris SC, Zhang L, Mei N, Chen T, Herman D, Goodsaid FM, Hurban P, Phillips KL, Xu J, Deng X, Sun YA, Tong W, Dragan YP, Shi L: Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nature Biotechnology. 2006
Google Scholar
Sims AH, Smethurst GJ, Hey Y, Okoniewski MJ, Pepper SD, Howell A, Miller CJ, Clarke RB: The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets-improving meta-analysis and prediction of prognosis. BMC medical genomics. 2008
Google Scholar
Kitchen RR, Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, van Hemert JI, Dixon JM, Bartlett JMS: Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression pro les. BMC Genomics. 2010
Google Scholar
Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS: Adjustment of systematic microarray data biases. Bioinformatics (Oxford, England). 2004
Google Scholar
Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England). 2007
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002
Google Scholar
Brazma A, Kapushesky M, Parkinson H, Sarkans U, Shojatalab M: Data storage and analysis in ArrayExpress. Methods in enzymology. 2006
Google Scholar
Verdugo RA, Deschepper CF, Muñoz G, Pomp D, Churchill GA: Importance of randomization in microarray experimental designs with Illumina platforms. Nucleic Acids Research. 2009
Google Scholar
van der Veen D, Oliveira JM, van den Berg WAM, de Graaff LH: Analysis of variance components reveals the contribution of sample processing to transcript variation. Applied and environmental microbiology. 2009
Google Scholar
Shi W, Oshlack A, Smyth GK: Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Research. 2010
Google Scholar
Zakharkin SO, Kim K, Mehta T, Chen L, Barnes S, Scheirer KE, Parrish RS, Allison DB, Page GP: Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics. 2005
Google Scholar
Kitchen RR, Kubista M, Tichopad A: Statistical aspects of quantitative real-time PCR experiment design. Methods (San Diego, Calif). 2010
Google Scholar
Barbosa-Morais N, Dunning M, Samarajiwa S, Darot J, Ritchie M, Lynch A, Tavaré S: A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Research. 2009
Google Scholar
Pozhitkov AE, Tautz D, Noble PA: Oligonucleotide microarrays: widely applied-poorly understood. Briefings in functional genomics & proteomics. 2007
Google Scholar
Owczarzy R, Vallone PM, Gallo FJ, Paner TM, Lane MJ, Benight AS: Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers. 1997
Google Scholar
Kuhn K: A novel, high-performance random array platform for quantitative gene expression profiling. Genome Research. 2004
Google Scholar
Tong W, Lucas AB, Shippy R, Fan X, Fang H, Hong H, Orr MS, Chu TM, Guo X, Collins PJ, Sun YA, Wang SJ, Bao W, Wolfinger RD, Shchegrova S, Guo L, Warrington JA, Shi L: Evaluation of external RNA controls for the assessment of microarray performance. Nature Biotechnology. 2006
Google Scholar
Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A, Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L, Goodsaid FM: Evaluation of DNA microarray results with quantitative gene expression platforms. Nature Biotechnology. 2006
Google Scholar
Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, Perou CM, Botstein D, Braman J: Universal Reference RNA as a standard for microarray experiments. BMC Genomics. 2004
Google Scholar
Mongan MA, Pine PS: Assessment of repeated microarray experiments using mixed tissue RNA reference samples. BioTechniques. 2008
Google Scholar
Thompson KL, Rosenzweig BA, Pine PS, Retief J, Turpaz Y, Afshari CA, Hamadeh HK, Damore MA, Boedigheimer M, Blomme E, Ciurlionis R, Waring JF, Fuscoe JC, Paules R, Tucker CJ, Fare T, Coffey EM, He Y, Collins PJ, Jarnagin K, Fujimoto S, Ganter B, Kiser G, Kaysser-Kranich T, Sina J, Sistare FD: Use of a mixed tissue RNA design for performance assessments on multiple microarray formats. Nucleic Acids Research. 2005
Google Scholar
Mittempergher L, De Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, Rutgers EJT, Wessels LFA, Van't Veer LJ: Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS ONE. 2011
Google Scholar
Dunning MJ, Barbosa-Morais NL, Lynch AG, Tavare S, Ritchie M: Statistical issues in the analysis of Illumina data. BMC Bioinformatics. 2008
Google Scholar
Barnes M: Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Research. 2005
Google Scholar
Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Dixon JM, Bartlett JMS: Gene expression profiling of response to mTOR inhibitor everolimus in pre-operatively treated post-menopausal women with oestrogen receptor-positive breast cancer. Breast Cancer Research and Treatment. 2010
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009
Google Scholar
Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Research. 2009
Google Scholar
Neter J, Wasserman W, H Kutner M: Applied linear statistical models: regression, analysis of variance, and Experimental Designs. 1985
Google Scholar
Tichopad A, Kitchen R, Riedmaier I, Becker C, Stahlberg A, Kubista M: Design and optimization of reverse-transcription quantitative PCR experiments. Clinical Chemistry. 2009
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D: Linear and nonlinear mixed effects models. R package version. 2005
Google Scholar
Lindstrom M, Bates D: Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal of the American Statistical Association. 1988
Google Scholar
Laird N, Ware J: Random-Effects Models for Longitudinal Data. Biometrics. 1982
Google Scholar
Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology. 2004
Google Scholar
Ihaka R, Gentleman R: R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics. 1996
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology. 2004
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America. 2001
Google Scholar