Coombe BG: The Development of Fleshy Fruits. Annu Rev Plant Physiol. 1976, 27: 207-228. 10.1146/annurev.pp.27.060176.001231.
Article
CAS
Google Scholar
Fei ZJ, Tang XM, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ: Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 2004, 40 (1): 47-59. 10.1111/j.1365-313X.2004.02188.x.
Article
PubMed
Google Scholar
Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M: Physiology of citrus fruiting. Braz J Plant Physiol. 2007, 19: 333-362.
Article
CAS
Google Scholar
Bain JM: Morphological, anatomical, and physiological changes in the developing fruit of the Valencia orange, Citrus sinensis (L) Osbeck. Aust J Bot. 1958, 6 (1): 1-23. 10.1071/BT9580001.
Article
CAS
Google Scholar
Mohammad A, Shangwu C, Yechun W, Oliver Y, Laszlo K, Wenping Q: Berry skin development in Norton grape: Distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol. 2011, 11: 7-10.1186/1471-2229-11-7.
Article
Google Scholar
Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR: Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC genomics. 2007, 8 (1): 429-10.1186/1471-2164-8-429.
Article
PubMed Central
PubMed
Google Scholar
Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C: Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC genomics. 2007, 8 (1): 428-10.1186/1471-2164-8-428.
Article
PubMed Central
PubMed
Google Scholar
Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M: Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010, 152 (4): 1787-10.1104/pp.109.149716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moriguchi T, Kita M, Hisada S, Endo-Inagaki T, Omura M: Characterization of gene repertoires at mature stage of citrus fruits through random sequencing and analysis of redundant metallothionein-like genes expressed during fruit development1. Gene. 1998, 211 (2): 221-227. 10.1016/S0378-1119(98)00138-3.
Article
CAS
PubMed
Google Scholar
Shimada T, Fuiii H, Endo T, Yazaki J, Kishimoto N, Shimbo K, Kikuchi S, Omura M: Toward comprehensive expression profiling by microarray analysis in citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Sci. 2005, 168 (5): 1383-1385. 10.1016/j.plantsci.2005.01.013.
Article
CAS
Google Scholar
Fujii H, Shimada T, Sugiyama A, Nishikawa F, Endo T, Nakano M, Ikoma Y, Shimizu T, Omura M: Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Sci. 2007, 173 (3): 340-348. 10.1016/j.plantsci.2007.06.006.
Article
CAS
Google Scholar
Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M: Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol. 2006, 62 (4): 513-527. 10.1007/s11103-006-9037-7.
Article
PubMed
Google Scholar
Soule J, Grierson W: Anatomy and physiology. Fresh citrus fruits. Edited by: W. Wardowski, S. Nagy, and W. Grierson. 1986, AVI, Westport, Conn, 1-22.
Chapter
Google Scholar
Sadka A, Dahan E, Cohen L, Marsh KB: Aconitase activity and expression during the development of lemon fruit. Physiol Plantarum. 2000, 108 (3): 255-262. 10.1034/j.1399-3054.2000.108003255.x.
Article
CAS
Google Scholar
Sadka A, Dahan E, Or E, Cohen L: NADP(+)-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci. 2000, 158 (1-2): 173-181. 10.1016/S0168-9452(00)00328-9.
Article
CAS
PubMed
Google Scholar
Katz E, Fon M, Lee YJ, Phinney BS, Sadka A, Blumwald E: The citrus fruit proteome: insights into citrus fruit metabolism. Planta. 2007, 226 (4): 989-1005. 10.1007/s00425-007-0545-8.
Article
CAS
PubMed
Google Scholar
Wang YC, Chuang YC, Hsu HW: The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106 (1): 277-284. 10.1016/j.foodchem.2007.05.086.
Article
CAS
Google Scholar
Fanciullino AL, Dhuique-Mayer C, Froelicher Y, Talón M, Ollitrault P, Morillon R: Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J Agr Food Chem. 2008, 56 (10): 3628-3638. 10.1021/jf0732051.
Article
CAS
Google Scholar
Alquézar B, Zacarías L, Rodrigo MJ: Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. J Exp Bot. 2009, 60 (6): 1783-1797. 10.1093/jxb/erp048.
Article
PubMed Central
PubMed
Google Scholar
Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ: A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot. 2007, 58 (15-16): 4161-4171. 10.1093/jxb/erm273.
Article
CAS
PubMed
Google Scholar
Huff A: Sugar Regulation of Plastid Interconversions in Epicarp of Citrus Fruit. Plant Physiol. 1984, 76: 307-312. 10.1104/pp.76.2.307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Télef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P: Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol. 2006, 62: 453-469. 10.1007/s11103-006-9033-y.
Article
PubMed
Google Scholar
Sienkiewicz-Porzucek A, Nunes-Nesi A, Sulpice R, Lisec J, Centeno DC, Carillo P, Leisse A, Urbanczyk-Wochniak E, Fernie AR: Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth. Plant Physiol. 2008, 147 (1): 115-127. 10.1104/pp.108.117978.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Q, Zhu AD, Chai LJ, Zhou WJ, Yu KQ, Ding J, Xu J, Deng X: Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J Exp Bot. 2009, 60 (3): 801-813. 10.1093/jxb/ern329.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu Q, Yu KQ, Zhu AD, Ye JL, Liu Q, Zhang JC, Deng XX: Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics. 2009, 10: 540-10.1186/1471-2164-10-540.
Article
PubMed Central
PubMed
Google Scholar
Liu YZ, Liu Q, Tao NG, Deng XX: Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). J HAU. 2006, 25: 300-304.
CAS
Google Scholar
Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B: Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell. 1999, 10 (6): 1859-1872.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartolozzi F, Bertazza G, Bassi D, Cristoferi G: Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr A. 1997, 758 (1): 99-107. 10.1016/S0021-9673(96)00709-1.
Article
PubMed
Google Scholar
North MJ, Nicol K, Sands TW, Cotter DA: Acid-activatable cysteine proteinases in the cellular slime mold Dictyostelium discoideum. J Biol Chem. 1996, 271 (24): 14462-10.1074/jbc.271.24.14462.
Article
CAS
PubMed
Google Scholar
Prasanna V, Prabha TN, Tharanathan RN: Fruit Ripening Phenomena-An Overview. Crit Rev Food Sci Nutr. 2007, 47 (1): 1-19. 10.1080/10408390600976841.
Article
CAS
PubMed
Google Scholar
Talon M, Gmitter FG: Citrus genomics. Int J Plant Genomics. 2008, 2008: 528361-
Article
PubMed Central
PubMed
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome research. 2008, 18 (9): 1509-1517. 10.1101/gr.079558.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goulao LF, Oliveira CM: Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends Food Sci Tech. 2008, 19 (1): 4-25. 10.1016/j.tifs.2007.07.002.
Article
CAS
Google Scholar
Singh R: 65-year research on citrus granulation. Ind J Hort. 2001, 58 (1-2): 112-144.
Google Scholar
Sharma RR, Saxena SK: Rootstocks influence granulation in Kinnow mandarin (Citrus nobilis C. deliciosa). Sci Hort. 2004, 101 (3): 235-242. 10.1016/j.scienta.2003.10.010.
Article
Google Scholar
Waldron KW, Parker ML, Smith AC: Plant cell walls and food quality. Compr Rev Food Sci Food saf. 2003, 2 (4): 128-146. 10.1111/j.1541-4337.2003.tb00019.x.
Article
Google Scholar
Giovannoni JJ: Genetic regulation of fruit development and ripening. Plant Cell. 2004, 16: S170-10.1105/tpc.019158.
Article
PubMed Central
CAS
PubMed
Google Scholar
Licciardello C, Russo MP, Vale' G, Recupero RG: Identification of differentially expressed genes in the flesh of blood and common oranges. Tree Genet Genomes. 2008, 4 (2): 315-331. 10.1007/s11295-007-0111-3.
Article
Google Scholar
Catala C, Rose JKC, York WS, Albersheim P, Darvill AG, Bennett AB: Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol. 2001, 127 (3): 1180-10.1104/pp.010481.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brummell DA, Harpster MH, Dunsmuir P: Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol. 1999, 39 (1): 161-169. 10.1023/A:1006130018931.
Article
CAS
PubMed
Google Scholar
Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA: Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J Exp Bot. 2011
Google Scholar
Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T: Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot. 2002, 53 (366): 61-10.1093/jexbot/53.366.61.
Article
CAS
PubMed
Google Scholar
Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, Or E, Lavi U, Lewinsohn E, Eyal Y: Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 2003, 36 (5): 664-674. 10.1046/j.1365-313X.2003.01910.x.
Article
CAS
PubMed
Google Scholar
Mayer MP, Beyer P, Kleinig H: Quinone compounds are able to replace molecular oxygen as terminal electron acceptor in phytoene desaturation in chromoplasts of Narcissus pseudonarcissus L. Eur J Biochem. 1990, 191 (2): 359-363. 10.1111/j.1432-1033.1990.tb19130.x.
Article
CAS
PubMed
Google Scholar
Nashilevitz S, Melamed-Bessudo C, Izkovich Y, Rogachev I, Osorio S, Itkin M, Adato A, Pankratov I, Hirschberg J, Fernie AR: An Orange Ripening Mutant Links Plastid NAD (P) H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation. Plant Cell. 2010, 22 (6): 1977-1997. 10.1105/tpc.110.074716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moller IM: Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol. 2001, 52: 561-591. 10.1146/annurev.arplant.52.1.561.
Article
CAS
PubMed
Google Scholar
Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol London. 2003, 552 (2): 335-344. 10.1113/jphysiol.2003.049478.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan ZY, Liu Q, Yun Z, Guan R, Zeng WF, Xu Q, Deng XX: Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics. 2009, 9 (24): 5455-5470. 10.1002/pmic.200900092.
Article
CAS
PubMed
Google Scholar
May MJ, Vernous T, Leaver C, Van Montagu M, Inzé D: Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot. 1998, 49: 649-667. 10.1093/jexbot/49.321.649.
CAS
Google Scholar
Neuhaus HE, Emes MJ: Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol. 2000, 51: 111-140. 10.1146/annurev.arplant.51.1.111.
Article
CAS
PubMed
Google Scholar
Stryer L: Biochemistry. 1989, W.H.Freeman and Co., San Francisco, CA, 3
Google Scholar
Couee I, Sulmon C, Gouesbet G, El Amrani A: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot. 2006, 57 (3): 449-459. 10.1093/jxb/erj027.
Article
CAS
PubMed
Google Scholar
Clinton SK: Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutr Rev. 1998, 56 (2): 35-51.
Article
CAS
PubMed
Google Scholar
Giuliano G, Bartley GE, Scolnik PA: Regulation of carotenoid biosynthesis during tomato development. Plant Cell. 1993, 5 (4): 379-
Article
PubMed Central
CAS
PubMed
Google Scholar