Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW: An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet. 2002, 105: 577-584. 10.1007/s00122-002-0907-3.
Article
CAS
PubMed
Google Scholar
Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T: QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet. 2005, 110: 527-536. 10.1007/s00122-004-1865-8.
Article
CAS
PubMed
Google Scholar
Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I: Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity. 2005, 95: 348-357. 10.1038/sj.hdy.6800729.
Article
CAS
PubMed
Google Scholar
Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F: A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet. 1999, 99: 445-452. 10.1007/s001220051256.
Article
CAS
PubMed
Google Scholar
Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO: Comparison and integration of genetic maps generated from F2 and BC1-type mapping populations in perennial ryegrass. Plant Breed. 2002, 121: 501-507. 10.1046/j.1439-0523.2002.00742.x.
Article
CAS
Google Scholar
Barre P, Mi F, Balfourier F, Ghesquière M: QTLs for morphogenetic traits and sensitivity to rusts in Lolium perenne. Proceedings of the Second International Symposium on Molecular Breeding of Forage Crops. Edited by: Spangenberg G. 2000, Lorne and Hamilton, Victoria, Australia, 60-November 19–24, 2000
Google Scholar
van Loo EN, Dolstra O, Humphreys MO, Wolters L, Luessink W, de Riek W, Bark N: Lower nitrogen losses through marker assisted selection for nitrogen use efficiency and feeding value (NIMGRASS). Vort Pflanz. 2003, 59: 270-279.
Google Scholar
Anhalt U, Heslop-Harrison JP, Byrne S, Guillard A, Barth S: Segregation distortion in Lolium: evidence for genetic effects. Theor Appl Genet. 2008, 117: 297-306. 10.1007/s00122-008-0774-7.
Article
CAS
PubMed
Google Scholar
Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC: Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet. 2004, 110: 12-32. 10.1007/s00122-004-1785-7.
Article
CAS
PubMed
Google Scholar
Lauvergeat V, Barre P, Bonnet M, Ghesquière M: Sixty simple sequence repeat markers for use in the Festuca-Lolium complex of grasses. Mol Ecol Notes. 2005, 5: 401-405. 10.1111/j.1471-8286.2005.00941.x.
Article
CAS
Google Scholar
Kopecky D, Bartos J, Lukaszewski A, Baird J, Cernoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T: Development and mapping of DArT markers within the Festuca - Lolium complex. BMC Genomics. 2009, 10: 473-10.1186/1471-2164-10-473.
Article
PubMed Central
PubMed
Google Scholar
Studer B, Asp T, Frei U, Hentrup S, Meally H, Guillard A, Barth S, Muylle H, Roldán-Ruiz I, Barre P: Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.). Mol Breed. 2008, 21: 533-548. 10.1007/s11032-007-9148-0.
Article
CAS
Google Scholar
Jensen LB, Muylle H, Arens P, Andersen CH, Holm PB, Ghesquière M, Julier B, Lübberstedt T, Nielsen KK, Riek JD: Development and mapping of a public reference set of SSR markers in Lolium perenne L. Mol Ecol Notes. 2005, 5: 951-957. 10.1111/j.1471-8286.2005.01043.x.
Article
Google Scholar
Schejbel B, Jensen LB, Xing Y, Lübberstedt T: QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection. Plant Breed. 2007, 126: 347-352. 10.1111/j.1439-0523.2007.01385.x.
Article
Google Scholar
Schejbel B, Jensen LB, Asp T, Xing Y, Lübberstedt T: Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass (Lolium perenne L.). Plant Breed. 2008, 127: 368-375. 10.1111/j.1439-0523.2007.01477.x.
Article
CAS
Google Scholar
Studer B, Jensen LB, Hentrup S, Brazauskas G, Kölliker R, Lübberstedt T: Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet. 2008, 117: 781-791. 10.1007/s00122-008-0819-y.
Article
PubMed
Google Scholar
Jonavičienė K, Studer B, Asp T, Jensen LB, Paplauskienė V, Lazauskas S, Brazauskas G: Identification of genes involved in a 6-days water deprivation response in timothy (Phleum pratense L.) and mapping of orthologous loci in perennial ryegrass (Lolium perenne L.). Biol Plantarum. 2011, : -in press
Google Scholar
Rafalski A: Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002, 5: 94-100. 10.1016/S1369-5266(02)00240-6.
Article
CAS
PubMed
Google Scholar
Ponting RC, Drayton MC, Cogan NOI, Dobrowolski MP, Spangenberg GC, Smith KF, Forster JW: SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Gen Genomics. 2007, 278: 585-597. 10.1007/s00438-007-0275-4.
Article
CAS
Google Scholar
Gupta PK, Rustgi S, Mir RR: Array-based high-throughput DNA markers for crop improvement. Heredity. 2008, 101: 5-18. 10.1038/hdy.2008.35.
Article
CAS
PubMed
Google Scholar
Hamblin MT, Buckler ES, Jannink J-L: Population genetics of genomics-based crop improvement methods. Trends Genet. 2011, 27: 98-106. 10.1016/j.tig.2010.12.003.
Article
CAS
PubMed
Google Scholar
Ganal MW, Altmann T, Röder MS: SNP identification in crop plants. Curr Opin Plant Biol. 2009, 12: 211-217. 10.1016/j.pbi.2008.12.009.
Article
CAS
PubMed
Google Scholar
Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW: Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Gen Genomics. 2006, 276: 101-112. 10.1007/s00438-006-0126-8.
Article
CAS
Google Scholar
Buetow KH, Edmonson MN, Cassidy AB: Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet. 1999, 21: 323-325. 10.1038/6851.
Article
CAS
PubMed
Google Scholar
Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M: Mining SNPs From EST Databases. Genome Res. 1999, 9: 167-174.
PubMed Central
CAS
PubMed
Google Scholar
Somers DJ, Kirkpatrick R, Moniwa M, Walsh A: Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome. 2003, 46: 431-437. 10.1139/g03-027.
Article
CAS
PubMed
Google Scholar
Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A: Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Gen Genomics. 2003, 270: 24-33. 10.1007/s00438-003-0891-6.
Article
CAS
Google Scholar
Morozova O, Marra MA: Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008, 92: 255-264. 10.1016/j.ygeno.2008.07.001.
Article
CAS
PubMed
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011, 12: 499-510. 10.1038/nrg3012.
Article
CAS
PubMed
Google Scholar
Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J: A first-generation haplotype map of maize. Science. 2009, 326: 1115-1117. 10.1126/science.1177837.
Article
CAS
PubMed
Google Scholar
Deschamps S, Rota ML, Ratashak JP, Biddle P, Thureen D, Farmer A, Luck S, Beatty M, Nagasawa N, Michael L: Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina genome analyzer. The Plant Genome. 2010, 3: 53-68. 10.3835/plantgenome2009.09.0026.
Article
CAS
Google Scholar
Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D: Rapid genomic characterization of the genus Vitis. PLoS ONE. 2010, 5: e8219-10.1371/journal.pone.0008219.
Article
PubMed Central
PubMed
Google Scholar
Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J-S, Choi I-Y, Hwang E-Y, Pastor-Corrales M, Cregan PB: High-throughput SNP discovery and assay development in common bean. BMC Genomics. 2010, 11: 475-10.1186/1471-2164-11-475.
Article
PubMed Central
PubMed
Google Scholar
Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB: High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics. 2010, 11: 38-10.1186/1471-2164-11-38.
Article
PubMed Central
PubMed
Google Scholar
Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS: SNP discovery via 454 transcriptome sequencing. Plant J. 2007, 51: 910-918. 10.1111/j.1365-313X.2007.03193.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trick M, Long Y, Meng J, Bancroft I: Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J. 2009, 7: 334-346. 10.1111/j.1467-7652.2008.00396.x.
Article
CAS
PubMed
Google Scholar
Barbazuk WB, Schnable PS: SNP discovery by transcriptome pyrosequencing. Methods Mol Biol. 2011, 729: 225-246. 10.1007/978-1-61779-065-2_15.
Article
CAS
PubMed
Google Scholar
Milano I, Babbucci M, Panitz F, Ogden R, Nielsen RO, Taylor MI, Helyar SJ, Carvalho GR, Espiñeira M, Atanassova M: Novel tools for conservation genomics: Comparing two high-throughput approaches for SNP discovery in the transcriptome of the European hake. PLoS ONE. 2011, 6: e28008-10.1371/journal.pone.0028008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fan JB, Chee MS, Gunderson KL: Highly parallel genomic assays. Nat Rev Genet. 2006, 7: 632-644. 10.1038/nrg1901.
Article
CAS
PubMed
Google Scholar
Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF: From the cover: Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA. 2006, 103: 18656-18661. 10.1073/pnas.0606133103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sato K, Takeda K: An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet. 2009, 119: 613-619. 10.1007/s00122-009-1071-9.
Article
CAS
PubMed
Google Scholar
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S: Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009, 10: 582-10.1186/1471-2164-10-582.
Article
PubMed Central
PubMed
Google Scholar
Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P: High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet. 2008, 116: 945-952. 10.1007/s00122-008-0726-2.
Article
CAS
PubMed
Google Scholar
Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004, 16: 1667-1678. 10.1105/tpc.021345.
Article
PubMed Central
CAS
PubMed
Google Scholar
Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S: A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics. 2007, 176: 685-696. 10.1534/genetics.107.070821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sandve SR, Rudi H, Dørum G, Berg PR, Rognli OA: High-throughput genotyping of unknown genomic terrain in complex plant genomes: lessons from a case study. Mol Breed. 2010, 26: 711-718. 10.1007/s11032-010-9479-0.
Article
Google Scholar
Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M: Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet. 2010, 42: 1027-1030. 10.1038/ng.684.
Article
CAS
PubMed
Google Scholar
Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch J, Xu Y: High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed. 2010, 25: 441-451. 10.1007/s11032-009-9343-2.
Article
CAS
Google Scholar
Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J: Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE. 2009, 4: e8451-10.1371/journal.pone.0008451.
Article
PubMed Central
PubMed
Google Scholar
Akhunov E, Nicolet C, Dvorak J: Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet. 2009, 119: 507-517. 10.1007/s00122-009-1059-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW: SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome. 2010, 53: 948-956. 10.1139/G10-079.
Article
CAS
PubMed
Google Scholar
Asp T, Frei UK, Didion T, Nielsen KK, Lübberstedt T: Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol. 2007, 7: 36-10.1186/1471-2229-7-36.
Article
PubMed Central
PubMed
Google Scholar
Maliepaard C, Jansen J, Van Ooijen JW: Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res. 1997, 70: 237-250. 10.1017/S0016672397003005.
Article
Google Scholar
Studer B, Kölliker R, Muylle H, Asp T, Frei U, Roldán-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S: EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol. 2010, 10: 177-10.1186/1471-2229-10-177.
Article
PubMed Central
PubMed
Google Scholar
Van Ooijen JW: JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. 2006, Kyazma BV, Wageningen, Netherlands
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R: Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet. 2006, 113: 661-671. 10.1007/s00122-006-0330-2.
Article
CAS
PubMed
Google Scholar
Varshney RK, Nayak SN, May GD, Jackson SA: Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27: 522-530. 10.1016/j.tibtech.2009.05.006.
Article
CAS
PubMed
Google Scholar
Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng JL, Wang XW: Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol. 2011, 29: 762-766. 10.1038/nbt.1926.
Article
CAS
PubMed
Google Scholar
Edwards D, Batley J: Plant genome sequencing: applications for crop improvement. Plant Biotechnol J. 2010, 8: 2-9. 10.1111/j.1467-7652.2009.00459.x.
Article
CAS
PubMed
Google Scholar
Imelfort M, Duran C, Batley J, Edwards D: Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J. 2009, 7: 312-317. 10.1111/j.1467-7652.2009.00406.x.
Article
CAS
PubMed
Google Scholar
Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R: Sequencing crop genomes: approaches and applications. New Phytol. 2011, 191: 915-925. 10.1111/j.1469-8137.2011.03804.x.
Article
CAS
PubMed
Google Scholar
Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön C-C, Taudien S, Scholz U, Stein N, Mayer KFX, Bauer E: From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011, 11: 131-10.1186/1471-2229-11-131.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lepoittevin C, Frigerio J-M, Garnier-Géré P, Salin F, Cervera M-T, Vornam B, Harvengt L, Plomion C: In vitro vs in silico detected SNPs for the development of a genotyping array: What can we learn from a non-model species?. PLoS ONE. 2010, 5: e11034-10.1371/journal.pone.0011034.
Article
PubMed Central
PubMed
Google Scholar
Chancerel E, Lepoittevin C, Le Provost G, Lin Y-C, Jaramillo-Correa JP, Eckert AJ, Wegrzyn JL, Zelenika D, Boland A, Frigerio J-M: Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics. 2011, 12: 368-10.1186/1471-2164-12-368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Everett MV, Grau ED, Seeb JE: Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome. Mol Ecol Resour. 2011, 11: 93-108.
Article
PubMed
Google Scholar
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007, 8: R143-10.1186/gb-2007-8-7-r143.
Article
PubMed Central
PubMed
Google Scholar
You FM, Huo N, Deal KR, Gu YQ, Luo M-C, McGuire PE, Dvorak J, Anderson OD: Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics. 2011, 12: 59-10.1186/1471-2164-12-59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huo N, Garvin DF, You FM, McMahon S, Luo M, Cheng , Gu YQ, Lazo GR, Vogel JP: Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon. Theor Appl Genet. 2011, 123: 455-464. 10.1007/s00122-011-1598-4.
Article
PubMed
Google Scholar
Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Henaut I, Burstin J, Aubert G: Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics. 2010, 11: 468-10.1186/1471-2164-11-468.
Article
PubMed Central
PubMed
Google Scholar
Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J: Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics. 2008, 9: 21-10.1186/1471-2164-9-21.
Article
PubMed Central
PubMed
Google Scholar
Hyten DL, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB: A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci. 2010, 50: 960-968. 10.2135/cropsci2009.06.0360.
Article
CAS
Google Scholar
Anithakumari AM, Tang J, van Eck HJ, Visser RGF, Leunissen JAM, Vosman B, van der Linden C: A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed. 2010, 26: 65-75. 10.1007/s11032-009-9377-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ahuja MR: Recent advances in molecular genetics of forest trees. Euphytica. 2001, 121: 173-195. 10.1023/A:1012226319449.
Article
CAS
Google Scholar
Grattapaglia D, Silva OB, Kirst M, de Lima BM, Faria DA, Pappas GJ: High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC Plant Biol. 2011, 11: 65-10.1186/1471-2229-11-65.
Article
PubMed Central
CAS
PubMed
Google Scholar
Andersen JR, Jensen LB, Asp T, Lübberstedt T: Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and Rice (Oryza sativa) Hd1. Plant Mol Biol. 2006, 60: 481-494. 10.1007/s11103-005-4815-1.
Article
CAS
PubMed
Google Scholar
Studer B, Jensen LB, Fiil A, Asp T: “Blind” mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis. Mol Breed. 2009, 24: 191-199. 10.1007/s11032-009-9291-x.
Article
CAS
Google Scholar
Jensen CS, Salchert K, Nielsen KK: A terminal flower1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol. 2001, 125: 1517-1528. 10.1104/pp.125.3.1517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu D, Dunbar M, Dubcovsky J: Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Mol Gen Genomics. 2007, 277: 301-313. 10.1007/s00438-006-0189-6.
Article
CAS
Google Scholar
Livingston DT, Hincha DK, Heyer AG: Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci. 2009, 66: 2007-2023. 10.1007/s00018-009-0002-x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wichmann F, Asp T, Widmer F, Kölliker R: Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet. 2011, 122: 567-579. 10.1007/s00122-010-1470-y.
Article
PubMed
Google Scholar
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE: A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol. 2009, 149: 286-296. 10.1104/pp.108.128348.
Article
PubMed Central
CAS
PubMed
Google Scholar
Farrar K, Asp T, Lübberstedt T, Xu ML, Thomas AM, Christiansen C, Humphreys MO, Donnison IS: Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed. 2007, 19: 15-23.
Article
CAS
Google Scholar
Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney R, Perovic D, Grosse I, Graner A: A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet. 2007, 114: 823-839. 10.1007/s00122-006-0480-2.
Article
CAS
PubMed
Google Scholar
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H: Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011, 23: 1249-1263. 10.1105/tpc.110.082537.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bennetzen JL, Freeling M: Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 1993, 9: 259-261. 10.1016/0168-9525(93)90001-X.
Article
CAS
PubMed
Google Scholar
Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G: Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet. 2005, 110: 1011-1019. 10.1007/s00122-004-1916-1.
Article
CAS
PubMed
Google Scholar
Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F: An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome. 2002, 45: 282-295. 10.1139/g01-144.
Article
CAS
PubMed
Google Scholar
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T: High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19: 1068-1076. 10.1101/gr.089516.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meuwissen T, Goddard M: Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics. 2010, 185: 623-631. 10.1534/genetics.110.116590.
Article
PubMed Central
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011, 6: e19379-10.1371/journal.pone.0019379.
Article
PubMed Central
CAS
PubMed
Google Scholar
Studer B, Boller B, Bauer E, Posselt U, Widmer F, Kölliker R: Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet. 2007, 115: 9-17. 10.1007/s00122-007-0535-z.
Article
PubMed
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8: 175-185.
Article
CAS
PubMed
Google Scholar
Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8: 186-194.
Article
CAS
PubMed
Google Scholar
Gordon D, Abajian C, Green P: Consed: A graphical tool for sequence finishing. Genome Res. 1998, 8: 195-202.
Article
CAS
PubMed
Google Scholar
Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E: The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE. 2007, 2: e197-10.1371/journal.pone.0000197.
Article
PubMed Central
PubMed
Google Scholar
Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stitziel NO, Hillier L, Kwok P-Y, Gish WR: A general approach to single-nucleotide polymorphism discovery. Nat Genet. 1999, 23: 452-456. 10.1038/70570.
Article
CAS
PubMed
Google Scholar
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P: Highly parallel SNP genotyping. Cold Spring Harb Sym Quant Biol. 2003, 68: 69-78. 10.1101/sqb.2003.68.69.
Article
CAS
Google Scholar