Grünig CR, Sieber TN, Rogers SO, Holdenrieder O: Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Can J Bot. 2002, 80 (12): 1239-1249. 10.1139/b02-115.
Article
Google Scholar
Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS: Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Mol Phylogenet Evol. 2006, 41 (2): 295-312. 10.1016/j.ympev.2006.05.031.
Article
CAS
PubMed
Google Scholar
Grünig CR, Queloz V, Duò A, Sieber TN: Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark-septate conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res. 2009, 113 (2): 207-221. 10.1016/j.mycres.2008.10.005.
Article
PubMed
Google Scholar
Queloz V, Sieber TN: Holdenrieder, McDonald BA, Grünig CR: No biogeographical pattern for a root-associated fungal species complex. Global Ecol Biogeogr. 2011, 20 (1): 160-169. 10.1111/j.1466-8238.2010.00589.x.
Article
Google Scholar
Piercey MM, Graham SW, Currah RS: Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res. 2004, 108 (8): 955-964. 10.1017/S0953756204000528.
Article
CAS
PubMed
Google Scholar
Grünig CR, Queloz V, Sieber TN, Holdenrieder O: Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. - Acephala applanata species complex in tree roots—classification, population biology and ecology. Botany. 2008, 86 (12): 1355-1369. 10.1139/B08-108.
Article
Google Scholar
Zhang C, Yin L, Dai S: Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza. 2009, 19 (6): 417-423. 10.1007/s00572-009-0246-1.
Article
PubMed
Google Scholar
Grünig CR, Duò A, Sieber TN, Holdenrieder O: Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia. 2008, 100 (1): 47-67. 10.3852/mycologia.100.1.47.
Article
PubMed
Google Scholar
Grünig CR, Sieber TN: Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark septate endophyte Type 1. Mycologia. 2005, 97 (3): 628-640. 10.3852/mycologia.97.3.628.
Article
PubMed
Google Scholar
Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O: Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fung Genet Biol. 2004, 41 (7): 676-687. 10.1016/j.fgb.2004.03.004.
Article
Google Scholar
Grünig CR, Duò A, Sieber TN: Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fung Genet Biol. 2006, 43 (6): 410-421. 10.1016/j.fgb.2006.01.007.
Article
Google Scholar
Queloz V, Grünig CR, Sieber TN: Holdenrieder O: Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii s.l. New Phytol. 2005, 168 (3): 651-660. 10.1111/j.1469-8137.2005.01529.x.
Article
PubMed
Google Scholar
Peay KG, Kennedy PG, Bruns TD: Fungal Community Ecology: A Hybrid Beast with a Molecular Master. Bioscience. 2008, 58 (9): 799-810. 10.1641/B580907.
Article
Google Scholar
Grünig CR, Brunner PC, Duò A, Sieber TN: Suitability of methods for species recognition in the Phialocephala fortinii - Acephala applanata species complex using DNA analysis. Fung Genet Biol. 2007, 44 (8): 773-788. 10.1016/j.fgb.2006.12.008.
Article
Google Scholar
Queloz V, Duo A, Sieber TN, Grünig CR: Microsatellite size homoplasies and null alleles do not affect species diagnosis and population genetic analysis in a fungal species complex. Mol Ecol Resour. 2010, 10: 348-367. 10.1111/j.1755-0998.2009.02757.x.
Article
CAS
PubMed
Google Scholar
Pantou MP, Kouvelis VN, Typas MA: The complete mitochondrial genome of the vascular wilt fungus Verticillium dahliae: a novel gene order for Verticillium and a diagnostic tool for species identification. Curr Genet. 2006, 50 (2): 125-136. 10.1007/s00294-006-0079-9.
Article
CAS
PubMed
Google Scholar
Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN: Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA. 2007, 104 (10): 3901-3906. 10.1073/pnas.0611691104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kouvelis VN, Sialakouma A, Typas MA: Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species. Mycol Res. 2008, 112: 829-844. 10.1016/j.mycres.2008.01.016.
Article
CAS
PubMed
Google Scholar
Burger G, Gray M, Lang B: Mitochondrial genomes: anything goes. Trends Genet. 2003, 19 (12): 709-716. 10.1016/j.tig.2003.10.012.
Article
CAS
PubMed
Google Scholar
Ghikas DV, Kouvelis VN, Typas MA: Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1–5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 2010, 10: 174-10.1186/1471-2180-10-174.
Article
PubMed Central
PubMed
Google Scholar
Gray M, Burger G, Lang B: Mitochondrial evolution. Science. 1999, 283 (5407): 1476-1481. 10.1126/science.283.5407.1476.
Article
CAS
PubMed
Google Scholar
Lavin JL, Oguiza JA, Ramirez L, Pisabarro AG: Comparative genomics of the oxidative phosphorylation system in fungi. Fungal Genet Biol. 2008, 45 (9): 1248-1256. 10.1016/j.fgb.2008.06.005.
Article
CAS
PubMed
Google Scholar
Wu Y, Yang J, Yang F, Liu T, Leng W, Chu Y, Jin Q: Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes. BMC Genomics. 2009, 10: 238-10.1186/1471-2164-10-238.
Article
PubMed Central
PubMed
Google Scholar
Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G: Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa. Mol Biol Evol. 2009, 26 (10): 2299-2315. 10.1093/molbev/msp145.
Article
CAS
PubMed
Google Scholar
Monteiro-Vitorello CB, Hausner G, Searles DB, Gibb EA, Fulbright DW, Bertrand H: The Cryphonectria parasitica mitochondrial rns gene: Plasmid-like elements, introns and homing endonucleases. Fungal Genet Biol. 2009, 46 (11): 837-848. 10.1016/j.fgb.2009.07.005.
Article
CAS
PubMed
Google Scholar
Gibb E, Hausner G: Optional mitochondrial introns and evidence for a homing-endonuclease gene in the mtDNA rnl gene in Ophiostoma ulmi s. lat. Mycol Res. 2005, 109: 1112-1126. 10.1017/S095375620500376X.
Article
CAS
PubMed
Google Scholar
Torriani SFF, Goodwin SB, Kema GHJ, Pangilinan JL, McDonald BA: Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genet Biol. 2008, 45 (5): 628-637. 10.1016/j.fgb.2007.12.005.
Article
CAS
PubMed
Google Scholar
Kirk PM, Cannon PF, David JC, Stalpers JA: (Eds): Dictionary of the fungi. 2001, CAB International, Oxon, UK, 9
Google Scholar
Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002, 51 (3): 492-508. 10.1080/10635150290069913.
Article
PubMed
Google Scholar
Polevoda B, Sherman F: The diversity of acetylated proteins. Genome Biol. 2002, 3 (5): reviews0006-reviews0006.6.
Article
PubMed Central
PubMed
Google Scholar
Yoshikawa A, Isono S, Sheback A, Isono K: Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet. 1987, 209 (3): 481-488. 10.1007/BF00331153.
Article
CAS
PubMed
Google Scholar
Isono K, Isono S: Ribosomal protein modification in Escherichia coli. II. Studies of a mutant lacking the N-terminal acetylation of protein S18. Mol Gen Genet. 1980, 177 (4): 645-651.
Article
CAS
PubMed
Google Scholar
Hane JK, Lowe RGT, Solomon PS, Tan K-C, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE: Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell. 2007, 19 (11): 3347-3368. 10.1105/tpc.107.052829.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sethuraman J, Majer A, Iranpour M, Hausner G: Molecular Evolution of the mtDNA Encoded rps3 Gene Among Filamentous Ascomycetes Fungi with an Emphasis on the Ophiostomatoid Fungi. J Mol Evol. 2009, 69 (4): 372-385. 10.1007/s00239-009-9291-9.
Article
CAS
PubMed
Google Scholar
Debuchy R, Brygoo Y: Cloning of opal suppressor tRNA genes of a filamentous fungus reveals two tRNASerUGA genes with unexpected structural differences. EMBO J. 1985, 4 (13A): 3553-3556.
PubMed Central
CAS
PubMed
Google Scholar
Grimm M, Nass A, Schüll C, Beier H: Nucleotide sequences and functional characterization of two tobacco UAG suppressor tRNA(Gln) isoacceptors and their genes. Plant Mol Biol. 1998, 38 (5): 689-697. 10.1023/A:1006068303683.
Article
CAS
PubMed
Google Scholar
Baum M, Beier H: Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res. 1998, 26 (6): 1390-1395. 10.1093/nar/26.6.1390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beier H, Grimm M: Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 2001, 29 (23): 4767-4782. 10.1093/nar/29.23.4767.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy R-M: Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct. 2011, 6: 56-10.1186/1745-6150-6-56.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seligmann H: Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems. 2011, 105 (3): 271-285. 10.1016/j.biosystems.2011.05.010.
Article
CAS
PubMed
Google Scholar
Covello PS, Gray MW: Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J. 1992, 11 (11): 3815-3820.
PubMed Central
CAS
PubMed
Google Scholar
Harismendy O, Ng PC, Strausberg RL, Wang XY, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Levy S: Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 2009, 10 (3): R32-10.1186/gb-2009-10-3-r32.
Article
PubMed Central
PubMed
Google Scholar
Costanzo MC, Fox TD: Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet. 1990, 24: 91-113. 10.1146/annurev.ge.24.120190.000515.
Article
CAS
PubMed
Google Scholar
Cummings DJ, McNally KL, Domenico JM, Matsuura ET: The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet. 1990, 17 (5): 375-402. 10.1007/BF00334517.
Article
CAS
PubMed
Google Scholar
Kunisawa T: Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison. Antonie Van Leeuwenhoek. 2011, 99 (2): 417-422. 10.1007/s10482-010-9492-7.
Article
PubMed
Google Scholar
Sankoff D, Leduc G, Antoine N, Paquin B, Lang B, Cedergren R: Gene order comparisons for phylogenetic inference - Evolution of the mitochondrial genome. Proc Natl Acad Sci USA. 1992, 89 (14): 6575-6579. 10.1073/pnas.89.14.6575.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun X, Li H, Yu D: Complete mitochondrial genome sequence of the phytopathogenic fungus Penicillium digitatum and comparative analysis of closely related species. FEMS Microbiol Lett. 2011, 323 (1): 29-34. 10.1111/j.1574-6968.2011.02358.x.
Article
CAS
PubMed
Google Scholar
Kunisawa T: The phylogenetic placement of the non-phototrophic, Gram-positive thermophile 'Thermobaculum terrenum' and branching orders within the phylum 'Chloroflexi' inferred from gene order comparisons. Int J Systematic Evol Microbiol. 2011, 61: 1944-1953. 10.1099/ijs.0.026088-0.
Article
CAS
Google Scholar
Saccone C, Gissi C, Reyes A, Larizza A, Sbisa E, Pesole G: Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene. 2002, 286 (1): 3-12. 10.1016/S0378-1119(01)00807-1.
Article
CAS
PubMed
Google Scholar
Jühling F, Pütz J, Bernt M, Donath A, Middendorf M: Florentz C. 2011, Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res, Stadler PF
Google Scholar
Sommerhalder RJ, McDonald BA, Zhan J: Concordant evolution of mitochondrial and nuclear genomes in the wheat pathogen Phaeosphaeria nodorum. Fungal Genet Biol. 2007, 44 (8): 764-772. 10.1016/j.fgb.2007.01.003.
Article
CAS
PubMed
Google Scholar
Anderson J, Wickens C, Khan M, Cowen L, Federspiel N, Jones T, Kohn L: Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol. 2001, 183 (3): 865-872. 10.1128/JB.183.3.865-872.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Diepeningen AD, Goedbloed DJ, Slakhorst SM, Koopmanschap AB, Maas MFPM, Hoekstra RF, Debets AJM: Mitochondrial recombination increases with age in Podospora anserina. Mech Ageing Dev. 2010, 131 (5): 315-322. 10.1016/j.mad.2010.03.001.
Article
CAS
PubMed
Google Scholar
Barr CM, Neiman M, Taylor DR: Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 2005, 168 (1): 39-50. 10.1111/j.1469-8137.2005.01492.x.
Article
CAS
PubMed
Google Scholar
Seifert KA: Progress towards DNA barcoding of fungi. Mol Ecol Resour. 2009, 9: 83-89.
Article
CAS
PubMed
Google Scholar
Ghikas DV, Kouvelis VN, Typas MA: The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Arch Microbiol. 2006, 185 (5): 393-401. 10.1007/s00203-006-0104-x.
Article
CAS
PubMed
Google Scholar
Zaffarano PL, Duò A, Grünig CR: Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. -Acephala applanata species complex. Fungal Genet Biol. 2010, 47 (9): 761-772. 10.1016/j.fgb.2010.06.001.
Article
CAS
PubMed
Google Scholar
NCBI ORF finder:.http://www.ncbi.nlm.nih.gov/gorf/gorf.html,
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
EMBOSS tools:.http://www.ebi.ac.uk/Tools/pfa/iprscan/,
Lowe T, Eddy S: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25 (5): 955-964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lang BF, Laforest M-J, Burger G: Mitochondrial introns: a critical view. Trends Genet. 2007, 23 (3): 119-125. 10.1016/j.tig.2007.01.006.
Article
CAS
PubMed
Google Scholar
Sonnhammer EL, Durbin R: A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995, 167 (1–2): GC1-GC10.
CAS
PubMed
Google Scholar
Gremme G, Brendel V, Sparks M, Kurtz S: Engineering a software tool for gene structure prediction in higher organisms. Inform Software Tech. 2005, 47 (15): 965-978. 10.1016/j.infsof.2005.09.005.
Article
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT: Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res. 2004, 14 (7): 1394-1403. 10.1101/gr.2289704.
Article
PubMed Central
CAS
PubMed
Google Scholar
MAFFT:.http://mafft.cbrc.jp/alignment/server/index.html,
Gblocks 0.91b:.http://www.phylogeny.fr/version2_cgi/one_task.cgi?task_type=gblocks,
Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M: CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007, 23 (21): 2957-2958. 10.1093/bioinformatics/btm468.
Article
CAS
PubMed
Google Scholar
Bernt M, Merkle D, Middendorf M: An Algorithm for Inferring Mitochondrial Genome Rearrangements in a Phylogenetic Tree. In Comparative Genomics International Workshop, RECOMB-CG: Paris, Lecture Notes in Computer Sciences (LNCS). Berlin: Springer. 2008, 2008: 143-157.
Google Scholar
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003, 19 (18): 2496-2497. 10.1093/bioinformatics/btg359.
Article
CAS
PubMed
Google Scholar
Hey J, Wakeley J: A coalescent estimator of the population recombination rate. Genetics. 1997, 145: 833-846.
PubMed Central
CAS
PubMed
Google Scholar
Su X, Wu Y, Sifri C, Wellems T: Reduced extension temperatures required for PCR amplification of extremely A + T-rich DNA. Nucleic Acids Res. 1996, 24 (8): 1574-1575. 10.1093/nar/24.8.1574.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jobb G: TREEFINDER version of November 2010.http://www.treefinder.de/,
Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011, 27 (8): 1164-1165. 10.1093/bioinformatics/btr088.
Article
CAS
PubMed
Google Scholar
Swofford DL: PAUP: pylogenetic analysis using parsimony, version 3.1.1. 1993, Illinois Natural History Survey, Champaign, IL
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25 (7): 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
CAS
PubMed
Google Scholar