Barakat MT, Humke EW, Scott MP: Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends in Molecular Medicine. 2010, 16 (8): 337-48. 10.1016/j.molmed.2010.05.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sasaki H, Hui C, Nakafuku M, Kondoh H: A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development. 1997, 124: 1313-22.
CAS
PubMed
Google Scholar
Bai CB, Stephen D, Joyner AL: All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Developmental Cell. 2004, 6: 103-15. 10.1016/S1534-5807(03)00394-0.
Article
CAS
PubMed
Google Scholar
Persson M, Stamataki D, te Welscher P: Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes & Development. 2002, 16: 2865-78. 10.1101/gad.243402.
Article
CAS
Google Scholar
Vokes SA, Ji H, McCuine S: Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development. 2007, 134: 1977-89. 10.1242/dev.001966.
Article
CAS
PubMed
Google Scholar
Lee EY, Ji H, Ouyang Z: Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America. 2010, 107: 9736-41. 10.1073/pnas.1004602107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bergeron SA, Milla LA, Villegas R: Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos. Genomics. 2008, 91: 165-77. 10.1016/j.ygeno.2007.09.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vokes SA, Ji H, Wong WH, McMahon AP: A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes & Development. 2008, 22: 2651-2663. 10.1101/gad.1693008.
Article
CAS
Google Scholar
Zeng J, Yan J, Wang T: Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins. Nucleic Acids Research. 2008, 36: e8-
Article
PubMed Central
PubMed
Google Scholar
Soellick TR, Uhrig JF: Development of an optimized interaction-mating protocol for large-scale yeast two-hybrid analyses. Genome Biology. 2001, 2: RESEARCH0052-
Article
PubMed Central
CAS
PubMed
Google Scholar
Kinzler KW, Vogelstein B: The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Molecular and Cellular Biology. 1990, 10: 634-42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoon JW, Kita Y, Frank DJ: Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. The Journal of Biological Chemistry. 2002, 277: 5548-55. 10.1074/jbc.M105708200.
Article
CAS
PubMed
Google Scholar
Bailey TL, Gribskov M: Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998, 14: 48-54. 10.1093/bioinformatics/14.1.48.
Article
CAS
PubMed
Google Scholar
Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings/... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology. 1994, 2: 28-36.
CAS
Google Scholar
Sinha S, Chen JK: Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nature Chemical Biology. 2006, 2: 29-30. 10.1038/nchembio753.
Article
CAS
PubMed
Google Scholar
Wilson NH, Key B: Neogenin: one receptor, many functions. The International Journal of Biochemistry & Cell Biology. 2007, 39: 874-8. 10.1016/j.biocel.2006.10.023.
Article
CAS
Google Scholar
Vita M, Henriksson M: The Myc oncoprotein as a therapeutic target for human cancer. Seminars in Cancer Biology. 2006, 16: 318-30. 10.1016/j.semcancer.2006.07.015.
Article
CAS
PubMed
Google Scholar
Chaplin N, Tendeng C, Wingate RJT: Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2010, 30: 3048-57. 10.1523/JNEUROSCI.6201-09.2010.
Article
CAS
Google Scholar
Feijóo CG, Oñate MG, Milla LA, Palma VA: Sonic hedgehog (Shh)-Gli signaling controls neural progenitor cell division in the developing tectum in zebrafish. The European Journal of Neuroscience. 2011, 33: 589-98. 10.1111/j.1460-9568.2010.07560.x.
Article
PubMed
Google Scholar
Lee CS, Buttitta LA, May NR, Kispert A, Fan CM: SHH-N upregulates Sfrp2 to mediate its competitive interaction with WNT1 and WNT4 in the somitic mesoderm. Development. 2000, 127: 109-18.
CAS
PubMed
Google Scholar
Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M: The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine. The Journal of Biological Chemistry. 2009, 284: 1234-41.
Article
CAS
PubMed
Google Scholar
Tendeng C, Houart C: Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Expression Patterns : GEP. 2006, 6: 761-71. 10.1016/j.modgep.2006.01.006.
Article
CAS
PubMed
Google Scholar
Roy S, Wolff C, Ingham PW: The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes & Development. 2001, 15: 1563-76. 10.1101/gad.195801.
Article
CAS
Google Scholar
Varjosalo M, Björklund M, Cheng F: Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell. 2008, 133: 537-48. 10.1016/j.cell.2008.02.047.
Article
CAS
PubMed
Google Scholar
Hallikas O, Palin K, Sinjushina N: Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell. 2006, 124: 47-59. 10.1016/j.cell.2005.10.042.
Article
CAS
PubMed
Google Scholar
Varjosalo M, Li S-P, Taipale J: Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Developmental Cell. 2006, 10: 177-86. 10.1016/j.devcel.2005.12.014.
Article
CAS
PubMed
Google Scholar
Pavletich NP, Pabo CO: Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993, 261: 1701-7. 10.1126/science.8378770.
Article
CAS
PubMed
Google Scholar
Winklmayr M, Schmid C, Laner-Plamberger S: Non-consensus GLI binding sites in Hedgehog target gene regulation. BMC Molecular Biology. 2010, 11: 2-10.1186/1471-2199-11-2.
Article
PubMed Central
PubMed
Google Scholar
Parker DS, White MA, Ramos AI, Cohen BA, Barolo S: The cis-regulatory logic of Hedgehog gradient responses: key roles for gli binding affinity, competition, and cooperativity. Sci Signal. 2011, 4: ra38-10.1126/scisignal.2002077.
Article
PubMed Central
PubMed
Google Scholar
Descamps S, Arzouk H, Bacou F: Inhibition of myoblast differentiation by Sfrp1 and Sfrp2. Cell and Tissue Research. 2008, 332: 299-306. 10.1007/s00441-008-0574-z.
Article
CAS
PubMed
Google Scholar
Pelengaris S, Khan M, Evan G: c-MYC: more than just a matter of life and death. Nature reviews Cancer. 2002, 2: 764-76. 10.1038/nrc904.
Article
CAS
PubMed
Google Scholar
Vries M, De Cooper HM: Emerging roles for neogenin and its ligands in CNS development. Journal of Neurochemistry. 2008, 106: 1483-92. 10.1111/j.1471-4159.2008.05485.x.
Article
PubMed
Google Scholar
Du SJ, Dienhart M: Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish. Differentiation; research in biological diversity. 2001, 67: 84-91.
Article
CAS
PubMed
Google Scholar
Kongkham PN, Northcott PA, Croul SE: The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene. 2010, 29: 3017-24. 10.1038/onc.2010.32.
Article
CAS
PubMed
Google Scholar
Ingram WJ, Wicking CA, Grimmond SM, Forrest AR, Wainwright BJ: Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene. 2002, 21: 8196-205. 10.1038/sj.onc.1205975.
Article
CAS
PubMed
Google Scholar
Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters. 2003, 339: 62-6. 10.1016/S0304-3940(02)01423-4.
Article
CAS
PubMed
Google Scholar
Talke IN, Hanikenne M, Krämer U: Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology. 2006, 142: 148-67. 10.1104/pp.105.076232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Westerfield M: The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 1993, Eugene: Univ. of Oregon Press, 4
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 1995, 203: 253-310. 10.1002/aja.1002030302.
Article
CAS
Google Scholar
Stickney HL, Barresi MJ, Devoto SH: Somite development in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 2000, 219: 287-303. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1065>3.0.CO;2-A.
Article
CAS
Google Scholar
Varga ZM, Amores A, Lewis KE: Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development. 2001, 128: 3497-509.
CAS
PubMed
Google Scholar
Karlstrom RO, Trowe T, Klostermann S: Zebrafish mutations affecting retinotectal axon pathfinding. Development. 1996, 123: 427-38.
CAS
PubMed
Google Scholar
Oxtoby E, Jowett T: Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Research. 1993, 21: 1087-95. 10.1093/nar/21.5.1087.
Article
PubMed Central
CAS
PubMed
Google Scholar