Kjørsvik E, Mangor Jensen A, Holmefjord I: Egg quality in fishes. Adv Mar Biol. 1990, 26: 71-113.
Article
Google Scholar
Brooks S, Tyler CR, Sumpter JP: Egg quality in fish: what makes a good egg?. Rev Fish Biol Fisher. 1997, 7 (4): 387-416. 10.1023/A:1018400130692.
Article
Google Scholar
Kjesbu OS, Solemdal P, Bratland P, Fonn M: Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can J Fish Aquat Sci. 1996, 53 (3): 610-620. 10.1139/f95-215.
Article
Google Scholar
Bobe J, Labbé C: Egg and sperm quality in fish. Gen Comp Endocrinol. 2010, 165 (3): 535-548. 10.1016/j.ygcen.2009.02.011.
Article
CAS
PubMed
Google Scholar
Evsikov AV, Marín de Evsikova C: Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eucaryotic translation initiation factor 4E in Tetrapoda. Dev Genes Evol. 2009, 219 (2): 111-118. 10.1007/s00427-008-0268-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S: Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res. 2011, 21 (8): 1328-1338. 10.1101/gr.116012.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Voeltz GK, Steitz JA: AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Mol Cell Biol. 1998, 18 (12): 7537-7545.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paillard L, Omilli F, Legagneux V, Bassez T, Maniey D, Osborne HB: EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 1998, 17 (1): 278-287. 10.1093/emboj/17.1.278.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tadros W, Lipshitz HD: The maternal-to-zygotic transition: a play in two acts. Development. 2009, 136: 3033-3042. 10.1242/dev.033183.
Article
CAS
PubMed
Google Scholar
Newport J, Kirschner M: A major developmental transition in early Xenopus embryos 1: characterization and timing of cellular changes at the midblastula stage. Cell. 1982, 30 (3): 675-686. 10.1016/0092-8674(82)90272-0.
Article
CAS
PubMed
Google Scholar
Newport J, Kirschner M: A major developmental transition in early Xenopus embryos: 2: control of the onset of transcription. Cell. 1982, 30 (3): 687-696. 10.1016/0092-8674(82)90273-2.
Article
CAS
PubMed
Google Scholar
Kane DA, Kimmel CB: The zebrafish midblastula transition. Development. 1993, 119 (2): 447-456.
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203 (3): 253-310. 10.1002/aja.1002030302.
Article
CAS
PubMed
Google Scholar
Kraeussling M, Wagner TU, Schartl M: Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula Medaka embryos. PLoS One. 2011, 6 (7): e21741-10.1371/journal.pone.0021741.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bachvarova R, De Leon V: Polyadenylated RNA of mouse ova and loss of maternal RNA in early development. Dev Biol. 1980, 74 (1): 1-8. 10.1016/0012-1606(80)90048-2.
Article
CAS
PubMed
Google Scholar
Piko L, Clegg KB: Quantitative changes in total RNA, total poly (A), and ribosomes in early mouse embryos. Dev Biol. 1982, 89 (2): 362-378. 10.1016/0012-1606(82)90325-6.
Article
CAS
PubMed
Google Scholar
Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T: Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 2005, 1 (2): 260-276.
Article
CAS
PubMed
Google Scholar
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006, 312 (5770): 75-79. 10.1126/science.1122689.
Article
CAS
PubMed
Google Scholar
Drivenes O, Edvardsen RB, Taranger GL: Gene expression profiling of Atlantic cod (Gadus morhua) embryogenesis using microarray. Marine Biotechnol. 2011
Google Scholar
Olsvik PA, Holen E: Characterization of an Atlantic cod (Gadus morhua) embryonic stem cell cDNA library. BMC Research Notes. 2009, 2 (74):
Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB: Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006, 20: 2713-2727. 10.1101/gad.1471006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bai J, Solberg C, Fernandes JMO, Johnston IA: Profiling of maternal and developmental-stage specific mRNA transcripts in Atlantic halibut Hippoglossus hippoglossus. Gene. 2007, 386 (1–2): 202-210.
Article
CAS
PubMed
Google Scholar
Devonshire AS, Elaswarapu R, Foy CA: Evaluation of external controls for the standardization of gene expression biomarker measurements. BMC Genomics. 2010, 11: 662-10.1186/1471-2164-11-662.
Article
PubMed Central
CAS
PubMed
Google Scholar
Star B, Nederbragt AJ, HJentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, et al: The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011, 477 (7363): 207-210. 10.1038/nature10342.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mittelholzer C, Andersson E, Consten D, Hirai T, Nagahama Y, Norberg B: 20β-hydroxysteroid dehydrogenase and CYP19A1 are differentially expressed during maturation in Atlantic cod (Gadus morhua). J Mol Endochrinol. 2007, 39: 319-328. 10.1677/JME-07-0070.
Article
CAS
Google Scholar
Olsvik PA, Søfteland L, Lie KK: Selection of reference genes for qRT-PCR examination of wild populations of Atlantic cod Gadus morhua. BMC Research Notes. 2008, 1: 47-10.1186/1756-0500-1-47.
Article
PubMed Central
PubMed
Google Scholar
Donnison M, Pfeffer PL: Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol Reprod. 2004, 71: 1813-1821. 10.1095/biolreprod.104.032367.
Article
CAS
PubMed
Google Scholar
Tingaud-Sequeira A, Chauvigné F, Lozano J, Aqulleiro MJ, Asensio E, Cerdà J: New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics. 2009, 10: 434-10.1186/1471-2164-10-434.
Article
PubMed Central
PubMed
Google Scholar
Shen-Orr SS, Pilpel Y, Hunter CP: Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol. 2010, 11 (6): R58-10.1186/gb-2010-11-6-r58.
Article
PubMed Central
PubMed
Google Scholar
Nagler JJ: In vivo treatment with cycloheximide or actinomyciin D inhibits early embryonic development in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem. 2000, 22 (1): 61-66. 10.1023/A:1007825013917.
Article
CAS
Google Scholar
Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF: MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005, 308 (5723): 833-838. 10.1126/science.1109020.
Article
CAS
PubMed
Google Scholar
Mommens M, Fernandes JM, Bizuayehu TT, Bolla SL, Johnston IA, Babiak I: Maternal gene expression in Atlantic halibut (Hippoglossus hippoglossus L.) and its relation to egg quality. BMC Research Notes. 2010, 3: 138-10.1186/1756-0500-3-138.
Article
PubMed Central
PubMed
Google Scholar
Montero J-A, Heisenberg C-P: Gastrulation dynamics: cells move into focus. Trends Cell Biol. 2004, 14 (11): 620-627. 10.1016/j.tcb.2004.09.008.
Article
CAS
PubMed
Google Scholar
Revil T, Gaffney D, Dias C, Majewski J, Jerome-Majewska LA: Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics. 2010, 11: 399-10.1186/1471-2164-11-399.
Article
PubMed Central
PubMed
Google Scholar
Schier AF: The maternal-zygotic transition: death and birth of RNAs. Science. 2007, 316 (5823): 406-407. 10.1126/science.1140693.
Article
CAS
PubMed
Google Scholar
Ledda M, Di Croce M, Bedini B, Wannenes F, Corvaro M, Boyl PP, Caldarola S, Loreni F, Amaldi F: Effects of 3’UTR length on the translational regulation of 5′-terminal oligopyrimidine mRNAs. Gene. 2005, 344: 213-220.
Article
CAS
PubMed
Google Scholar
Tanguay RL, Gallie DR: Translational efficiency is regulated by the length of the 3’ untranslated region. Mol Cell Biol. 1996, 16 (1): 146-156.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen C-Y, Chen S-T, Juan H-F, Huang H-C: Lengthening of 3’UTR increases complexity in animal evolution. 2010, Available from Nature Precedings[http://hdl.handle.net/10101/npre.2010.4915.1]
Google Scholar
Ji Z, Lee JY, Pan Z, Jiang B, Tian B: Progressive lengthening of 3’ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. PNAS. 2009, 106 (17): 7028-7033. 10.1073/pnas.0900028106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. 1994, 2: 28-36.
CAS
Google Scholar
Fox CA, Sheets MD, Wickens MP: Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 1989, 3: 2151-2162. 10.1101/gad.3.12b.2151.
Article
CAS
PubMed
Google Scholar
McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD: Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989, 3: 803-815. 10.1101/gad.3.6.803.
Article
CAS
PubMed
Google Scholar
Colgan DF, Manley JL: Mechanism and regulation of mRNA polyadenylation. Genes Dev. 2011, 11: 2755-2766.
Article
Google Scholar
Villalba A, Coll O, Gebauer F: Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev. 2011, 21: 452-457. 10.1016/j.gde.2011.04.006.
Article
CAS
PubMed
Google Scholar
Beaudoing E, Freier S, Wyatt JR, Claverie J-M, Gautheret D: Patterns of variant polyadenylation signal usage in human genes. Genome Res. 2000, 10 (7): 1001-1010. 10.1101/gr.10.7.1001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edwalds-Gilbert G, Veraldi KL, Milcarek C: Alternative poly(A) site selection in complex transcription units: means to an end?. Nucleic Acids Res. 1997, 25 (13): 2547-2561. 10.1093/nar/25.13.2547.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hall TE, Smith P, Johnston IA: Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol. 2004, 259: 255-270. 10.1002/jmor.10222.
Article
PubMed
Google Scholar
Kuhl H, Sarropoulou E, Tine M, Kotoulas G, Magoulas A, Reinhardt R: A comparative BAC map for the gilthead sea bream (Sparus aurata L.). J Biomed Biotechnol. 2011, 2011: 329025-
Article
PubMed Central
PubMed
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using Phred. 1. Accuracy assessment. Genome Res. 1998, 8 (3): 175-185.
Article
CAS
PubMed
Google Scholar
Ewing B, Green P: Base-calling of automated sequencer traces using Phred. 1. Error probabilities. Genome Res. 1998, 8 (3): 186-194.
Article
CAS
PubMed
Google Scholar
Malde K, Schneeberger K, Coward E, Jonassen I: RBR: library-less repeat detection for ESTs. Bioinformatics. 2006, 22 (18): 2232-2236. 10.1093/bioinformatics/btl368.
Article
CAS
PubMed
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J: TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003, 19 (5): 651-652. 10.1093/bioinformatics/btg034.
Article
CAS
PubMed
Google Scholar
The cod genome webpage.www.codgenome.no,
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene Ontology: tool for the unification of biology. Nat Genet. 2000, 25 (1): 25-29. 10.1038/75556.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gene ontology annotation files.http://www.geneontology.org/,
The LIFECYCLE project web page.http://www.lifecycle-fp7.eu/,
Robaliano J, Joshi B, Fahrenkrug SC, Jagus R: Two zebrafish eIF4E family members are differentially expressed and functionally divergent. J Biol Chem. 2004, 279 (11): 10532-10541.
Article
Google Scholar
Von der Haar T, Gross JD, Wagner G, McCarthy JEG: The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 2004, 11 (6): 503-511. 10.1038/nsmb779.
Article
CAS
PubMed
Google Scholar
Raught B, Gingras A-C, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N: Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 2000, 19 (3): 434-444. 10.1093/emboj/19.3.434.
Article
PubMed Central
CAS
PubMed
Google Scholar
Veenstra GC, Destrée OHJ, Wolffe AP: Translation of maternal TATA-binding protein mRNA potentiates basal but not activated transcription in Xenopus embryos at the midblastula transition. Mol Cell Biol. 1999, 19 (12): 7972-7982.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bártfai R, Balduf C, Hilton T, Rathmann Y, Hadzhiev Y, Tora L, Orbán L, Müller F: TBP2, a vertebrate-specific member of the TBP family, is required in embryonic development of zebrafish. Curr Biol. 2004, 14 (7): 593-598. 10.1016/j.cub.2004.03.034.
Article
PubMed
Google Scholar
Ferg M, Sanges R, Gehrig J, Kiss J, Bauer M, Lovas A, Szabo M, Yang L, Straehle U, Pankratz MJ, Olasz F, Stupka E, Müller F: The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. EMBO J. 2007, 26 (17): 3945-3956. 10.1038/sj.emboj.7601821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schulte-Merker S, Ho RK, Herrmann BG, Nüsslein-Volhard C: The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development. 1992, 116: 1021-1032.
CAS
PubMed
Google Scholar
Schulte-Merker S, van Eeden FJ, Halpern ME, Kimmel CB, Nüsslein-Volhard C: no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 1994, 120 (4): 1009-1015.
CAS
PubMed
Google Scholar