White MJD: Animal Cytology and Evolution. 1973, London: Cambridge University Press, 3
Google Scholar
Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L: Chromosome evolution in eukaryotes: a multi-kingdom perspective. TRENDS in Genetics. 2005, 21: 673-682. 10.1016/j.tig.2005.09.009.
CAS
PubMed
Google Scholar
Hoffmann A, Rieseberg LH: Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation?. Annual review of ecology, evolution, and systematics. 2008, 39: 21-42. 10.1146/annurev.ecolsys.39.110707.173532.
PubMed Central
PubMed
Google Scholar
Kirkpatrick M: How and why chromosome inversions evolve. PLoS Biology. 2010, 8: e1000501-10.1371/journal.pbio.1000501.
PubMed Central
PubMed
Google Scholar
Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science. 2005, 309: 613-617. 10.1126/science.1111387.
CAS
PubMed
Google Scholar
Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM: Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics. 2008, 179: 1657-1680. 10.1534/genetics.107.086108.
PubMed Central
PubMed
Google Scholar
Ranz JM, Casals F, Ruiz A: How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Research. 2001, 11: 230-239. 10.1101/gr.162901.
PubMed Central
CAS
PubMed
Google Scholar
Grotthuss M von, Ashburner M, Ranz J: Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. Genome Research. 2010, 20: 1084-1096. 10.1101/gr.103713.109.
Google Scholar
Bartolomé C, Charlesworth B: Rates and patterns of chromosomal evolution in Drosophila pseudoobscura and D. miranda. Genetics. 2006, 173: 779-791. 10.1534/genetics.105.054585.
PubMed Central
PubMed
Google Scholar
Papaceit M, Aguadé M, Segarra C: Chromosomal evolution of elements B and C in the Sophophora subgenus of Drosophila: evolutionary rate and polymorphism. Evolution; International Journal of Organic Evolution. 2006, 60: 768-781.
CAS
PubMed
Google Scholar
Ranz JM, Maurin D, Chan YS, Grotthuss M von, Hillier LW, Roote J, Ashburner M, Bergman CM: Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biology. 2007, 5: e152-10.1371/journal.pbio.0050152.
PubMed Central
PubMed
Google Scholar
González J, Casals F, Ruiz A: Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. Genetics. 2007, 175: 167-177.
PubMed Central
PubMed
Google Scholar
Kupiec M, Petes TD: Allelic and ectopic recombination between Ty elements in yeast. Genetics. 1988, 119: 549-559.
PubMed Central
CAS
PubMed
Google Scholar
Lim JK, Simmons MJ: Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 1994, 16: 269-275.
CAS
Google Scholar
Delprat A, Negre B, Puig M, Ruiz A: The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PloS One. 2009, 4: e7883-10.1371/journal.pone.0007883.
PubMed Central
PubMed
Google Scholar
Coulibaly MB, Lobo NF, Fitzpatrick MC, Kern M, Grushko O, Thaner DV, Traoré SF, Collins FH, Besansky NJ: Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PloS One. 2007, 2: e84910-
Google Scholar
Cáceres M, Sullivan RT, Thomas JW: A recurrent inversion on the eutherian X chromosome. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104: 18571-18576. 10.1073/pnas.0706604104.
PubMed Central
PubMed
Google Scholar
Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, Batenburg MF van, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley KC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MA, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA: Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Research. 2005, 15: 1-18. 10.1101/gr.3059305.
PubMed Central
CAS
PubMed
Google Scholar
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair. 2006, 5: 1021-1029. 10.1016/j.dnarep.2006.05.022.
CAS
PubMed
Google Scholar
Furuta Y, Kawai M, Yahara K, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I: Birth and death of genes linked to chromosomal inversion. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108: 1501-1506. 10.1073/pnas.1012579108.
PubMed Central
CAS
PubMed
Google Scholar
Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A: Generation of a widespread Drosophila inversion by a transposable element. Science. 1999, 285: 415-418. 10.1126/science.285.5426.415.
PubMed
Google Scholar
Casals F, Cáceres M, Ruiz A: The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Molecular biology and evolution. 2003, 20: 674-685. 10.1093/molbev/msg070.
CAS
PubMed
Google Scholar
Evans AL, Mena PA, McAllister BF: Positive selection near an inversion breakpoint on the neo-X chromosome of Drosophila americana. Genetics. 2007, 177: 1303-1319. 10.1534/genetics.107.073932.
PubMed Central
CAS
PubMed
Google Scholar
Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GMCS: Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biology. 2002, 3: 1-20.
Google Scholar
Prazeres da Costa O, González J, Ruiz A: Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii. Chromosoma. 2009, 118: 349-360. 10.1007/s00412-008-0201-5.
CAS
PubMed
Google Scholar
Lande R: The Expected Fixation Rate of Chromosomal Inversions. Evolution. 1984, 38: 743-752. 10.2307/2408386.
Google Scholar
Charlesworth B: Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics. 2009, 10: 195-205.
CAS
PubMed
Google Scholar
Navarro A, Betrán E, Barbadilla A, Ruiz A: Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics. 1997, 146: 695-709.
PubMed Central
CAS
PubMed
Google Scholar
Dobzhansky TG: Genetics of the evolutionary process. 1970, New York: Columbia Univ Pr
Google Scholar
Kirkpatrick M, Barton N: Chromosome inversions, local adaptation and speciation. Genetics. 2006, 173: 419-434. 10.1534/genetics.105.047985.
PubMed Central
CAS
PubMed
Google Scholar
Sperlich D, Pfreim P: Cromosomal polymorphism in natural and experimental populations. Edited by: Ashburner M, Carson HL. 1986, Thompson JNJ London, 3: 257-309.
Google Scholar
Puig M, Cáceres M, Ruiz A: Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101: 9013-9018. 10.1073/pnas.0403090101.
PubMed Central
CAS
PubMed
Google Scholar
Celniker SERG: The Drosophila melanogaster Genome. Annual Review of Genomics and Human Genetics. 2003, 4: 89-117. 10.1146/annurev.genom.4.070802.110323.
CAS
PubMed
Google Scholar
modENCODE Consortium: Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010, 330: 1787-1797.
Google Scholar
Drosophila 12 Genomes Consortium: Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007, 450: 203-218. 10.1038/nature06341.
Google Scholar
Barker JSF: Population genetics of Opuntia breeding Drosophila in Australia. Ecological genetics and evolution. 1982, Academic Press, Australia, 209-224.
Google Scholar
Barker J, Starmer W, MacIntyre R: Ecological and evolutionary genetics of Drosophila. 1990, New York: Plenum Publishing Corporation
Google Scholar
Markow T, O'Grady PM: Drosophila: a guide to species identification and use. 2005, Academic Press
Google Scholar
Markow TA, O'Grady PM: Drosophila biology in the genomic age. Genetics. 2007, 177: 1269-1276. 10.1534/genetics.107.074112.
PubMed Central
CAS
PubMed
Google Scholar
Fellows DP, Heed WB: Factors affecting host plant selection in desert adapted cactophilic Drosophila. Ecology. 1972, 53: 850-858. 10.2307/1934300.
Google Scholar
Heed WB, Mangan RL: Community ecology of the Sonoran Desert Drosophila. Edited by: Ashburner M, Carson HL, Thompson JNJ. 1986, New York: Academic Press, 3e: 311-345.
Google Scholar
Ruiz A, Heed W: Host-Plant Specificity in the Cactophilic Drosophila mulleri Species Complex. Journal of Animal Ecology. 1988, 57: 237-249. 10.2307/4775.
Google Scholar
McKnight T, Hess D: Climate Zones and Types: The Köppen System. 2000, Upper Saddle River, NJ: Prentice Hall, 200-1.
Google Scholar
Krebs RA: A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress & Chaperones. 1999, 4: 243-249. 10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2.
CAS
Google Scholar
Stratman R, Markow TA: Resistance to thermal stress in desert Drosophila. Functional Ecology. 1998, 12: 965-970. 10.1046/j.1365-2435.1998.00270.x.
Google Scholar
Gibbs AG, Fukuzato F, Matzkin LM: Evolution of water conservation mechanisms in Drosophila. Journal of experimental biology. 2003, 206: 1183-1192. 10.1242/jeb.00233.
PubMed
Google Scholar
Matzkin LM, Markow T: Transcriptional regulation of metabolism associated with the increased desiccation resistance of the cactophilic Drosophila mojavensis. Genetics. 2009, 182: 1279-1288. 10.1534/genetics.109.104927.
PubMed Central
CAS
PubMed
Google Scholar
Kircher HW: Chemical composition of cacti and its relationship to sonoran desert Drosophila. Edited by: Barker JSF, Starmer WT. 1982, New York: Academic Press, 143-158.
Google Scholar
Fogleman JC, Danielson PB: Chemical interactions in the cactus-microorganism-Drosophila model system of the Sonoran Desert. American Zoologist. 2001, 41: 877-889. 10.1668/0003-1569(2001)041[0877:CIITCM]2.0.CO;2.
CAS
Google Scholar
Wasserman M: Cytological studies of the repleta group of the genus Drosophila. V. The mulleri subgroup. Univ Texas Publ. 1962, 6205: 85-118.
Google Scholar
Ruiz A, Heed WB, Wasserman M: Evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species. The Journal of Heredity. 1990, 81: 30-42.
CAS
PubMed
Google Scholar
Wasserman M: Cytological evolution of the Drosophila repleta species group. Edited by: Powell JR, Krimbas CB. 1992, Boca Raton, Florida: CRC Press, 455-541.
Google Scholar
Runcie DE, Noor MAF: Sequence signatures of a recent chromsomal rearrangement in Drosophila mojavensis. Genetica. 2009, 136: 5-11. 10.1007/s10709-008-9296-0.
PubMed Central
CAS
PubMed
Google Scholar
González J, Nefedov M, Bosdet I, Casals F, Calvete O, Delprat A, Shin H, Chiu R, Mathewson C, Wye N, Hoskins R, Schein J, de Jong P, Ruiz A: A BAC-based physical map of the Drosophila buzzatii genome. Genome Research. 2005, 15: 885-892. 10.1101/gr.3263105.
PubMed Central
PubMed
Google Scholar
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC: Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics. 2008, 179: 1601-1655. 10.1534/genetics.107.086074.
PubMed Central
PubMed
Google Scholar
Prada C: Evolución cromosómica del cluster Drosophila martensis: origen de las inversiones y reuso de puntos de rotura. PhD thesis. 2010, Universitat Autònoma de Barcelona
Google Scholar
Pevzner P, Tesler G: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Research. 2003, 13: 37-45. 10.1101/gr.757503.
PubMed Central
CAS
PubMed
Google Scholar
Tesler G: GRIMM: genome rearrangements web server. Bioinformatics (Oxford, England). 2002, 18: 492-493. 10.1093/bioinformatics/18.3.492.
CAS
Google Scholar
Calvete Torres O: Dinámica evolutiva de las reordenaciones cromosómicas y coincidencia de los puntos de rotura: Análisis molecular de las inversiones fijadas en el cromosoma 2 de Drosophila buzzatii. PhD thesis. 2010, Universitat Autònoma de Barcelona
Google Scholar
Froenicke L, Caldés MG, Graphodatsky A, Müller S, Lyons LA, Robinson TJ, Volleth M, Yang F, Wienberg J: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes?. Genome Research. 2006, 16: 306-310. 10.1101/gr.3955206.
PubMed Central
CAS
PubMed
Google Scholar
Bourque G, Tesler G, Pevzner PA: The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome research. 2006, 16: 311-313. 10.1101/gr.4631806.
PubMed Central
CAS
PubMed
Google Scholar
Ranz J, Gonzalez J, Casals F, Ruiz A: Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution; International Journal of Organic Evolution. 2003, 57: 1325-1335.
CAS
PubMed
Google Scholar
Prada C, Delprat A, Ruiz A: Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. The martensis cluster revisited. Chromosome Research. 2011, 19: 251-265. 10.1007/s10577-011-9195-6.
CAS
PubMed
Google Scholar
Tatusova TA, Madden TL: BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters. 1999, 174: 247-250. 10.1111/j.1574-6968.1999.tb13575.x.
CAS
PubMed
Google Scholar
Cáceres M, Puig M, Ruiz A: Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome research. 2001, 11: 1353-1364. 10.1101/gr.174001.
PubMed Central
PubMed
Google Scholar
Arca B, Zabalou S, Loukeris TG, Savakis C: Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics. 1997, 145: 267-279.
PubMed Central
CAS
PubMed
Google Scholar
Beall EL, Rio DC: Drosophila P-element transposase is a novel site-specific endonuclease. Genes & Development. 1997, 11: 2137-2151. 10.1101/gad.11.16.2137.
CAS
Google Scholar
Tamura K, Subramanian S, Kumar S: Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Molecular Biology and Evolution. 2004, 21: 36-44.
CAS
PubMed
Google Scholar
Dehal P, Predki P, Olsen AS, Kobayashi A, Folta P, Lucas S, Land M, Terry A, Ecale Zhou CL, Rash S, Zhang Q, Gordon L, Kim J, Elkin C, Pollard MJ, Richardson P, Rokhsar D, Uberbacher E, Hawkins T, Branscomb E, Stubbs L: Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science. 2001, 293: 104-111. 10.1126/science.1060310.
CAS
PubMed
Google Scholar
Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, Jong PJ de: Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genetics. 2009, 5: e1000538-10.1371/journal.pgen.1000538.
PubMed Central
PubMed
Google Scholar
Voineagu I, Narayanan V, Lobachev KS, Mirkin SM: Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins. 2008, 105: 9936-9941.
Google Scholar
Bai Y, Casola C, Feschotte C, Betrán E: Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biology. 2007, 8: R11-10.1186/gb-2007-8-1-r11.
PubMed Central
PubMed
Google Scholar
Bhutkar A, Russo SM, Smith TF, Gelbart WM: Genome-scale analysis of positionally relocated genes. Genome Research. 2007, 17: 1880-1887. 10.1101/gr.7062307.
PubMed Central
CAS
PubMed
Google Scholar
Vibranovski MD, Zhang Y, Long M: General gene movement off the X chromosome in the Drosophila genus. Genome Research. 2009, 19: 897-903. 10.1101/gr.088609.108.
PubMed Central
CAS
PubMed
Google Scholar
Lifton RP, Goldberg ML, Karp RW, Hogness DS: The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harbor Symposia on Quantitative Biology. 1978, 1047-1051. 42 Pt 2
Kremer H, Hennig W: Isolation and characterization of a Drosophila hydei histone DNA repeat unit. Nucleic Acids Research. 1990, 18: 1573-1580. 10.1093/nar/18.6.1573.
PubMed Central
CAS
PubMed
Google Scholar
Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D: Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic acids research. 2005, 33: 4519-4526. 10.1093/nar/gki764.
PubMed Central
CAS
PubMed
Google Scholar
Zdobnov EM, Apweiler R: InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics (Oxford, England). 2001, 17: 847-848. 10.1093/bioinformatics/17.9.847.
CAS
Google Scholar
Marger MD, Saier MH: A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences. 1993, 18: 13-20. 10.1016/0968-0004(93)90081-W.
CAS
PubMed
Google Scholar
Salinas AE, Wong MG: Glutathione S-transferases--a review. Current Medicinal Chemistry. 1999, 6: 279-309.
CAS
PubMed
Google Scholar
Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, Robin C: Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics. 2007, 177: 1363-1375. 10.1534/genetics.107.075838.
PubMed Central
CAS
PubMed
Google Scholar
Matzkin LM: The molecular basis of host adaptation in cactophilic Drosophila: molecular evolution of a glutathione S-transferase gene (GstD1) in Drosophila mojavensis. Genetics. 2008, 178: 1073-1083. 10.1534/genetics.107.083287.
PubMed Central
CAS
PubMed
Google Scholar
Matzkin LM, Watts TD, Bitler BG, Machado CA, Markow T: Functional genomics of cactus host shifts in Drosophila mojavensis. Molecular Ecology. 2006, 15: 4635-4643. 10.1111/j.1365-294X.2006.03102.x.
CAS
PubMed
Google Scholar
Bettencourt BR, Feder ME: Rapid concerted evolution via gene conversion at the Drosophila hsp70 genes. Journal of Molecular Evolution. 2002, 54: 569-586. 10.1007/s00239-001-0044-7.
CAS
PubMed
Google Scholar
Tian S, Haney RA, Feder ME: Phylogeny Disambiguates the Evolution of Heat-Shock cis-Regulatory Elements in Drosophila. PLoS One. 2010, 5: e10669-10.1371/journal.pone.0010669.
PubMed Central
PubMed
Google Scholar
Zhang Z, Pugh BF: Genomic Organization of H2Av Containing Nucleosomes in Drosophila Heterochromatin. PloS One. 2011, 6: e20511-10.1371/journal.pone.0020511.
PubMed Central
CAS
PubMed
Google Scholar
Bell O, Tiwari VK, Thomä NH, Schübeler D: Determinants and dynamics of genome accessibility. Nature Reviews Genetics. 2011, 12: 554-564. 10.1038/nrg3017.
CAS
PubMed
Google Scholar
Li G, Reinberg D: Chromatin higher-order structures and gene regulation. Current Opinion in Genetics & Development. 2011, 21: 175-186. 10.1016/j.gde.2011.01.022.
CAS
Google Scholar
Ohler U: Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Research. 2006, 34: 5943-5950. 10.1093/nar/gkl608.
PubMed Central
CAS
PubMed
Google Scholar
Petrov DA, Lozovskaya ER, Hartl DL: High intrinsic rate of DNA loss in Drosophila. Nature. 1996, 384: 346-349. 10.1038/384346a0.
CAS
PubMed
Google Scholar
Petrov DA, Hartl DL: High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Molecular Biology and Evolution. 1998, 15: 293-302.
CAS
PubMed
Google Scholar
Matzkin LM, Eanes WF: Sequence variation of alcohol dehydrogenase (Adh) paralogs in cactophilic Drosophila. Genetics. 2003, 163: 181-194.
PubMed Central
CAS
PubMed
Google Scholar
Matzkin LM: Population genetics and geographic variation of alcohol dehydrogenase (Adh) paralogs and glucose-6-phosphate dehydrogenase (G6pd) in Drosophila mojavensis. Molecular Biology and Evolution. 2004, 21: 276-285.
CAS
PubMed
Google Scholar
Kaessmann H: Origins, evolution, and phenotypic impact of new genes. Genome Research. 2010, 20: 1313-1326. 10.1101/gr.101386.109.
PubMed Central
CAS
PubMed
Google Scholar
Hoffmann A, Sørensen JG, Loeschcke V: Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology. 2003, 28: 175-216. 10.1016/S0306-4565(02)00057-8.
Google Scholar
McColl G, Hoffmann A, McKechnie SW: Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics. 1996, 143: 1615-1627.
PubMed Central
CAS
PubMed
Google Scholar
Parker CS, Topol J: A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell. 1984, 37: 273-283. 10.1016/0092-8674(84)90323-4.
CAS
PubMed
Google Scholar
Neal SJ, Karunanithi S, Best A, So AK-C, Tanguay RM, Atwood HL, Westwood JT: Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiological Genomics. 2006, 25: 493-501. 10.1152/physiolgenomics.00195.2005.
CAS
PubMed
Google Scholar
Krebs RA, Feder ME: Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much?. Journal of Insect Physiology. 1998, 44: 1091-1101. 10.1016/S0022-1910(98)00059-6.
CAS
PubMed
Google Scholar
Lerman DN, Feder ME: Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Molecular Biology and Evolution. 2005, 22: 776-783.
CAS
PubMed
Google Scholar
Carmel J, Rashkovetsky E, Nevo E, Korol A: Differential Expression of Small Heat Shock Protein Genes in Fruit Flies (Drosophila melanogaster) along a Microclimatic Gradient. Journal of Heredity. 2011, 10.1093/jhered/esr027
Google Scholar
Drummond A, Ashton B, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer TWA: Geneious v5.1. 2010, Available from http://www.geneious.com
Google Scholar
Li , Ye J, Li S, Wang J, Han Y, Ye C, Wang J, Yang H, Yu J, Wong GK-S, Wang J: ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Computational Biology. 2005, 1: e43-10.1371/journal.pcbi.0010043.
PubMed Central
PubMed
Google Scholar
Hannenhalli S, Pevzner P: Transforming men into mice (polynomial algorithm for genomic distance problem). Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science. 1995, 581-592.
Google Scholar
Drysdale R: FlyBase: a database for the Drosophila research community. Methods in Molecular Biology. 2008, 420: 45-59. 10.1007/978-1-59745-583-1_3.
CAS
PubMed
Google Scholar
Moreno-Hagelsieb G, Latimer K: Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics. 2008, 24: 319-324. 10.1093/bioinformatics/btm585.
CAS
PubMed
Google Scholar
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research. 2011, 39: D225-229. 10.1093/nar/gkq1189.
PubMed Central
CAS
PubMed
Google Scholar
Casillas S, Egea R, Petit N, Bergman CM, Barbadilla A: Drosophila polymorphism database (DPDB): a portal for nucleotide polymorphism in Drosophila. Fly. 2007, 1: 205-211.
PubMed
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Research. 2011, 39: D32-37. 10.1093/nar/gkq1079.
PubMed Central
CAS
PubMed
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research. 2005, 110: 462-467. 10.1159/000084979.
CAS
PubMed
Google Scholar
Chen N: Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics. 2004, Chapter 4: Unit 4.10
Google Scholar
Marzo M, Puig M, Ruiz A: The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105: 2957-2962. 10.1073/pnas.0712110105.
PubMed Central
CAS
PubMed
Google Scholar
Casals F, Cáceres M, Manfrin MH, González J, Ruiz A: Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics. 2005, 169: 2047-2059. 10.1534/genetics.104.035048.
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
CAS
PubMed
Google Scholar