Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD: Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol. 2009, 59 (Pt 10): 2429-2436.
Article
CAS
PubMed
Google Scholar
Hadjifrangiskou M, Chen Y, Koehler TM: The alternative sigma factor sigmaH is required for toxin gene expression by Bacillus anthracis. J Bacteriol. 2007, 189 (5): 1874-1883. 10.1128/JB.01333-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Koehler TM: Bacillus anthracis physiology and genetics. Mol Aspects Med. 2009, 30 (6): 386-396. 10.1016/j.mam.2009.07.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, et al: Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact. 2008, 171 (2): 236-249. 10.1016/j.cbi.2007.03.003.
Article
CAS
PubMed
Google Scholar
Soufiane B, Cote JC: Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses. Antonie Van Leeuwenhoek. 2009, 95 (1): 33-45. 10.1007/s10482-008-9285-4.
Article
CAS
PubMed
Google Scholar
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. Appl Environ Microbiol. 2000, 66 (6): 2627-2630. 10.1128/AEM.66.6.2627-2630.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmidt TR, Scott EJ, Dyer DW: Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics. 2011, 12: 430-10.1186/1471-2164-12-430.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, Okstad OA, Fouet A, Mock M, Kolsto AB: Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol. 2011, 28 (2): 236-244. 10.1016/j.fm.2010.06.014.
Article
PubMed
Google Scholar
Tourasse NJ, Helgason E, Okstad OA, Hegna IK, Kolsto AB: The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 2006, 101 (3): 579-593. 10.1111/j.1365-2672.2006.03087.x.
Article
CAS
PubMed
Google Scholar
Tourasse NJ, Kolsto AB: SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res. 2008, 36 (Database issue): D461-D468.
PubMed Central
CAS
PubMed
Google Scholar
Hoffmaster AR, Novak RT, Marston CK, Gee JE, Helsel L, Pruckler JM, Wilkins PP: Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 2008, 8: 191-10.1186/1471-2180-8-191.
Article
PubMed Central
PubMed
Google Scholar
Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A: The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol. 2008, 74 (4): 1276-1280. 10.1128/AEM.02242-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stenfors Arnesen LP, Fagerlund A, Granum PE: From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008, 32 (4): 579-606. 10.1111/j.1574-6976.2008.00112.x.
Article
CAS
PubMed
Google Scholar
Moyer AL, Ramadan RT, Novosad BD, Astley R, Callegan MC: Bacillus cereus-induced permeability of the blood-ocular barrier during experimental endophthalmitis. Invest Ophthalmol Vis Sci. 2009, 50 (8): 3783-3793. 10.1167/iovs.08-3051.
Article
PubMed Central
PubMed
Google Scholar
Latsios G, Petrogiannopoulos C, Hartzoulakis G, Kondili L, Bethimouti K, Zaharof A: Liver abscess due to Bacillus cereus: a case report. Clin Microbiol Infect. 2003, 9 (12): 1234-1237. 10.1111/j.1469-0691.2003.00795.x.
Article
CAS
PubMed
Google Scholar
Psiachou-Leonard E, Sidi V, Tsivitanidou M, Gompakis N, Koliouskas D, Roilides E: Brain abscesses resulting from Bacillus cereus and an Aspergillus-like mold. J Pediatr Hematol Oncol. 2002, 24 (7): 569-571. 10.1097/00043426-200210000-00016.
Article
PubMed
Google Scholar
Steggles JR, Wang J, Ellar DJ: Discovery of Bacillus thuringiensis virulence genes using signature-tagged mutagenesis in an insect model of septicaemia. Curr Microbiol. 2006, 53 (4): 303-310. 10.1007/s00284-006-0037-2.
Article
CAS
PubMed
Google Scholar
Fedhila S, Nel P, Lereclus D: The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J Bacteriol. 2002, 184 (12): 3296-3304. 10.1128/JB.184.12.3296-3304.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV: Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA. 2003, 100 (5): 2760-2765. 10.1073/pnas.0538072100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, Barrows BD, Aroian RV: A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci USA. 2006, 103 (41): 15154-15159. 10.1073/pnas.0607002103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rae R, Riebesell M, Dinkelacker I, Wang Q, Herrmann M, Weller AM, Dieterich C, Sommer RJ: Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. J Exp Biol. 2008, 211 (Pt 12): 1927-1936.
Article
CAS
PubMed
Google Scholar
Gunawan S, Tufts DM, Bextine BR: Molecular identification of hemolymph-associated symbiotic bacteria in red imported fire ant larvae. Curr Microbiol. 2008, 57 (6): 575-579. 10.1007/s00284-008-9245-2.
Article
CAS
PubMed
Google Scholar
Cardazzo B, Negrisolo E, Carraro L, Alberghini L, Patarnello T, Giaccone V: Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol. 2008, 74 (3): 850-860. 10.1128/AEM.01495-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ko KS, Kim JW, Kim JM, Kim W, Chung SI, Kim IJ, Kook YH: Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR Gene. Infect Immun. 2004, 72 (9): 5253-5261. 10.1128/IAI.72.9.5253-5261.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aronson A: Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci. 2002, 59 (3): 417-425. 10.1007/s00018-002-8434-6.
Article
CAS
PubMed
Google Scholar
Rasko DA, Altherr MR, Han CS, Ravel J: Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev. 2005, 29 (2): 303-329.
CAS
PubMed
Google Scholar
Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, et al: Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol. 2006, 188 (9): 3382-3390. 10.1128/JB.188.9.3382-3390.2006.
Article
PubMed Central
PubMed
Google Scholar
Passalacqua KD, Varadarajan A, Byrd B, Bergman NH: Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. PLoS One. 2009, 4 (3): e4904-10.1371/journal.pone.0004904.
Article
PubMed Central
PubMed
Google Scholar
Huynen MA, Bork P: Measuring genome evolution. Proc Natl Acad Sci USA. 1998, 95 (11): 5849-5856. 10.1073/pnas.95.11.5849.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lozada-Chavez I, Angarica VE, Collado-Vides J, Contreras-Moreira B: The role of DNA-binding specificity in the evolution of bacterial regulatory networks. J Mol Biol. 2008, 379 (3): 627-643. 10.1016/j.jmb.2008.04.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lozada-Chavez I, Janga SC, Collado-Vides J: Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res. 2006, 34 (12): 3434-3445. 10.1093/nar/gkl423.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mittenhuber G: A phylogenomic study of the general stress response sigma factor sigmaB of Bacillus subtilis and its regulatory proteins. J Mol Microbiol Biotechnol. 2002, 4 (4): 427-452.
CAS
PubMed
Google Scholar
Becker LA, Cetin MS, Hutkins RW, Benson AK: Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol. 1998, 180 (17): 4547-4554.
PubMed Central
CAS
PubMed
Google Scholar
Becker LA, Evans SN, Hutkins RW, Benson AK: Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol. 2000, 182 (24): 7083-7087. 10.1128/JB.182.24.7083-7087.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Begley M, Hill C, Ross RP: Tolerance of Listeria monocytogenes to cell envelope-acting antimicrobial agents is dependent on SigB. Appl Environ Microbiol. 2006, 72 (3): 2231-2234. 10.1128/AEM.72.3.2231-2234.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M: Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol. 2003, 185 (19): 5722-5734. 10.1128/JB.185.19.5722-5734.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE, Knobloch JK, Van Eldere J: The role of sigmaB in persistence of Staphylococcus epidermidis foreign body infection. Microbiology. 2008, 154 (Pt 9): 2827-2836.
Article
CAS
PubMed
Google Scholar
Oliver HF, Orsi RH, Wiedmann M, Boor KJ: Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol. 2010, 76 (13): 4216-4232. 10.1128/AEM.00031-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Inose Y, Takeshita SL, Hidaka T, Higashide M, Maruyama A, Hayashi H, Morikawa K, Ohta T: Genetic characterization of the natural SigB variants found in clinical isolates of Staphylococcus aureus. J Gen Appl Microbiol. 2006, 52 (5): 259-271. 10.2323/jgam.52.259.
Article
CAS
PubMed
Google Scholar
Singh VK, Schmidt JL, Jayaswal RK, Wilkinson BJ: Impact of sigB mutation on Staphylococcus aureus oxacillin and vancomycin resistance varies with parental background and method of assessment. Int J Antimicrob Agents. 2003, 21 (3): 256-261. 10.1016/S0924-8579(02)00359-X.
Article
CAS
PubMed
Google Scholar
Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, et al: Bacillus cytotoxicus sp. nov. is a new thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol. 2012, 10.1099/ijs.0.030627-0. [Epub Feb. 17]
Google Scholar
Novichkov PS, Wolf YI, Dubchak I, Koonin EV: Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol. 2009, 191 (1): 65-73. 10.1128/JB.01237-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rambukkana A: M. leprae genome sequence. Trends Microbiol. 2001, 9 (4): 157-
Article
CAS
PubMed
Google Scholar
van Schaik W, van der Voort M, Molenaar D, Moezelaar R, de Vos WM, Abee T: Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. J Bacteriol. 2007, 189 (12): 4384-4390. 10.1128/JB.00313-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Schaik W, Zwietering MH, de Vos WM, Abee T: Identification of sigmaB-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis. J Bacteriol. 2004, 186 (13): 4100-4109. 10.1128/JB.186.13.4100-4109.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sorokin V, Severinov K, Gelfand MS: Systematic prediction of control proteins and their DNA binding sites. Nucleic Acids Res. 2009, 37 (2): 441-451.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sierro N, Makita Y, de Hoon M, Nakai K: DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res. 2008, 36 (Database issue): D93-96.
PubMed Central
CAS
PubMed
Google Scholar
Nannapaneni P, Hertwig F, Depke M, Hecker M, Mader U, Volker U, Steil L, van Hijum SA: Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. Microbiology. 2012, 158 (Pt 3): 696-707.
Article
CAS
PubMed
Google Scholar
Schulthess B, Bloes DA, Francois P, Girard M, Schrenzel J, Bischoff M, Berger-Bachi B: The sigmaB-dependent yabJ-spoVG operon is involved in the regulation of extracellular nuclease, lipase, and protease expression in Staphylococcus aureus. J Bacteriol. 2011, 193 (18): 4954-4962. 10.1128/JB.05362-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu Y, Oliver HF, Raengpradub S, Palmer ME, Orsi RH, Wiedmann M, Boor KJ: Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocytogenes. Appl Environ Microbiol. 2007, 73 (24): 7981-7991. 10.1128/AEM.01281-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH, Wiedmann M, Boor KJ: Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol. 2007, 73 (24): 7967-7980. 10.1128/AEM.01085-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
McGann P, Wiedmann M, Boor KJ: The alternative sigma factor sigma B and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol. 2007, 73 (9): 2919-2930. 10.1128/AEM.02664-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Callegan MC, Kane ST, Cochran DC, Gilmore MS, Gominet M, Lereclus D: Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect Immun. 2003, 71 (6): 3116-3124. 10.1128/IAI.71.6.3116-3124.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez CS, Heras H, Garda H, Ruzal S, Sanchez-Rivas C, Rivas E: Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol. 2000, 55 (1–3): 137-142.
Article
CAS
PubMed
Google Scholar
Kontinen VP, Helander IM, Tokuda H: The secG deletion mutation of Escherichia coli is suppressed by expression of a novel regulatory gene of Bacillus subtilis. FEBS Lett. 1996, 389 (3): 281-284. 10.1016/0014-5793(96)00602-3.
Article
CAS
PubMed
Google Scholar
Mikhaleva NI, Golovastov VV, Zolov SN, Bogdanov MV, Dowhan W, Nesmeyanova MA: Depletion of phosphatidylethanolamine affects secretion of Escherichia coli alkaline phosphatase and its transcriptional expression. FEBS Lett. 2001, 493 (2–3): 85-90.
Article
CAS
PubMed
Google Scholar
Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C: Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology. 2006, 152 (Pt 3): 605-616.
Article
CAS
PubMed
Google Scholar
Kanemasa Y, Takatsu T, Sasai K, Kojima I, Hayashi H: The salt-resistance mechanism of Staphylococcus aureus examined by salt-sensitive mutants. Acta Med Okayama. 1976, 30 (4): 271-276.
CAS
PubMed
Google Scholar
Ivanisevic R, Milic M, Ajdic D, Rakonjac J, Savic DJ: Nucleotide sequence, mutational analysis, transcriptional start site, and product analysis of nov, the gene which affects Escherichia coli K-12 resistance to the gyrase inhibitor novobiocin. J Bacteriol. 1995, 177 (7): 1766-1771.
PubMed Central
CAS
PubMed
Google Scholar
Clark DP, Beard JP: Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. J Gen Microbiol. 1979, 113 (2): 267-274. 10.1099/00221287-113-2-267.
Article
CAS
PubMed
Google Scholar
Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC, Eliopoulos GM: Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One. 2012, 7 (1): e28316-10.1371/journal.pone.0028316.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore MS: Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother. 2011, 55 (7): 3345-3356. 10.1128/AAC.00207-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galvez A, Valdivia E, Martinez M, Maqueda M: Effect of peptide AS-48 on Enterococcus faecalis subsp. liquefaciens S-47. Antimicrob Agents Chemother. 1989, 33 (5): 641-645. 10.1128/AAC.33.5.641.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mukhopadhyay K, Whitmire W, Xiong YQ, Molden J, Jones T, Peschel A, Staubitz P, Adler-Moore J, McNamara PJ, Proctor RA, et al: In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology. 2007, 153 (Pt 4): 1187-1197.
Article
CAS
PubMed
Google Scholar
Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K: Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol. 2004, 186 (5): 1475-1483. 10.1128/JB.186.5.1475-1483.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaminski WE, Piehler A, Wenzel JJ: ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta. 2006, 1762 (5): 510-524. 10.1016/j.bbadis.2006.01.011.
Article
CAS
PubMed
Google Scholar
Malla S, Niraula NP, Liou K, Sohng JK: Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res. 2010, 165 (4): 259-267. 10.1016/j.micres.2009.04.002.
Article
CAS
PubMed
Google Scholar
Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M: Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol. 1995, 16 (5): 969-976. 10.1111/j.1365-2958.1995.tb02322.x.
Article
CAS
PubMed
Google Scholar
Masure HR, Pearce BJ, Shio H, Spellerberg B: Membrane targeting of RecA during genetic transformation. Mol Microbiol. 1998, 27 (4): 845-852. 10.1046/j.1365-2958.1998.00732.x.
Article
CAS
PubMed
Google Scholar
Kaimer C, Graumann PL: Bacillus subtilis CinA is a stationary phase-induced protein that localizes to the nucleoid and plays a minor role in competent cells. Arch Microbiol. 2010, 192 (7): 549-557. 10.1007/s00203-010-0583-7.
Article
CAS
PubMed
Google Scholar
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, et al: Genetic composition of the Bacillus subtilis SOS system. J Bacteriol. 2005, 187 (22): 7655-7666. 10.1128/JB.187.22.7655-7666.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Daniel RA, Harry EJ, Errington J: Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol. 2000, 35 (2): 299-311. 10.1046/j.1365-2958.2000.01724.x.
Article
CAS
PubMed
Google Scholar
Errington J, Daniel RA, Scheffers DJ: Cytokinesis in bacteria. Microbiol Mol Biol Rev. 2003, 67 (1): 52-65. 10.1128/MMBR.67.1.52-65.2003. table of contents
Article
PubMed Central
CAS
PubMed
Google Scholar
Hubscher J, Luthy L, Berger-Bachi B, Stutzmann Meier P: Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family. BMC Genomics. 2008, 9: 617-10.1186/1471-2164-9-617.
Article
PubMed Central
PubMed
Google Scholar
Lazarevic V, Margot P, Soldo B, Karamata D: Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol. 1992, 138 (9): 1949-1961. 10.1099/00221287-138-9-1949.
Article
CAS
PubMed
Google Scholar
Johnsborg O, Havarstein LS: Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. J Bacteriol. 2009, 191 (18): 5859-5864. 10.1128/JB.00724-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chatfield CH, Koo H, Quivey RG: The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. Microbiology. 2005, 151 (Pt 2): 625-631.
Article
CAS
PubMed
Google Scholar
Hubscher J, McCallum N, Sifri CD, Majcherczyk PA, Entenza JM, Heusser R, Berger-Bachi B, Stutzmann Meier P: MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus. FEMS Microbiol Lett. 2009, 295 (2): 251-260. 10.1111/j.1574-6968.2009.01603.x.
Article
CAS
PubMed
Google Scholar
Rossi J, Bischoff M, Wada A, Berger-Bachi B: MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation. Antimicrob Agents Chemother. 2003, 47 (8): 2558-2564. 10.1128/AAC.47.8.2558-2564.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kern J, Schneewind O: BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol. 2010, 75 (2): 324-332. 10.1111/j.1365-2958.2009.06958.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dong S, Chesnokova ON, Turnbough CL, Pritchard DG: Identification of the UDP-N-acetylglucosamine 4-epimerase involved in exosporium protein glycosylation in Bacillus anthracis. J Bacteriol. 2009, 191 (22): 7094-7101. 10.1128/JB.01050-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vetting MW, LP SC, Yu M, Hegd SS, Magnet S, Roderick SL, Blanchard JS: Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 2005, 433 (1): 212-226. 10.1016/j.abb.2004.09.003.
Article
CAS
PubMed
Google Scholar
Forsberg LS, Choudhury B, Leoff C, Marston CK, Hoffmaster AR, Saile E, Quinn CP, Kannenberg EL, Carlson RW: Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis. Glycobiology. 2011, 21 (7): 934-948. 10.1093/glycob/cwr026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steichen C, Chen P, Kearney JF, Turnbough CL: Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol. 2003, 185 (6): 1903-1910. 10.1128/JB.185.6.1903-1910.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carr KA, Janes BK, Hanna PC: Role of the gerP operon in germination and outgrowth of Bacillus anthracis spores. PLoS One. 2010, 5 (2): e9128-10.1371/journal.pone.0009128.
Article
PubMed Central
PubMed
Google Scholar
Frankel AE, Kuo SR, Dostal D, Watson L, Duesbery NS, Cheng CP, Cheng HJ, Leppla SH: Pathophysiology of anthrax. Front Biosci. 2009, 14: 4516-4524.
Article
CAS
Google Scholar
Klee SR, Brzuszkiewicz EB, Nattermann H, Bruggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, et al: The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One. 2010, 5 (7): e10986-10.1371/journal.pone.0010986.
Article
PubMed Central
PubMed
Google Scholar
Guindon S, Delsuc F, Dufayard JF, Gascuel O: Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol. 2009, 537: 113-137. 10.1007/978-1-59745-251-9_6.
Article
CAS
PubMed
Google Scholar
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res. 2000, 28: 263-266. 10.1093/nar/28.1.263.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol. 2011, 7 (10): e1002195-10.1371/journal.pcbi.1002195.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sandelin A: Prediction of regulatory elements. Methods Mol Biol. 2008, 453: 233-244. 10.1007/978-1-60327-429-6_11.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
Article
CAS
PubMed
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34 (Web Server issue): W369-373.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eddy SR, Mitchison G, Durbin R: Maximum discrimination hidden Markov models of sequence consensus. J Comput Biol. 1995, 2 (1): 9-23. 10.1089/cmb.1995.2.9.
Article
CAS
PubMed
Google Scholar
Picard R, Cook D: Cross-validation of Regression Models. J Am Stat Assoc. 1984, 79 (387): 575-583. 10.1080/01621459.1984.10478083.
Article
Google Scholar
Letondal C: A Web interface generator for molecular biology programs in Unix. Bioinformatics. 2001, 17 (1): 73-82. 10.1093/bioinformatics/17.1.73.
Article
CAS
PubMed
Google Scholar
Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006, 22 (13): 1658-1659. 10.1093/bioinformatics/btl158.
Article
CAS
PubMed
Google Scholar
Li G, Che D, Xu Y: A universal operon predictor for prokaryotic genomes. J Bioinform Comput Biol. 2009, 7 (1): 19-38. 10.1142/S0219720009003984.
Article
CAS
PubMed
Google Scholar
Bergman NH, Passalacqua KD, Hanna PC, Qin ZS: Operon prediction for sequenced bacterial genomes without experimental information. Appl Environ Microbiol. 2007, 73 (3): 846-854. 10.1128/AEM.01686-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, et al: Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012, 335 (6072): 1103-1106. 10.1126/science.1206848.
Article
CAS
PubMed
Google Scholar