Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature. 2005, 434 (7031): 338-345. 10.1038/nature03441.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet. 2005, 37 (5): 495-500. 10.1038/ng1536.
Article
CAS
PubMed
Google Scholar
Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, 318 (5858): 1931-1934. 10.1126/science.1149460.
Article
CAS
PubMed
Google Scholar
Kasinski AL, Slack FJ: Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011, 11 (12): 849-864. 10.1038/nrc3166.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 2011, 12 (12): 861-874. 10.1038/nrg3074.
Article
CAS
PubMed
Google Scholar
Santos-Reboucas CB, Pimentel MM: MicroRNAs: macro challenges on understanding human biological functions and neurological diseases. Curr Mol Med. 2010, 10 (8): 692-704. 10.2174/156652410793384169.
Article
CAS
PubMed
Google Scholar
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005, 123 (4): 631-640. 10.1016/j.cell.2005.10.022.
Article
CAS
PubMed
Google Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431 (7006): 350-355. 10.1038/nature02871.
Article
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233. 10.1016/j.cell.2009.01.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008, 9 (2): 102-114.
Article
CAS
PubMed
Google Scholar
Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH: Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 2004, 32 (21): 6284-6291. 10.1093/nar/gkh968.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP: Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010, 38 (6): 789-802. 10.1016/j.molcel.2010.06.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, Leslie CS, Rudensky AY: Transcriptome-wide miR-155 Binding Map Reveals Widespread Noncanonical MicroRNA Targeting. Mol Cell. 2012, 48 (5): 760-770. 10.1016/j.molcel.2012.10.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chi SW, Hannon GJ, Darnell RB: An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012, 19 (3): 321-327. 10.1038/nsmb.2230.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O: Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009, 10 (2): 141-148.
Article
CAS
PubMed
Google Scholar
Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X: A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010, 38 (20): 7219-7235. 10.1093/nar/gkq575.
Article
PubMed Central
CAS
PubMed
Google Scholar
Newman MA, Mani V, Hammond SM: Deep sequencing of microRNA precursors reveals extensive 3’ end modification. RNA. 2011, 17 (10): 1795-1803. 10.1261/rna.2713611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL: The 3’-to-5’ exoribonuclease Nibbler shapes the 3’ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol. 2011, 21 (22): 1878-1887. 10.1016/j.cub.2011.09.034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18 (4): 610-621. 10.1101/gr.7179508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ: The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci. 2011, 68 (17): 2859-2871. 10.1007/s00018-011-0726-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R, Stratton MR: RNA editing of human microRNAs. Genome Biol. 2006, 7 (4): R27-10.1186/gb-2006-7-4-r27.
Article
PubMed Central
PubMed
Google Scholar
Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K: Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007, 315 (5815): 1137-1140. 10.1126/science.1138050.
Article
PubMed Central
CAS
PubMed
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007, 129 (7): 1401-1414. 10.1016/j.cell.2007.04.040.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ryan BM, Robles AI, Harris CC: Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010, 10 (6): 389-402. 10.1038/nrc2867.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie SS, Li XY, Liu T, Cao JH, Zhong Q, Zhao SH: Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One. 2011, 6 (1): e16235-10.1371/journal.pone.0016235.
Article
PubMed Central
CAS
PubMed
Google Scholar
Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C: MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010, 20 (9): 1207-1218. 10.1101/gr.106849.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernandez-Valverde SL, Taft RJ, Mattick JS: Dynamic isomiR regulation in Drosophila development. RNA. 2010, 16 (10): 1881-1888. 10.1261/rna.2379610.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bizuayehu TT, Lanes CF, Furmanek T, Karlsen BO, Fernandes JM, Johansen SD, Babiak I: Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics. 2012, 13 (1): 11-10.1186/1471-2164-13-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mayr C, Bartel DP: Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009, 138 (4): 673-684. 10.1016/j.cell.2009.06.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, Cloos J, Breakefield XO, Krichevsky AM, Noske DP: Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One. 2011, 6 (1): e16282-10.1371/journal.pone.0016282.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ: MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010, 46 (12): 2295-2303. 10.1016/j.ejca.2010.05.012.
Article
CAS
PubMed
Google Scholar
Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM: miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget. 2010, 1 (8): 710-720.
Article
PubMed Central
PubMed
Google Scholar
Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA. 2008, 105 (17): 6415-6420. 10.1073/pnas.0710263105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2): e8898-10.1371/journal.pone.0008898.
Article
PubMed Central
PubMed
Google Scholar
Chu CY, Rana TM: Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 2006, 4 (7): e210-10.1371/journal.pbio.0040210.
Article
PubMed Central
PubMed
Google Scholar
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y: A comprehensive survey of 3’ animal miRNA modification events and a possible role for 3’ adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010, 20 (10): 1398-1410. 10.1101/gr.106054.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM: MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009, 69 (3): 1135-1142. 10.1158/0008-5472.CAN-08-2886.
Article
CAS
PubMed
Google Scholar
Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E, Pantaleo MA, Biasco G, Tomasi V: MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009, 315 (8): 1439-1447. 10.1016/j.yexcr.2008.12.010.
Article
CAS
PubMed
Google Scholar
Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F: MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem. 2010, 285 (24): 18344-18351. 10.1074/jbc.M110.112664.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010, 9: 108-10.1186/1476-4598-9-108.
Article
PubMed Central
PubMed
Google Scholar
Zhu QY, Liu Q, Chen JX, Lan K, Ge BX: MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol. 2010, 185 (12): 7435-7442. 10.4049/jimmunol.1000798.
Article
CAS
PubMed
Google Scholar
Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA: New methods for next generation sequencing based microRNA expression profiling. BMC Genomics. 2010, 11: 716-10.1186/1471-2164-11-716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ: MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol. 2011, 6 (4): 671-678. 10.1097/JTO.0b013e318208eb35.
Article
PubMed
Google Scholar
Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, Jones PA: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009, 69 (6): 2623-2629. 10.1158/0008-5472.CAN-08-3114.
Article
CAS
PubMed
Google Scholar
Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008, 322 (5908): 1695-1699. 10.1126/science.1165395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, Jaattela M, Lund AH: microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011, 30 (22): 4628-4641. 10.1038/emboj.2011.331.
Article
PubMed Central
CAS
PubMed
Google Scholar
Long JM, Lahiri DK: MicroRNA-101 downregulates Alzheimer’s amyloid-beta precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011, 404 (4): 889-895. 10.1016/j.bbrc.2010.12.053.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY: miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci. 2008, 11 (10): 1137-1139. 10.1038/nn.2183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pantano L, Estivill X, Marti E: SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010, 38 (5): e34-10.1093/nar/gkp1127.
Article
PubMed Central
PubMed
Google Scholar
Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol. 2005, 3 (3): e85-10.1371/journal.pbio.0030085.
Article
PubMed Central
PubMed
Google Scholar
Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40 (1): 37-52. 10.1093/nar/gkr688.
Article
PubMed Central
PubMed
Google Scholar
Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010, 11 (9): 597-610.
CAS
PubMed
Google Scholar
Heo I, Joo C, Cho J, Ha M, Han J, Kim VN: Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008, 32 (2): 276-284. 10.1016/j.molcel.2008.09.014.
Article
CAS
PubMed
Google Scholar
Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E: MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011, 12 (12): R126-10.1186/gb-2011-12-12-r126.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seitz H, Tushir JS, Zamore PD: A 5’-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence. 2011, 2: 4-10.1186/1758-907X-2-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ebhardt HA, Fedynak A, Fahlman RP: Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity. Silence. 2010, 1 (1): 12-10.1186/1758-907X-1-12.
Article
PubMed Central
PubMed
Google Scholar
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO: Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011, 8 (1): 158-177. 10.4161/rna.8.1.14300.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dueck A, Ziegler C, Eichner A, Berezikov E, Meister G: microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res. 2012, 40 (19): 9850-9862. 10.1093/nar/gks705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E: MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011, 20 (15): 3067-3078. 10.1093/hmg/ddr210.
Article
CAS
PubMed
Google Scholar
Banez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I, Guzman M, Estivill X, Marti E: A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet. 2012, 8 (2): e1002481-10.1371/journal.pgen.1002481.
Article
PubMed Central
CAS
PubMed
Google Scholar
Orom UA, Lund AH: Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods. 2007, 43 (2): 162-165. 10.1016/j.ymeth.2007.04.007.
Article
CAS
PubMed
Google Scholar