Lu Y, Huggins P, Bar-Joseph Z: Cross species analysis of microarray expression data. Bioinformatics. 2009, 25 (12): 1476-1483. 10.1093/bioinformatics/btp247.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215 (3): 403-410.
Article
CAS
PubMed
Google Scholar
Cai J, Xie D, Fan ZW, Chipperfield H, Marden J, Wong WH, Zhong S: Modeling co-expression across species for complex traits: insights to the difference of human and mouse embryonic stem cells. Plos Comput Biol. 2010, 6: 3-
Google Scholar
Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, White KP: Gene expression during the life cycle of Drosophila melanogaster. Science. 2002, 297 (5590): 2270-2275. 10.1126/science.1072152.
Article
CAS
PubMed
Google Scholar
Nau GJ, Richmond JFL, Schlesinger A, Jennings EG, Lander ES, Young RA: Human macrophage activation programs induced by bacterial pathogens. P Natl Acad Sci USA. 2002, 99 (3): 1503-1508. 10.1073/pnas.022649799.
Article
CAS
Google Scholar
Correa A, Lewis AZ, Greene AV, March IJ, Gomer RH, Bell-Pedersen D: Multiple oscillators regulate circadian gene expression in Neurospora. P Natl Acad Sci USA. 2003, 100 (23): 13597-13602. 10.1073/pnas.2233734100.
Article
CAS
Google Scholar
Bergmann S, Ihmels J, Barkai N: Similarities and differences in genome-wide expression data of six organisms. Plos Biol. 2004, 2 (1): 85-93.
CAS
Google Scholar
Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T: Conserved patterns of protein interaction in multiple species. P Natl Acad Sci USA. 2005, 102 (6): 1974-1979. 10.1073/pnas.0409522102.
Article
CAS
Google Scholar
Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, MacIsaac KD, Rolfe PA, Conboy CM, Gifford DK, Fraenkel E: Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet. 2007, 39 (6): 730-732. 10.1038/ng2047.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iori G, Precup OV: Weighted network analysis of high-frequency cross-correlation measures. Phys Rev E. 2007, 75 (3): 036110-
Article
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008, 9: 559-10.1186/1471-2105-9-559.
Article
Google Scholar
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA: Weighted Correlation Network Analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One. 2011, 6 (10): e26683-10.1371/journal.pone.0026683.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mo B. 2005, 4: 17-
Google Scholar
Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. P Natl Acad Sci USA. 2006, 103 (46): 17402-17407. 10.1073/pnas.0608396103.
Article
CAS
Google Scholar
Aten JE, Fuller TF, Lusis AJ, Horvath S: Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst Biol. 2008, 2: 34-10.1186/1752-0509-2-34.
Article
PubMed Central
PubMed
Google Scholar
Oldham MC, Horvath S, Geschwind DH: Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U S A. 103 (47): 17973-17978.
Park CC, Gale GD, de Jong S, Ghazalpour A, Bennett BJ, Farber CR, Langfelder P, Lin A, Khan AH, Eskin E: Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Syst Biol. 2011, 5: 43-10.1186/1752-0509-5-43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Allen JD, Xie Y, Chen M, Girard L, Xiao G: Comparing statistical methods for constructing large scale gene networks. PLoS One. 2012, 7 (1): e29348-10.1371/journal.pone.0029348.
Article
PubMed Central
CAS
PubMed
Google Scholar
Giordano M, Beardall J, Raven JA: CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol. 2005, 56: 99-131. 10.1146/annurev.arplant.56.032604.144052.
Article
CAS
PubMed
Google Scholar
Li WKW: Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton - measurements from flow cytometric sorting. Limnol Oceanogr. 1994, 39 (1): 169-175. 10.4319/lo.1994.39.1.0169.
Article
CAS
Google Scholar
Moore JK, Doney SC, Lindsay K: Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy. 2004, 18 (4): GB4028-
Article
Google Scholar
Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M: Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science. 2007, 315 (5812): 612-617. 10.1126/science.1131669.
Article
CAS
PubMed
Google Scholar
Mann EL, Ahlgren N, Moffett JW, Chisholm SW: Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol Oceanogr. 2002, 47 (4): 976-988. 10.4319/lo.2002.47.4.0976.
Article
CAS
Google Scholar
Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC: Characterization of Prochlorococcus clades from iron-depleted oceanic regions. P Natl Acad Sci USA. 2010, 107 (37): 16184-16189. 10.1073/pnas.1009513107.
Article
CAS
Google Scholar
Thompson AW, Huang K, Saito MA, Chisholm SW: Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J. 2011, 5 (10): 1580-1594. 10.1038/ismej.2011.49.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilhelm SW, Trick CG: Physiological profiles of Synechococcus (Cyanophyceae) in Iron-limiting continuous cultures. J Phycol. 1995, 31 (1): 79-85. 10.1111/j.0022-3646.1995.00079.x.
Article
CAS
Google Scholar
Nodop A, Pietsch D, Hocker R, Becker A, Pistorius EK, Forchhammer K, Michel KP: Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. Plant Physiol. 2008, 147 (2): 747-763. 10.1104/pp.107.114058.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu SW, Qiu BS: Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol. 2012, 159 (3): 519-532. 10.1007/s00227-011-1832-2.
Article
CAS
Google Scholar
Mann EL, Chisholm SW: Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol Oceanogr. 2000, 45 (5): 1067-1076. 10.4319/lo.2000.45.5.1067.
Article
CAS
Google Scholar
Brand LE, Sunda WG, Guillard RRL: Reduction of marine-phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol. 1986, 96 (3): 225-250. 10.1016/0022-0981(86)90205-4.
Article
CAS
Google Scholar
Stuart RK, Dupont CL, Johnson DA, Paulsen IT, Palenik B: Coastal strains of marine Synechococcus species exhibit Increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Microb. 2009, 75 (15): 5047-5057. 10.1128/AEM.00271-09.
Article
CAS
Google Scholar
Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J: The genome of a motile marine Synechococcus. Nature. 2003, 424 (6952): 1037-1042. 10.1038/nature01943.
Article
CAS
PubMed
Google Scholar
Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR: Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003, 424 (6952): 1042-1047. 10.1038/nature01947.
Article
CAS
PubMed
Google Scholar
Palenik B, Ren QH, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ: Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. P Natl Acad Sci USA. 2006, 103 (36): 13555-13559. 10.1073/pnas.0602963103.
Article
CAS
Google Scholar
Zhu YH, Graham JE, Ludwig M, Xiong W, Alvey RM, Shen GZ, Bryant DA: Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp strain PCC 7002. Arch Biochem Biophys. 2010, 504 (1): 86-99. 10.1016/j.abb.2010.07.007.
Article
CAS
PubMed
Google Scholar
Ledala N, Sengupta M, Muthaiyan A, Wilkinson BJ, Jayaswal RK: Transcriptomic response of Listeria monocytogenes to iron limitation and fur Mutation. Appl Environ Microb. 2010, 76 (2): 406-416. 10.1128/AEM.01389-09.
Article
CAS
Google Scholar
Ihrig J, Hausmann A, Hain A, Richter N, Hamza I, Lill R, Muhlenhoff U: Iron Regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell. 2010, 9 (3): 460-471. 10.1128/EC.00213-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Serkin CD, Seifert HS: Iron availability regulates DNA recombination in Neisseria gonorrhoeae. Mol Microbiol. 2000, 37 (5): 1075-1086. 10.1046/j.1365-2958.2000.02058.x.
Article
CAS
PubMed
Google Scholar
Lovcinsky M, Dedic R, Psencik J, Benesova J, Stys D, Hala J: Spectroscopic characterization of pigment binding proteins in normal-grown and iron-stressed thermophilic cyanobacteria Synechococcus sp. J Mol Struct. 1999, 481: 577-580.
Article
Google Scholar
Guikema JA, Sherman LA: Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol. 1983, 73 (2): 250-256. 10.1104/pp.73.2.250.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J: A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature. 2001, 412 (6848): 745-748. 10.1038/35089104.
Article
CAS
PubMed
Google Scholar
Shavyrina OB, Gapochka LD, Azovskii AI: Development of tolerance for copper in cyanobacteria repeatedly exposed to its toxic effect. Biol Bull. 2001, 28 (2): 183-187. 10.1023/A:1009423201364.
Article
CAS
Google Scholar
Michel KP, Pistorius EK: Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plantarum. 2004, 120 (1): 36-50. 10.1111/j.0031-9317.2004.0229.x.
Article
CAS
Google Scholar
Garcia-Villada L, Rico M, Altamirano MM, Sanchez-Martin L, Lopez-Rodas V, Costas E: Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res. 2004, 38 (8): 2207-2213. 10.1016/j.watres.2004.01.036.
Article
CAS
PubMed
Google Scholar
Boyle DS, Khattar MM, Addinall SG, Lutkenhaus J, Donachie WD: ftsW is an essential cell-division gene in Escherichia coli. Mol Microbiol. 1997, 24 (6): 1263-1273. 10.1046/j.1365-2958.1997.4091773.x.
Article
CAS
PubMed
Google Scholar
Mistry BV, Del Sol R, Wright C, Findlay K, Dyson P: FtsW is a dispensable cell division protein required for Z-ring stabilization during sporulation septation in Streptomyces coelicolor. J Bacteriol. 2008, 190 (16): 5555-5566. 10.1128/JB.00398-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marbouty M, Mazouni K, Saguez C, Cassier-Chauvat C, Chauvat F: Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol. 2009, 191 (16): 5123-5133. 10.1128/JB.00620-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fraipont C, Alexeeva S, Wolf B, van der Ploeg R, Schloesser M, den Blaauwen T, Nguyen-Disteche M: The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiol-Sgm. 2011, 157: 251-259. 10.1099/mic.0.040071-0.
Article
CAS
Google Scholar
Modell JW, Hopkins AC, Laub MT: A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Gene Dev. 2011, 25 (15): 1662-1662.
PubMed Central
Google Scholar
Bliss JM, Garon CF, Silver RP: Polysialic acid export in Escherichia coli K1: the role of KpsT, the ATP-binding component of an ABC transporter, in chain translocation. Glycobiology. 1996, 6 (4): 445-452. 10.1093/glycob/6.4.445.
Article
CAS
PubMed
Google Scholar
Zhang XC, Cannon SB, Stacey G: Evolutionary genomics of LysM genes in land plants. BMC Evol Biol. 2009, 9: 183-10.1186/1471-2148-9-183.
Article
PubMed Central
PubMed
Google Scholar
Qiu XT, Yuan Y, Gao YX: Expression, purification, crystallization and preliminary X-ray diffraction crystallographic study of PurH from Escherichia coli. Acta Crystallogr F. 2011, 67: 1590-1594. 10.1107/S1744309111039960.
Article
CAS
Google Scholar
Frankenberg N, Lagarias JC: Phycocyanobilin: Ferredoxin oxidoreductase of Anabaena sp PCC 7120 - Biochemical and spectroscopic characterization. J Biol Chem. 2003, 278 (11): 9219-9226. 10.1074/jbc.M211643200.
Article
CAS
PubMed
Google Scholar
Dammeyer T, Frankenberg-Dinkel N: Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem. 2006, 281 (37): 27081-27089. 10.1074/jbc.M605154200.
Article
CAS
PubMed
Google Scholar
Fish W, Dalrymple M, Sandersloehr J: Cellular ferredoxin and flavodoxin levels as indicators of iron-stress in cyanobacteria. Abstr Pap Am Chem S. 1987, 194: 230-ENVR
Google Scholar
Pankowski A, McMinn A: Iron availability regulates growth, photosynthesis, and production of ferredoxin and flavodoxin in Antarctic sea ice diatoms. Aquat Biol. 2009, 4 (3): 273-288.
Article
Google Scholar
Lee SW, Lee HW, Chung HJ, Kim YA, Kim YJ, Hahn Y, Chung JH, Park YS: Identification of the genes encoding enzymes involved in the early biosynthetic pathway of pteridines in Synechocystis sp. PCC 6803. FEMS Microbiol Lett. 1999, 179 (1): 181-181.
CAS
Google Scholar
Moon YJ, Lee EM, Park YM, Park YS, Chung WI, Chung YH: The Role of Cyanopterin in UV/Blue light signal transduction of cyanobacterium Synechocystis sp PCC 6803 Phototaxis. Plant Cell Physiol. 2010, 51 (6): 969-980. 10.1093/pcp/pcq059.
Article
CAS
PubMed
Google Scholar
Chung HJ, Kim YA, Kim YJ, Choi YK, Hwang YK, Park YS: Purification and characterization of UDP-glucose: tetrahydrobiopterin glucosyltransferase from Synechococcus sp PCC 7942. BBA-Gen Subjects. 2000, 1524 (2–3): 183-188.
Article
CAS
Google Scholar
Carlson MRJ, Zhang B, Fang ZX, Mischel PS, Horvath S, Nelson SF: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics. 2006, 7: 40-10.1186/1471-2164-7-40.
Article
PubMed Central
PubMed
Google Scholar
Zhang LD, Yu SW, Zuo KJ, Luo LJ, Tang KX: Identification of gene modules associated with drought response in rice by network-based Analysis. PLoS One. 2012, 7 (5): e33748-10.1371/journal.pone.0033748.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qiao J, Shao M, Chen L, Wang J, Wu G, Tian X, Liu J, Huang S, Zhang W: Systematic characterization of hypothetical proteins in Synechocystis sp. PCC 6803 reveals proteins functionally relevant to stress responses. Gene. 2013, 512 (1): 6-15. 10.1016/j.gene.2012.10.004.
Article
CAS
PubMed
Google Scholar
Castielli O, De la Cerda B, Navarro JA, Hervas M, De la Rosa MA: Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett. 2009, 583 (11): 1753-1758. 10.1016/j.febslet.2009.03.069.
Article
CAS
PubMed
Google Scholar
Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A: Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol. 2003, 13 (3): 230-235. 10.1016/S0960-9822(03)00046-0.
Article
CAS
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30 (1): 207-210. 10.1093/nar/30.1.207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science. 2002, 297 (5586): 1551-1555. 10.1126/science.1073374.
Article
CAS
PubMed
Google Scholar