Chiou TJ, Lin SI: Signaling network in sensing phosphate availability in plants. Ann Rev Plant Biol. 2011, 62: 185-206. 10.1146/annurev-arplant-042110-103849.
Article
CAS
Google Scholar
Yao Y, Sun H, Xu F, Zhang X, Liu S: Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta. 2011, 233 (3): 523-537. 10.1007/s00425-010-1311-x.
Article
CAS
PubMed
Google Scholar
Li K, Xu C, Zhang K, Yang A, Zhang J: Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics. 2007, 7 (9): 1501-1512. 10.1002/pmic.200600960.
Article
CAS
PubMed
Google Scholar
Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Yazdi-Samadi B, Ismail AM, Salekdeh GH: A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics. 2009, 9 (1): 159-170. 10.1002/pmic.200800350.
Article
CAS
PubMed
Google Scholar
Muller R, Morant M, Jarmer H, Nilsson L, Nielsen TH: Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol. 2007, 143 (1): 156-171.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M: Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 2007, 30 (1): 85-112. 10.1111/j.1365-3040.2006.01608.x.
Article
CAS
PubMed
Google Scholar
Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N: A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Nat Acad Sci USA. 2005, 102 (33): 11934-11939. 10.1073/pnas.0505266102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bari R, Datt Pant B, Stitt M, Scheible WR: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006, 141 (3): 988-999. 10.1104/pp.106.079707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin WD, Liao YY, Yang TJ, Pan CY, Buckhout TJ, Schmidt W: Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. 2011, 155 (3): 1383-1402. 10.1104/pp.110.166520.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ: Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 2003, 132 (2): 578-596. 10.1104/pp.103.020941.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW: Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 2003, 132 (3): 1260-1271. 10.1104/pp.103.021022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Plaxton WC, Tran HT: Metabolic adaptations of phosphate-starved plants. Plant Physiol. 2011, 156 (3): 1006-1015. 10.1104/pp.111.175281.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L: Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell. 2011, 23 (4): 1523-1535. 10.1105/tpc.110.081067.
Article
PubMed Central
CAS
PubMed
Google Scholar
Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T: Root tip contact with low-phosphate media reprograms plant root architecture. Nature Gen. 2007, 39 (6): 792-796. 10.1038/ng2041.
Article
CAS
Google Scholar
Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J: A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gen Dev. 2001, 15 (16): 2122-2133. 10.1101/gad.204401.
Article
CAS
Google Scholar
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J: A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 2010, 6 (9): e1001102-10.1371/journal.pgen.1001102.
Article
PubMed Central
PubMed
Google Scholar
Nilsson L, Muller R, Nielsen TH: Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ. 2007, 30 (12): 1499-1512. 10.1111/j.1365-3040.2007.01734.x.
Article
CAS
PubMed
Google Scholar
Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA: The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Nat Acad Sci USA. 2005, 102 (21): 7760-7765. 10.1073/pnas.0500778102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 2006, 141 (3): 1000-1011. 10.1104/pp.106.078063.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pant BD, Buhtz A, Kehr J, Scheible WR: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J Cell Mol Biol. 2008, 53 (5): 731-738. 10.1111/j.1365-313X.2007.03363.x.
Article
CAS
Google Scholar
Li WF, Perry PJ, Prafulla NN, Schmidt W: Ubiquitin-specific protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis. Mol Plant. 2010, 3 (1): 212-223. 10.1093/mp/ssp086.
Article
CAS
PubMed
Google Scholar
Lan P, Li W, Schmidt W: Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. MCP. 2012, 11 (11): 1156-1166.
PubMed Central
PubMed
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.
Article
PubMed Central
CAS
PubMed
Google Scholar
Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009, 32 (12): 1633-1651. 10.1111/j.1365-3040.2009.02040.x.
Article
CAS
PubMed
Google Scholar
Aoki K, Ogata Y, Shibata D: Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 2007, 48 (3): 381-390. 10.1093/pcp/pcm013.
Article
CAS
PubMed
Google Scholar
Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Gen. 2011, 12 (2): 87-98. 10.1038/nrg2934.
Article
CAS
Google Scholar
Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K: Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J Mol Biol. 2012, 70 (4): 599-613. 10.1111/j.1365-313X.2012.04901.x.
Article
CAS
Google Scholar
Wrzaczek M, Brosche M, Salojarvi J, Kangasjarvi S, Idanheimo N, Mersmann S, Robatzek S, Karpinski S, Karpinska B, Kangasjarvi J: Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol. 2010, 10: 95-10.1186/1471-2229-10-95.
Article
PubMed Central
PubMed
Google Scholar
Chen K, Du L, Chen Z: Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol. 2003, 53 (1–2): 61-74.
Article
CAS
PubMed
Google Scholar
Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y: COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development. 2012, 139 (18): 3402-3412. 10.1242/dev.078212.
Article
CAS
PubMed
Google Scholar
Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D: Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem. 2002, 277 (31): 27772-27781.
CAS
PubMed
Google Scholar
Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D: Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol. 2005, 59 (4): 581-594. 10.1007/s11103-005-0183-0.
Article
CAS
PubMed
Google Scholar
Wang S, Yin Y, Ma Q, Tang X, Hao D, Xu Y: Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol. 2012, 12: 138-10.1186/1471-2229-12-138.
Article
PubMed Central
PubMed
Google Scholar
Hammond JP, White PJ: Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot. 2008, 59 (1): 93-109.
Article
CAS
PubMed
Google Scholar
Oyama T, Shimura Y, Okada K: The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant J Mol Biol. 2002, 30 (3): 289-299. 10.1046/j.1365-313X.2002.01290.x.
Article
CAS
Google Scholar
Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT: Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol. 2009, 150 (3): 1459-1473. 10.1104/pp.109.140905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nozawa A, Sawada Y, Akiyama T, Koizumi N, Sano H: Variable interactions between sucrose non-fermented 1-related protein kinases and regulatory proteins in higher plants. Biosci Biotechnol Biochem. 2003, 67 (12): 2533-2540. 10.1271/bbb.67.2533.
Article
CAS
PubMed
Google Scholar
Lehti-Shiu MD, Shiu SH: Diversity, classification and function of the plant protein kinase superfamily. Phil Transac Royal Soc London Series B Biol Sci. 2012, 367 (1602): 2619-2639. 10.1098/rstb.2012.0003.
Article
CAS
Google Scholar
Lehti-Shiu MD, Zou C, Hanada K, Shiu SH: Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 2009, 150 (1): 12-26. 10.1104/pp.108.134353.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004, 16 (5): 1220-1234. 10.1105/tpc.020834.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiu SH, Bleecker AB: Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003, 132 (2): 530-543. 10.1104/pp.103.021964.
Article
CAS
PubMed
Google Scholar
Shiu SH, Bleecker AB: Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Nat Acad Sci USA. 2001, 98 (19): 10763-10768. 10.1073/pnas.181141598.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shiu SH, Bleecker AB: Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE. 2001, 2001 (113): re22-
CAS
PubMed
Google Scholar
Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC: The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. Arabidopsis Book. 2007, 5: e0106-
PubMed Central
PubMed
Google Scholar
Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P: A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 2012, 8 (1): e1002446-10.1371/journal.pgen.1002446.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT: Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell. 2006, 18 (11): 2958-2970. 10.1105/tpc.106.045229.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hwang I, Kim SY, Kim CS, Park Y, Tripathi GR, Kim SK, Cheong H: Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis. Plant Mol Biol. 2010, 73 (6): 629-641. 10.1007/s11103-010-9645-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG: Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol. 2007, 144 (1): 232-247. 10.1104/pp.106.092130.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS: Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol. 2009, 11 (1): 78-84. 10.1038/ncb1815.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bogre L, Okresz L, Henriques R, Anthony RG: Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 2003, 8 (9): 424-431. 10.1016/S1360-1385(03)00188-2.
Article
CAS
PubMed
Google Scholar
Jacinto E, Lorberg A: TOR regulation of AGC kinases in yeast and mammals. Biochem J. 2008, 410 (1): 19-37. 10.1042/BJ20071518.
Article
CAS
PubMed
Google Scholar
Pearce LR, Komander D, Alessi DR: The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010, 11 (1): 9-22.
Article
CAS
PubMed
Google Scholar
Garcia AV, Al-Yousif M, Hirt H: Role of AGC kinases in plant growth and stress responses. CMLS. 2012, 69 (19): 3259-3267. 10.1007/s00018-012-1093-3.
Article
CAS
PubMed
Google Scholar
Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U: Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Dev (Cambridge, England). 2009, 136 (19): 3279-3288. 10.1242/dev.040071.
Article
CAS
Google Scholar
Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M: ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. CB. 2009, 19 (15): 1327-1331.
CAS
PubMed
Google Scholar
Zhang Y, He J, McCormick S: Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. Plant J Cell Mol Biol. 2009, 58 (3): 474-484. 10.1111/j.1365-313X.2009.03792.x.
Article
CAS
Google Scholar
Boudsocq M, Droillard MJ, Regad L, Lauriere C: Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium?. The. Biochem J. 2012, 447 (2): 291-299. 10.1042/BJ20112072.
Article
CAS
PubMed
Google Scholar
Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC: CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell. 2002, 14 (5): 969-977. 10.1105/tpc.002196.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ihmels J, Levy R, Barkai N: Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol. 2004, 22 (1): 86-92. 10.1038/nbt918.
Article
CAS
PubMed
Google Scholar
Kharchenko P, Church GM, Vitkup D: Expression dynamics of a cellular metabolic network. Mol Sys Biol. 2005, 1: 2005.0016-
Google Scholar
Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K: Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Nat Acad Sci USA. 2007, 104 (15): 6478-6483. 10.1073/pnas.0611629104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu FF, Xue HW: Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 2010, 154 (2): 927-938. 10.1104/pp.110.159517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han X, Yin L, Xue H: Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis. J Integr Plant Biol. 2012, 54 (7): 486-499. 10.1111/j.1744-7909.2012.01132.x.
Article
CAS
PubMed
Google Scholar
Kulich I, Cole R, Drdova E, Cvrckova F, Soukup A, Fowler J, Zarsky V: Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 2010, 188 (2): 615-625. 10.1111/j.1469-8137.2010.03372.x.
Article
CAS
PubMed
Google Scholar