Evert RF: Esau's Plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 2006, Hoboken, New Jersey: Jone Wiley & Sons, Inc, 3
Book
Google Scholar
Ye ZH: Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol. 2002, 53: 183-202. 10.1146/annurev.arplant.53.100301.135245.
Article
CAS
PubMed
Google Scholar
Caño-Delgado A, Lee J-Y, Demura T: Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol. 2010, 26 (1): 605-637. 10.1146/annurev-cellbio-100109-104107.
Article
PubMed
Google Scholar
Hardtke CS, Berleth T: The arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 1998, 17 (5): 1405-1411. 10.1093/emboj/17.5.1405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonke M, Thitamadee S, Mahonen AP, Hauser M-T, Helariutta Y: APL regulates vascular tissue identity in arabidopsis. Nature. 2003, 426 (6963): 181-186. 10.1038/nature02100.
Article
CAS
PubMed
Google Scholar
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL: Radial patterning of arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol. 2003, 13 (20): 1768-1774. 10.1016/j.cub.2003.09.035.
Article
CAS
PubMed
Google Scholar
Kubo M: Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005, 19 (16): 1855-1860. 10.1101/gad.1331305.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhong R, Demura T, Ye ZH: SND1, A NAC domain transcription factor, is a Key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell. 2006, 18 (11): 3158-3170. 10.1105/tpc.106.047399.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vanderauwera S: Genome-wide analysis of hydrogen peroxide-regulated gene expression in arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 2005, 139 (2): 806-821. 10.1104/pp.105.065896.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K: Omics-based identification of arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci. 2007, 104 (15): 6478-6483. 10.1073/pnas.0611629104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yonekura-Sakakibara K, Tohge T, Niida R, Saito K: Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem. 2007, 282 (20): 14932-14941. 10.1074/jbc.M611498200.
Article
CAS
PubMed
Google Scholar
Brown DM: Identification of novel genes in arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell. 2005, 17 (8): 2281-2295. 10.1105/tpc.105.031542.
Article
PubMed Central
CAS
PubMed
Google Scholar
Persson S: Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci. 2005, 102 (24): 8633-8638. 10.1073/pnas.0503392102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR, Usadel B, Nikoloski Z, Persson S: PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell. 2011, 23 (3): 895-910. 10.1105/tpc.111.083667.
Article
PubMed Central
CAS
PubMed
Google Scholar
Persson S, Nikoloski Z, Eder M, Saxe F, Mutwil M, Ruprecht C: Large-scale Co-expression approach to dissect secondary cell wall formation across plant species. 2011, Plant Science: Frontiers in Plant Science, 2-
Google Scholar
Oikawa A, Joshi HJ, Rennie EA, Ebert B, Manisseri C, Heazlewood JL, Scheller HV: An integrative approach to the identification of arabidopsis and rice genes involved in xylan and secondary wall development. PLoS One. 2010, 5 (11): e15481-10.1371/journal.pone.0015481.
Article
PubMed Central
PubMed
Google Scholar
Zhao C: The xylem and phloem transcriptomes from secondary tissues of the arabidopsis root-hypocotyl. Plant Physiol. 2005, 138 (2): 803-818. 10.1104/pp.105.060202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011, 27 (3): 431-432. 10.1093/bioinformatics/btq675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhong R, Richardson EA, Ye ZH: The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in arabidopsis. Plant Cell. 2007, 19 (9): 2776-2792. 10.1105/tpc.107.053678.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in arabidopsis. Plant Cell. 2008, 20 (10): 2763-2782. 10.1105/tpc.108.061325.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abel S, Savchenko T, Levy M: Genome-wide comparative analysis of the IQD gene families in arabidopsis thaliana and oryza sativa. BMC Evol Biol. 2005, 5: 72-10.1186/1471-2148-5-72.
Article
PubMed Central
PubMed
Google Scholar
Atanassov II, Pittman JK, Turner SR: Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of arabidopsis secondary cell walls. J Biol Chem. 2008, 284 (6): 3833-3841. 10.1074/jbc.M807456200.
Article
PubMed
Google Scholar
Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C: The arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which Are essential for secondary cell wall integrity. Plant Cell. 2007, 19 (1): 237-255. 10.1105/tpc.106.047720.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu A-M, Rihouey C, Seveno M, Hörnblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A: The arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J. 2009, 57 (4): 718-731. 10.1111/j.1365-313X.2008.03724.x.
Article
CAS
PubMed
Google Scholar
Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S: Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of arabidopsis thaliana stems. Plant Cell. 2011, 23 (3): 1124-1137. 10.1105/tpc.110.082792.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mizrachi E, Mansfield SD, Myburg AA: Cellulose factories: advancing bioenergy production from forest trees. New Phytol. 2012, 194 (1): 54-62. 10.1111/j.1469-8137.2011.03971.x.
Article
CAS
PubMed
Google Scholar
Yang Z: Cell polarity signaling inArabidopsis. Annu Rev Cell Dev Biol. 2008, 24 (1): 551-575. 10.1146/annurev.cellbio.23.090506.123233.
Article
PubMed Central
PubMed
Google Scholar
Oda Y, Fukuda H: Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science. 2012, 337 (6100): 1333-1336. 10.1126/science.1222597.
Article
CAS
PubMed
Google Scholar
Brembu T: The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in arabidopsis. J Exp Bot. 2005, 56 (419): 2465-2476. 10.1093/jxb/eri239.
Article
CAS
PubMed
Google Scholar
De Smet I, Voß U, Jürgens G, Beeckman T: Receptor-like kinases shape the plant. Nat Cell Biol. 2009, 11 (10): 1166-1173. 10.1038/ncb1009-1166.
Article
CAS
PubMed
Google Scholar
Boerjan W, Ralph J, Baucher M: LIGNIN BIOSYNTHESIS. Annu Rev Plant Biol. 2003, 54 (1): 519-546. 10.1146/annurev.arplant.54.031902.134938.
Article
CAS
PubMed
Google Scholar
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE: Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in arabidopsis development. Plant Cell. 2005, 17 (1): 61-76. 10.1105/tpc.104.026161.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G: The arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 2001, 126 (2): 643-655. 10.1104/pp.126.2.643.
Article
PubMed Central
CAS
PubMed
Google Scholar
Green KA: CORONA, a member of the class III homeodomain leucine zipper gene family in arabidopsis, regulates stem cell specification and organogenesis. Plant Cell. 2005, 17 (3): 691-704. 10.1105/tpc.104.026179.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robischon M, Du J, Miura E, Groover A: The populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol. 2010, 155 (3): 1214-1225.
Article
PubMed Central
PubMed
Google Scholar
Rahman A, Du J, Miura E, Robischon M, Martinez C, Groover A: The populus class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems. PLoS One. 2011, 6 (2): e17458-10.1371/journal.pone.0017458.
Article
Google Scholar
Zhu Y, Song D, Sun J, Wang X, Li L: PtrHB7, A class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in populus. Mol Plant. 2013, 10.1093/mp/sss164.
Google Scholar
Mele G: The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev. 2003, 17 (17): 2088-2093. 10.1101/gad.1120003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Du J, Mansfield SD, Groover AT: The populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J. 2009, 60 (6): 1000-1014. 10.1111/j.1365-313X.2009.04017.x.
Article
CAS
PubMed
Google Scholar
Zhong R, Lee C, Ye Z-H: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010, 15 (11): 625-632. 10.1016/j.tplants.2010.08.007.
Article
CAS
PubMed
Google Scholar
Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH: Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol. 2011, 52 (10): 1856-1871. 10.1093/pcp/pcr123.
Article
CAS
PubMed
Google Scholar
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H: Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci. 2008, 105 (39): 15208-15213. 10.1073/pnas.0808444105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fisher K, Turner S: PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol. 2007, 17 (12): 1061-1066. 10.1016/j.cub.2007.05.049.
Article
CAS
PubMed
Google Scholar
Etchells JP, Turner SR: The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development. 2010, 137 (5): 767-774. 10.1242/dev.044941.
Article
CAS
PubMed
Google Scholar
Levy M, Wang Q, Kaspi R, Parrella MP, Abel S: Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J. 2005, 43 (1): 79-96. 10.1111/j.1365-313X.2005.02435.x.
Article
CAS
PubMed
Google Scholar
Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH: The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol. 2007, 48 (12): 1659-1672. 10.1093/pcp/pcm155.
Article
CAS
PubMed
Google Scholar
Lee C, Teng Q, Huang W, Zhong R, Ye ZH: The poplar GT8E and GT8F glycosyltransferases are functional orthologs of arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant Cell Physiol. 2009, 50 (11): 1982-1987. 10.1093/pcp/pcp131.
Article
CAS
PubMed
Google Scholar
Abel S, Oeller PW, Theologis A: Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci. 1994, 91 (1): 326-330. 10.1073/pnas.91.1.326.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ouellet F, Overvoorde PJ, Theologis A: IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell. 2001, 13 (4): 829-841.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sachs T: Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol. 2000, 41 (6): 649-656. 10.1093/pcp/41.6.649.
Article
CAS
PubMed
Google Scholar
Mao G: The role of MAP65-1 in microtubule bundling during zinnia tracheary element formation. J Cell Sci. 2006, 119 (4): 753-758. 10.1242/jcs.02813.
Article
CAS
PubMed
Google Scholar
Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski J-P, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S: Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J. 2011, 66 (3): 401-413. 10.1111/j.1365-313X.2011.04501.x.
Article
CAS
PubMed
Google Scholar
Urbanowicz BR, Pena MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Foston M, Li H, O'Neill MA, Ragauskas AJ: 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci. 2012, 109 (35): 14253-14258. 10.1073/pnas.1208097109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Szustakowski J, Schinke M: Bioinformatics analysis of microarray data. Methods Mol Biol. 2009, 573: 259-284. 10.1007/978-1-60761-247-6_15.
Article
CAS
PubMed
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z: AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38 (Web Server issue): W64-70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B: QuantPrime - a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinforma. 2008, 9 (1): 465-10.1186/1471-2105-9-465.
Article
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar