Mendelsohn ML: Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction. J Natl Cancer Inst. 1962, 28: 1015-1029.
CAS
PubMed
Google Scholar
Zetterberg A, Larsson O: Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci USA. 1985, 82: 5365-5369. 10.1073/pnas.82.16.5365.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coller HA: What's taking so long? S-phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol. 2007, 8 (8): 667-70. 10.1038/nrm2223.
Article
CAS
PubMed
Google Scholar
Jackson DA: The anatomy of transcription sites. Curr Opin Cell Biol. 2003, 15 (3): 311-7. 10.1016/S0955-0674(03)00044-9.
Article
CAS
PubMed
Google Scholar
Jackson DA: The amazing complexity of transcription factories. Brief Funct Genomic Proteomic. 2005, 4 (2): 143-57. 10.1093/bfgp/4.2.143.
Article
CAS
PubMed
Google Scholar
Cremer T, Cremer C: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001, 2: 292-301. 10.1038/35066075.
Article
CAS
PubMed
Google Scholar
Hetzer MW, Walther TC, Mattaj IW: Pushing the envelope: structure, function and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol. 2005, 21: 347-80. 10.1146/annurev.cellbio.21.090704.151152.
Article
CAS
PubMed
Google Scholar
Verschure PJ: Positioning the genome within the nucleus. Biol Cell. 2004, 96 (8): 569-77. 10.1016/j.biolcel.2004.07.001.
Article
CAS
PubMed
Google Scholar
Tumbar T, Sudlow G, Belmont AS: Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol. 1999, 145 (7): 1341-54. 10.1083/jcb.145.7.1341.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avramova Z: Heterochromatin in Animals and Plants. Similarities and Differences. Plant Physiol. 2002, 129 (1): 40-9. 10.1104/pp.010981.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown SW: Heterochromatin. Science. 1966, 151: 417-425. 10.1126/science.151.3709.417.
Article
CAS
PubMed
Google Scholar
Cremer T, et al: Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol. 2006, 18: 307-316. 10.1016/j.ceb.2006.04.007.
Article
CAS
PubMed
Google Scholar
Oberdoerffer P, Sinclair D: The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol. 2007, 8: 692-702. 10.1038/nrm2238.
Article
CAS
PubMed
Google Scholar
Butler JEF, Kadonaga JT: The RNA polymerase II core promoter: a key component in the regulation of gene expression. Gene Dev. 2002, 16: 2583-2592. 10.1101/gad.1026202.
Article
CAS
PubMed
Google Scholar
Tamaru H: Confining euchromatin/heterochromatin territory: jumonji crosses the line. Genes Dev. 2010, 24 (14): 1465-78. 10.1101/gad.1941010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zink D, et al: Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol. 2004, 166: 815-825. 10.1083/jcb.200404107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Williams RR, et al: Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci. 2006, 119: 132-140. 10.1242/jcs.02727.
Article
CAS
PubMed
Google Scholar
Kosak ST, et al: Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 2002, 296: 158-162. 10.1126/science.1068768.
Article
CAS
PubMed
Google Scholar
Reddy KL, et al: Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 2008, 452: 243-247. 10.1038/nature06727.
Article
CAS
PubMed
Google Scholar
Finlan LE, et al: Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 2008, 4: e1000039-10.1371/journal.pgen.1000039.
Article
PubMed Central
PubMed
Google Scholar
Kumaran RI, Spector DL: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol. 2008, 180: 51-65. 10.1083/jcb.200706060.
Article
PubMed Central
CAS
PubMed
Google Scholar
Akhtar A, Gasser SM: The nuclear envelope and transcriptional control. Nat Rev Genet. 2007, 8: 507-517. 10.1038/nrg2122.
Article
CAS
PubMed
Google Scholar
Dieppois G, et al: Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol. 2006, 26: 7858-7870. 10.1128/MCB.00870-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brickner JH, Walter P: Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2004, 2: e342-10.1371/journal.pbio.0020342.
Article
PubMed Central
PubMed
Google Scholar
Ahmed S, et al: DNA zip codes control an ancient mechanism for targeting genes to the nuclear periphery. Nat Cell Biol. 2010, 12: 111-118. 10.1038/ncb2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Casolari JM, et al: Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell. 2004, 117: 427-439. 10.1016/S0092-8674(04)00448-9.
Article
CAS
PubMed
Google Scholar
Taddei A: Active genes at the nuclear pore complex. Curr Opin Cell Biol. 2007, 19: 305-310. 10.1016/j.ceb.2007.04.012.
Article
CAS
PubMed
Google Scholar
Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D: The dynamic architecture of Hox gene clusters. Science. 2011, 334 (6053): 222-5. 10.1126/science.1207194.
Article
CAS
PubMed
Google Scholar
Tschopp P, Duboule D: A genetic approach to the transcriptional regulation of Hox gene clusters. Annu Rev Genet. 2011, 45: 145-66. 10.1146/annurev-genet-102209-163429.
Article
CAS
PubMed
Google Scholar
Chambeyron S, Bickmore WA: Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 2004, 18 (10): 1119-30. 10.1101/gad.292104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pearson JC, et al: Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005, 6: 893-904. 10.1038/nrg1726.
Article
CAS
PubMed
Google Scholar
Bantignies F, et al: Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell. 2011, 144: 214-226. 10.1016/j.cell.2010.12.026.
Article
CAS
PubMed
Google Scholar
Rougeulle C, Avner P: Controlling X-inactivation in mammals: what does the centre hold?. J semcdb. 2003, 14: 331-340.
CAS
Google Scholar
Plath K, Mlynarczyk-Evans S, Nusinov DA, Panning B: Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002, 36: 233-278. 10.1146/annurev.genet.36.042902.092433.
Article
CAS
PubMed
Google Scholar
Barr ML, Bertram EG: A Morphological Distinction between Neurones of the Male and Female, and the Behaviour of the Nucleolar Satellite during Accelerated Nucleoprotein Synthesis. Nature. 1949, 163 (4148): 676-7. 10.1038/163676a0.
Article
CAS
PubMed
Google Scholar
Thompson M, et al: Nucleolar clustering of dispersed tRNA genes. Science. 2003, 302: 1399-1401. 10.1126/science.1089814.
Article
PubMed Central
CAS
PubMed
Google Scholar
Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P: Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2001, 36 (10): 1065-71.
Article
Google Scholar
Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS: Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res. 2011, 39 (21): 9085-92. 10.1093/nar/gkr683.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang WC, Lee TY, Huang HD, Huang HY, Pan RL: PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics. 2008, 9: 561-10.1186/1471-2164-9-561.
Article
PubMed Central
PubMed
Google Scholar
Yamamoto YY, Yoshioka Y, Hyakumachi M, Obokata J, Yoshiharu Y: Characteristics of Core Promoter Types with respect to Gene Structure and Expression in Arabidopsis thaliana. DNA Res. 2011, 18: 333-42. 10.1093/dnares/dsr020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukue Y, Sumida N, Nishikawa J, Ohyama T: Core promoter elements of eukaryotic genes have a highly distinctive mechanical property. Nucleic Acids Res. 2004, 32: 5834-5840. 10.1093/nar/gkh905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Florquin K, Saeys Y, Degroeve S, Rouzé P, Van de Peer Y: Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucleic Acids Res. 2005, 33: 4255-4264. 10.1093/nar/gki737.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanhere A, Bansal M: Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res. 2005, 33: 3165-3175. 10.1093/nar/gki627.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto YY, Ichida H, Abe T, Suzuki Y, Sugano S, Obokata J: Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Nucleic Acids Res. 2007, 35: 6219-6226. 10.1093/nar/gkm685.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dineen DG, Wilm A, Cunningham P, Higgins DG: High DNA melting temperature predicts transcription start site location in human and mouse. Nucleic Acids Res. 2009, 37: 7360-7367. 10.1093/nar/gkp821.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, et al: Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006, 38: 626-635. 10.1038/ng1789.
Article
CAS
PubMed
Google Scholar
Jiang C, Xuan Z, Zhao F, Zhang MQ: TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007, 35 (Database issue): D137-40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao F, Xuan Z, Liu L, Zhang MQ: TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies. Nucleic Acids Res. 2005, 33 (Database issue): D103-7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedman WF: The index of coincidence and its applications in cryptology. Department of Ciphers. Publ 22. 1922, Geneva, Illinois, USA: Riverbank Laboratories
Google Scholar
Kashi Y, King DG: Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 2006, 22 (5): 253-9. 10.1016/j.tig.2006.03.005.
Article
CAS
PubMed
Google Scholar
Schmid CD, Perier R, Praz V, Bucher P: Database issue. Nucleic Acids Res. 2006, 34 (Database issue): D82-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Périer RC, Praz V, Junier T, Bonnard C, Bucher P: The eukaryotic promoter database (EPD). Nucleic Acids Res. 2000, 28 (1): 302-303. 10.1093/nar/28.1.302.
Article
PubMed Central
PubMed
Google Scholar
Levinson G, Gutman GA: Slipped-Strand Mispairing: A Major Mechanism for DNA Sequence Evolution. Mol Biol Evol. 1987, 4 (3): 203-221.
CAS
PubMed
Google Scholar
Suter B, Schnappauf G, Thoma F: Poly(dA:dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res. 2000, 28: 4083-4089. 10.1093/nar/28.21.4083.
Article
PubMed Central
CAS
PubMed
Google Scholar
Koch KA, Thiele DJ: Functional analysis of a homopolymeric (dA-dT) element that provides nucleosome access to yeast and mammalian transcription factors. J Biol Chem. 1999, 274: 23752-23760. 10.1074/jbc.274.34.23752.
Article
CAS
PubMed
Google Scholar
Podgol'nikova OA, Grigor'eva NM, Bliumina MG: Heterochromatic regions of human chromosomes 1, 9, 16 and Y and the phenotype. Genetika. 1984, 20 (3): 496-500.
PubMed
Google Scholar
Kuznetsova SM: Polymorphism of heterochromatin areas on chromosomes 1, 9, 16 and Y in long-lived subjects and persons of different ages in two regions of the Soviet Union. Arch Gerontol Geriatr. 1987, 6 (2): 177-86. 10.1016/0167-4943(87)90010-0.
Article
CAS
PubMed
Google Scholar
Hsu LY, Benn PA, Tannenbaum HL, Perlis TE, Carlson AD: Chromosomal polymorphisms of 1, 9, 16, and Y in 4 major ethnic groups: a large prenatal study. Am J Med Genet. 1987, 26 (1): 95-101. 10.1002/ajmg.1320260116.
Article
CAS
PubMed
Google Scholar
Hsu TC: A possible function of constitutive heterochromatin: the bodyguard hypothesis. Genetics. 1975, 79 (Suppl): 137-50.
PubMed
Google Scholar
Zhang L, Li WH: Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol. 2004, 21 (2): 236-9.
Article
PubMed
Google Scholar
Ludwig MZ: Functional evolution of noncoding DNA. Curr Opin Genet Dev. 2002, 12: 634-639. 10.1016/S0959-437X(02)00355-6.
Article
CAS
PubMed
Google Scholar
Lyer V, Struhl K: Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 1995, 14: 2570-2579.
Google Scholar
Blower MD, Sullivan BA, Karpen GH: Conserved organization of centromeric chromatin in flies and humans. Dev Cell. 2002, 2: 319-330. 10.1016/S1534-5807(02)00135-1.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lohe AR, et al: Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster. Genetics. 1993, 134 (4): 1149-74.
PubMed Central
CAS
PubMed
Google Scholar
Marella NV, Bhattacharya S, Mukherjee L, Xu J, Berezney R: Cell type specific chromosome territory organization in the interphase nucleus of normal and cancer cells. J Cell Physiol. 2009, 221 (1): 130-8. 10.1002/jcp.21836.
Article
CAS
PubMed
Google Scholar
Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004, 14 (3): 283-91. 10.1016/j.sbi.2004.05.004.
Article
CAS
PubMed
Google Scholar
Chuang CH, Belmont AS: Close encounters between active genes in the nucleus. Genome Biol. 2005, 6 (11): 237-10.1186/gb-2005-6-11-237.
Article
PubMed Central
PubMed
Google Scholar
Kang J, Xu B, Yao Y, Lin W, Hennessy C, Fraser P, Feng J: A dynamical model reveals gene co-localizations in nucleus. PLoS Comput Biol. 2011, 7 (7): e1002094-10.1371/journal.pcbi.1002094.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005, 3 (5): e157-10.1371/journal.pbio.0030157.
Article
PubMed Central
PubMed
Google Scholar
Lieberman-Aiden E, et al: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009, 326 (5950): 289-293. 10.1126/science.1181369.
Article
PubMed Central
CAS
PubMed
Google Scholar
National Center for Biotechnology Information (US): Genes and Disease. 1998, Bethesda (MD)
Google Scholar
Emerson BM: Specificity of gene regulation. Cell. 2002, 109: 267-270. 10.1016/S0092-8674(02)00740-7.
Article
CAS
PubMed
Google Scholar
Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM: Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res. 2006, 16 (1): 1-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gagniuc P, Cristea PD, Tuduce R, Ionescu-Tîrgovişte C, Gavrila L: DNA patterns and evolutionary signatures obtained through Kappa Index of Coincidence. Rev Roum Sci Techn Électrotechn et Énerg. 2012, 57 (1): 100-109.
Google Scholar
Bednar J, et al: Nucleosomes, linker DNA, and linker histones form a unique structural motif that directs the higher-order folding and compaction of chromatin. PNAS. 1998, 95: 14173-14178. 10.1073/pnas.95.24.14173.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fischle W, et al: Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003, 15: 172-183. 10.1016/S0955-0674(03)00013-9.
Article
CAS
PubMed
Google Scholar
Kornberg RD: Chromatin structure: A repeating unit of histones and DNA. Science. 1974, 184: 868-871. 10.1126/science.184.4139.868.
Article
CAS
PubMed
Google Scholar
Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Krämer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M: Relationship between nucleosome positioning and DNA methylation. Nature. 2010, 466 (7304): 388-92. 10.1038/nature09147.
Article
PubMed Central
CAS
PubMed
Google Scholar
Milani P, Chevereau G, Vaillant C, Audit B, Haftek-Terreau Z, Marilley M, Bouvet P, Argoul F, Arneodo A: Nucleosome positioning by genomic excluding-energy barriers. Proc Natl Acad Sci USA. 2009, 106 (52): 22257-62. 10.1073/pnas.0909511106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith CL, Peterson CL: ATP-dependent chromatin remodeling. Curr Top Dev Biol. 2005, 65: 115-148.
Article
CAS
PubMed
Google Scholar
Elgin SC: Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev. 1996, 6 (2): 193-202. 10.1016/S0959-437X(96)80050-5.
Article
CAS
PubMed
Google Scholar
Gagniuc , Ionescu-Tirgoviste : Eukaryotic genomes may exhibit up to 10 generic classes of gene promoter. BMC Genomics. 2012, 13: 512-10.1186/1471-2164-13-512.
Article
PubMed Central
CAS
PubMed
Google Scholar