Park E, Velumian AA, Fehlings MG: The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma. 2004, 21 (6): 754-774. 10.1089/0897715041269641.
PubMed
Google Scholar
Onifer SM, Rabchevsky AG, Scheff SW: Rat models of traumatic spinal cord injury to assess motor recovery. Ilar J. 2007, 48 (4): 385-395. 10.1093/ilar.48.4.385.
CAS
PubMed
Google Scholar
Watson BD, Prado R, Dietrich WD, Ginsberg MD, Green BA: Photochemically induced spinal cord injury in the rat. Brain Res. 1986, 367 (1–2): 296-300.
CAS
PubMed
Google Scholar
Bunge MB, Holets VR, Bates ML, Clarke TS, Watson BD: Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. Exp Neurol. 1994, 127 (1): 76-93. 10.1006/exnr.1994.1082.
CAS
PubMed
Google Scholar
Verdu E, Garcia-Alias G, Fores J, Vela JM, Cuadras J, Lopez-Vales R, Navarro X: Morphological characterization of photochemical graded spinal cord injury in the rat. J Neurotrauma. 2003, 20 (5): 483-499. 10.1089/089771503765355559.
PubMed
Google Scholar
Fehlings MG, Wilson JR: Spine trauma: the challenges in assessing outcomes. J Neurosurg Spine. 2010, 13 (5): 636-637. 10.3171/2010.4.SPINE10243. discussion 637
PubMed
Google Scholar
Kliot M, Lustgarten JH: Strategies to promote regeneration and recovery in the injured spinal cord. Neurosurg Clin N Am. 1990, 1 (3): 751-759.
CAS
PubMed
Google Scholar
Smith GM, Falone AE, Frank E: Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends Neurosci. 2012, 35 (3): 156-163. 10.1016/j.tins.2011.10.006.
PubMed Central
CAS
PubMed
Google Scholar
Thompson FJ, Parmer R, Reier PJ, Wang DC, Bose P: Scientific basis of spasticity: insights from a laboratory model. J Child Neurol. 2001, 16 (1): 2-9. 10.1177/088307380101600102.
CAS
PubMed
Google Scholar
Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E: Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010, 16 (3): 302-307. 10.1038/nm.2107.
CAS
PubMed
Google Scholar
Hains BC, Waxman SG: Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 2006, 26 (16): 4308-4317. 10.1523/JNEUROSCI.0003-06.2006.
CAS
PubMed
Google Scholar
Bedi SS, Lago MT, Masha LI, Crook RJ, Grill RJ, Walters ET: Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors. J Neurotrauma. 2012, 29 (5): 925-935. 10.1089/neu.2011.2007.
PubMed Central
PubMed
Google Scholar
Popovich P, McTigue D: Damage control in the nervous system: beware the immune system in spinal cord injury. Nat Med. 2009, 15 (7): 736-737. 10.1038/nm0709-736.
CAS
PubMed
Google Scholar
Noyes DH: Electromechanical impactor for producing experimental spinal cord injury in animals. Med Biol Eng Comput. 1987, 25 (3): 335-340. 10.1007/BF02447434.
CAS
PubMed
Google Scholar
Behrmann DL, Bresnahan JC, Beattie MS, Shah BR: Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotrauma. 1992, 9 (3): 197-217. 10.1089/neu.1992.9.197.
CAS
PubMed
Google Scholar
Bresnahan JC, Behrmann DL, Beattie MS: Anatomical and behavioral outcome after spinal cord contusion injury produced by a displacement controlled impact device. Restor Neurol Neurosci. 1993, 5 (1): 76-
CAS
PubMed
Google Scholar
Gruner JA, Yee AK, Blight AR: Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression. Brain Res. 1996, 729 (1): 90-101. 10.1016/0006-8993(96)00366-6.
CAS
PubMed
Google Scholar
Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE: Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma. 2003, 20 (2): 179-193. 10.1089/08977150360547099.
PubMed
Google Scholar
Cao Q, Zhang YP, Iannotti C, DeVries WH, Xu XM, Shields CB, Whittemore SR: Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Exp Neurol. 2005, 191 (Suppl 1): S3-S16.
PubMed
Google Scholar
Rivlin AS, Tator CH: Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol. 1978, 10 (1): 38-43.
CAS
PubMed
Google Scholar
Fehlings MG, Nashmi R: A new model of acute compressive spinal cord injury in vitro. J Neurosci Methods. 1997, 71 (2): 215-224. 10.1016/S0165-0270(96)00147-1.
CAS
PubMed
Google Scholar
Nashmi R, Jones OT, Fehlings MG: Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K + channels after chronic spinal cord injury. Eur J Neurosci. 2000, 12 (2): 491-506. 10.1046/j.1460-9568.2000.00926.x.
CAS
PubMed
Google Scholar
Nashmi R, Fehlings MG: Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience. 2001, 104 (1): 235-251. 10.1016/S0306-4522(01)00009-4.
CAS
PubMed
Google Scholar
Mautes AE, Weinzierl MR, Donovan F, Noble LJ: Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2000, 80 (7): 673-687.
CAS
PubMed
Google Scholar
Leal-Filho MB: Spinal cord injury: From inflammation to glial scar. Surg Neurol Int. 2011, 2: 112-10.4103/2152-7806.83732.
PubMed Central
PubMed
Google Scholar
Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R: MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. 1996, 13 (7): 343-359. 10.1089/neu.1996.13.343.
CAS
PubMed
Google Scholar
Broton JG, Nikolic Z, Suys S, Calancie B: Kinematic analysis of limb position during quadrupedal locomotion in rats. J Neurotrauma. 1996, 13 (7): 409-416. 10.1089/neu.1996.13.409.
CAS
PubMed
Google Scholar
Nashmi R, Imamura H, Tator CH, Fehlings MG: Serial recording of somatosensory and myoelectric motor evoked potentials: role in assessing functional recovery after graded spinal cord injury in the rat. J Neurotrauma. 1997, 14 (3): 151-159. 10.1089/neu.1997.14.151.
CAS
PubMed
Google Scholar
Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG: Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci. 2004, 19 (3): 577-589. 10.1111/j.0953-816X.2004.03164.x.
PubMed
Google Scholar
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG: Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006, 26 (13): 3377-3389. 10.1523/JNEUROSCI.4184-05.2006.
CAS
PubMed
Google Scholar
Park E, Liu Y, Fehlings MG: Changes in glial cell white matter AMPA receptor expression after spinal cord injury and relationship to apoptotic cell death. Exp Neurol. 2003, 182 (1): 35-48. 10.1016/S0014-4886(03)00084-0.
CAS
PubMed
Google Scholar
Alluin O, Karimi-Abdolrezaee S, Delivet-Mongrain H, Leblond H, Fehlings MG, Rossignol S: Kinematic study of locomotor recovery after spinal cord clip compression injury in rats. J Neurotrauma. 2011, 28 (9): 1963-1981. 10.1089/neu.2011.1840.
PubMed
Google Scholar
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010, 30 (5): 1657-1676. 10.1523/JNEUROSCI.3111-09.2010.
CAS
PubMed
Google Scholar
Eftekharpour E, Karimi-Abdolrezaee S, Wang J, El-Beheiry H, Morshead C, Fehlings MG: Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J Neurosci. 2007, 27 (13): 3416-3428. 10.1523/JNEUROSCI.0273-07.2007.
CAS
PubMed
Google Scholar
Chua SJ, Bielecki R, Yamanaka N, Fehlings MG, Rogers IM, Casper RF: The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976). 2010, 35 (16): 1520-1526. 10.1097/BRS.0b013e3181c3e963.
Google Scholar
Aimone JB, Leasure JL, Perreau VM, Thallmair M: Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp Neurol. 2004, 189 (2): 204-221. 10.1016/j.expneurol.2004.05.042.
CAS
PubMed
Google Scholar
Di-Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53 (4): 454-468. 10.1002/ana.10472.
CAS
PubMed
Google Scholar
De-Biase A, Knoblach SM, Di-Giovanni S, Fan C, Molon A, Hoffman EP, Faden AI: Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics. 2005, 22 (3): 368-381. 10.1152/physiolgenomics.00081.2005.
CAS
PubMed
Google Scholar
Rhee SY, Wood V, Dolinski K, Draghici S: Use and misuse of the gene ontology annotations. Nat Rev Genet. 2008, 9 (7): 509-515. 10.1038/nrg2363.
CAS
PubMed
Google Scholar
Supek F, Bosnjak M, Skunca N, Smuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011, 6 (7): e21800-10.1371/journal.pone.0021800.
PubMed Central
CAS
PubMed
Google Scholar
Barrell D, Dimmer E, Huntley RP, Binns D, O’Donovan C, Apweiler R: The GOA database in 2009--an integrated Gene Ontology Annotation resource. Nucleic Acids Res. 2009, 37 (Database issue): D396-403.
PubMed Central
CAS
PubMed
Google Scholar
Joshi M, Fehlings MG: Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 2. Quantitative neuroanatomical assessment and analysis of the relationships between axonal tracts, residual tissue, and locomotor recovery. J Neurotrauma. 2002, 19 (2): 191-203. 10.1089/08977150252806956.
PubMed
Google Scholar
Joshi M, Fehlings MG: Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma. 2002, 19 (2): 175-190. 10.1089/08977150252806947.
PubMed
Google Scholar
Poon PC, Gupta D, Shoichet MS, Tator CH: Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine (Phila Pa 1976). 2007, 32 (25): 2853-2859. 10.1097/BRS.0b013e31815b7e6b.
Google Scholar
Fehlings MG, Tator CH: The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 1995, 132 (2): 220-228. 10.1016/0014-4886(95)90027-6.
CAS
PubMed
Google Scholar
Di-Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De-Biase A, Bregman BS, Hoffman EP: Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. Faseb J. 2005, 19 (1): 153-154.
CAS
PubMed
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27 (1): 29-34. 10.1093/nar/27.1.29.
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28 (1): 27-30. 10.1093/nar/28.1.27.
PubMed Central
CAS
PubMed
Google Scholar
Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33 (Web Server issue): W741-748.
PubMed Central
CAS
PubMed
Google Scholar
Pico AR, Kelder T, van-Iersel MP, Hanspers K, Conklin BR, Evelo C: WikiPathways: pathway editing for the people. PLoS Biol. 2008, 6 (7): e184-10.1371/journal.pbio.0060184.
PubMed Central
PubMed
Google Scholar
Kelder T, Pico AR, Hanspers K, van-Iersel MP, Evelo C, Conklin BR: Mining biological pathways using WikiPathways web services. PLoS One. 2009, 4 (7): e6447-10.1371/journal.pone.0006447.
PubMed Central
PubMed
Google Scholar
Kelder T, van-Iersel MP, Hanspers K, Kutmon M, Conklin BR, Evelo CT, Pico AR: WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 2012, 40 (Database issue): D1301-1307.
PubMed Central
CAS
PubMed
Google Scholar
Soh D, Dong D, Guo Y, Wong L: Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinforma. 2010, 11: 449-10.1186/1471-2105-11-449.
Google Scholar
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32 (Database issue): D258-261.
CAS
PubMed
Google Scholar
Khatri P, Done B, Rao A, Done A, Draghici S: A semantic analysis of the annotations of the human genome. Bioinformatics. 2005, 21 (16): 3416-3421. 10.1093/bioinformatics/bti538.
PubMed Central
CAS
PubMed
Google Scholar
King OD, Foulger RE, Dwight SS, White JV, Roth FP: Predicting gene function from patterns of annotation. Genome Res. 2003, 13 (5): 896-904. 10.1101/gr.440803.
PubMed Central
CAS
PubMed
Google Scholar
Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ: Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 2003, 74 (2): 227-239. 10.1002/jnr.10759.
PubMed Central
CAS
PubMed
Google Scholar
del-Zoppo GJ: Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience. 2009, 158 (3): 972-982. 10.1016/j.neuroscience.2008.08.028.
PubMed Central
CAS
PubMed
Google Scholar
Tator CH, Fehlings MG: Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991, 75 (1): 15-26. 10.3171/jns.1991.75.1.0015.
CAS
PubMed
Google Scholar
Tator CH: Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995, 5 (4): 407-413. 10.1111/j.1750-3639.1995.tb00619.x.
CAS
PubMed
Google Scholar
Tator CH: Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie. 1991, 37 (5): 291-302.
CAS
PubMed
Google Scholar
Noble LJ, Wrathall JR: Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res. 1989, 482 (1): 57-66. 10.1016/0006-8993(89)90542-8.
CAS
PubMed
Google Scholar
Beggs JL, Waggener JD: The acute microvascular responses to spinal cord injury. Adv Neurol. 1979, 22: 179-189.
CAS
PubMed
Google Scholar
Anthes DL, Theriault E, Tator CH: Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery. 1996, 39 (4): 804-814. 10.1097/00006123-199610000-00032.
CAS
PubMed
Google Scholar
Smith AJ, McCreery DB, Bloedel JR, Chou SN: Hyperemia, CO2 responsiveness, and autoregulation in the white matter following experimental spinal cord injury. J Neurosurg. 1978, 48 (2): 239-251. 10.3171/jns.1978.48.2.0239.
CAS
PubMed
Google Scholar
Senter HJ, Venes JL: Loss of autoregulation and posttraumatic ischemia following experimental spinal cord trauma. J Neurosurg. 1979, 50 (2): 198-206. 10.3171/jns.1979.50.2.0198.
CAS
PubMed
Google Scholar
Smith SA: The cell-based model of coagulation. J Vet Emerg Crit Care (San Antonio). 2009, 19 (1): 3-10. 10.1111/j.1476-4431.2009.00389.x.
Google Scholar
Mizutani A, Okajima K, Uchiba M, Noguchi T: Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood. 2000, 95 (12): 3781-3787.
CAS
PubMed
Google Scholar
Yamauchi T, Sakurai M, Abe K, Takano H, Sawa Y: Neuroprotective effects of activated protein C through induction of insulin-like growth factor-1 (IGF-1), IGF-1 receptor, and its downstream signal phosphorylated serine-threonine kinase after spinal cord ischemia in rabbits. Stroke. 2006, 37 (4): 1081-1086. 10.1161/01.STR.0000206280.30972.21.
CAS
PubMed
Google Scholar
Vercellotti GM, Balla G, Balla J, Nath K, Eaton JW, Jacob HS: Heme and the vasculature: an oxidative hazard that induces antioxidant defenses in the endothelium. Artif Cells Blood Substit Immobil Biotechnol. 1994, 22 (2): 207-213. 10.3109/10731199409117415.
CAS
PubMed
Google Scholar
Sadrzadeh SM, Anderson DK, Panter SS, Hallaway PE, Eaton JW: Hemoglobin potentiates central nervous system damage. J Clin Invest. 1987, 79 (2): 662-664. 10.1172/JCI112865.
PubMed Central
CAS
PubMed
Google Scholar
Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci. 2010, 30 (17): 5843-5854. 10.1523/JNEUROSCI.0137-10.2010.
PubMed Central
CAS
PubMed
Google Scholar
Schachtrup C, Lu P, Jones LL, Lee JK, Lu J, Sachs BD, Zheng B, Akassoglou K: Fibrinogen inhibits neurite outgrowth via beta 3 integrin-mediated phosphorylation of the EGF receptor. Proc Natl Acad Sci U S A. 2007, 104 (28): 11814-11819. 10.1073/pnas.0704045104.
PubMed Central
CAS
PubMed
Google Scholar
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ: Complement activation in the injured central nervous system: another dual-edged sword?. J Neuroinflammation. 2012, 9: 137-10.1186/1742-2094-9-137.
PubMed Central
PubMed
Google Scholar
Anderson AJ, Robert S, Huang W, Young W, Cotman CW: Activation of complement pathways after contusion-induced spinal cord injury. J Neurotrauma. 2004, 21 (12): 1831-1846. 10.1089/neu.2004.21.1831.
PubMed
Google Scholar
Qiao F, Atkinson C, Song H, Pannu R, Singh I, Tomlinson S: Complement plays an important role in spinal cord injury and represents a therapeutic target for improving recovery following trauma. Am J Pathol. 2006, 169 (3): 1039-1047. 10.2353/ajpath.2006.060248.
PubMed Central
CAS
PubMed
Google Scholar
Reynolds DN, Smith SA, Zhang YP, Mengsheng Q, Lahiri DK, Morassutti DJ, Shields CB, Kotwal GJ: Vaccinia virus complement control protein reduces inflammation and improves spinal cord integrity following spinal cord injury. Ann N Y Acad Sci. 2004, 1035: 165-178. 10.1196/annals.1332.011.
CAS
PubMed
Google Scholar
Li LM, Li JB, Zhu Y, Fan GY: Soluble complement receptor type 1 inhibits complement system activation and improves motor function in acute spinal cord injury. Spinal Cord. 2010, 48 (2): 105-111. 10.1038/sc.2009.104.
CAS
PubMed
Google Scholar
Li L, Li J, Zhu Y, Fan G: Ephedra sinica inhibits complement activation and improves the motor functions after spinal cord injury in rats. Brain Res Bull. 2009, 78 (4–5): 261-266.
CAS
PubMed
Google Scholar
Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FP, Anderson AJ: Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci. 2008, 28 (51): 13876-13888. 10.1523/JNEUROSCI.2823-08.2008.
PubMed Central
CAS
PubMed
Google Scholar
de-Simoni MG, Rossi E, Storini C, Pizzimenti S, Echart C, Bergamaschini L: The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. Am J Pathol. 2004, 164 (5): 1857-1863. 10.1016/S0002-9440(10)63744-3.
PubMed Central
PubMed
Google Scholar
Lipton P: Ischemic cell death in brain neurons. Physiol Rev. 1999, 79 (4): 1431-1568.
CAS
PubMed
Google Scholar
Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N: Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005, 201 (1): 105-115. 10.1084/jem.20040624.
PubMed Central
CAS
PubMed
Google Scholar
Gorlach A, Bonello S: The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J. 2008, 412 (3): e17-19.
PubMed
Google Scholar
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008, 453 (7196): 807-811. 10.1038/nature06905.
PubMed Central
CAS
PubMed
Google Scholar
Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J: Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A. 2006, 103 (48): 18154-18159. 10.1073/pnas.0602235103.
PubMed Central
CAS
PubMed
Google Scholar
Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T, Gorlach A: Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007, 18 (12): 4691-4697. 10.1091/mbc.E07-04-0391.
PubMed Central
CAS
PubMed
Google Scholar
Semenza GL: HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001, 107 (1): 1-3. 10.1016/S0092-8674(01)00518-9.
CAS
PubMed
Google Scholar
Hogel H, Rantanen K, Jokilehto T, Grenman R, Jaakkola PM: Prolyl hydroxylase PHD3 enhances the hypoxic survival and G1 to S transition of carcinoma cells. PLoS One. 2011, 6 (11): e27112-10.1371/journal.pone.0027112.
PubMed Central
CAS
PubMed
Google Scholar
Hall ED, Wolf DL: Post-traumatic spinal cord ischemia: relationship to injury severity and physiological parameters. Cent Nerv Syst Trauma. 1987, 4 (1): 15-25.
CAS
PubMed
Google Scholar
Guth L, Zhang Z, Steward O: The unique histopathological responses of the injured spinal cord. Implications for neuroprotective therapy. Ann N Y Acad Sci. 1999, 890: 366-384. 10.1111/j.1749-6632.1999.tb08017.x.
CAS
PubMed
Google Scholar
Hall ED: Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci. 1995, 134 (Suppl): 79-83.
PubMed
Google Scholar
Latanich CA, Toledo-Pereyra LH: Searching for NF-kappaB-based treatments of ischemia reperfusion injury. J Invest Surg. 2009, 22 (4): 301-315. 10.1080/08941930903040155.
PubMed
Google Scholar
Chen F, Beezhold K, Castranova V: Tumor promoting or tumor suppressing of NF-kappa B, a matter of cell context dependency. Int Rev Immunol. 2008, 27 (4): 183-204. 10.1080/08830180802130327.
CAS
PubMed
Google Scholar
Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol. 2007, 500 (2): 267-285. 10.1002/cne.21149.
CAS
PubMed
Google Scholar
de-Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW: A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci. 2008, 28 (13): 3404-3414. 10.1523/JNEUROSCI.0157-08.2008.
PubMed
Google Scholar
Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ: Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain. 2010, 133 (Pt 2): 433-447.
PubMed Central
PubMed
Google Scholar
Pineau I, Sun L, Bastien D, Lacroix S: Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun. 2010, 24 (4): 540-553. 10.1016/j.bbi.2009.11.007.
CAS
PubMed
Google Scholar
Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z: Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. 2002, 22 (17): 7526-7535.
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Trivedi A, Lee JU, Lohela M, Lee SM, Fandel TM, Werb Z, Noble-Haeusslein LJ: Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord. J Neurosci. 2011, 31 (44): 15894-15903. 10.1523/JNEUROSCI.3943-11.2011.
PubMed Central
CAS
PubMed
Google Scholar
Wells JE, Rice TK, Nuttall RK, Edwards DR, Zekki H, Rivest S, Yong VW: An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J Neurosci. 2003, 23 (31): 10107-10115.
CAS
PubMed
Google Scholar
Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S: CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity. 2010, 32 (2): 240-252. 10.1016/j.immuni.2010.01.011.
CAS
PubMed
Google Scholar
Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010, 11 (5): 373-384. 10.1038/ni.1863.
CAS
PubMed
Google Scholar
Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG: Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007, 102 (1): 37-50. 10.1111/j.1471-4159.2007.04524.x.
CAS
PubMed
Google Scholar
de-Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De-Koninck Y, Keane RW, Lacroix S: P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012, 32 (9): 3058-3066. 10.1523/JNEUROSCI.4930-11.2012.
PubMed
Google Scholar
Srivastava S, Salim N, Robertson MJ: Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem. 2010, 17 (29): 3353-3357. 10.2174/092986710793176348.
CAS
PubMed
Google Scholar
Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG: Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma. 2002, 19 (6): 753-761. 10.1089/08977150260139129.
CAS
PubMed
Google Scholar
Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG: Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006, 99 (4): 1073-1087. 10.1111/j.1471-4159.2006.04147.x.
CAS
PubMed
Google Scholar
Ankeny DP, Guan Z, Popovich PG: B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest. 2009, 119 (10): 2990-2999. 10.1172/JCI39780.
PubMed Central
CAS
PubMed
Google Scholar
Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG: Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol. 2007, 207 (1): 75-84. 10.1016/j.expneurol.2007.05.019.
PubMed Central
CAS
PubMed
Google Scholar
Ankeny DP, Popovich PG: Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience. 2009, 158 (3): 1112-1121. 10.1016/j.neuroscience.2008.07.001.
PubMed Central
CAS
PubMed
Google Scholar
Nashmi R, Fehlings MG: Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev. 2001, 38 (1–2): 165-191.
CAS
PubMed
Google Scholar
Gautier L, Cope L, Bolstad BM, Irizarry RA: Affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004, 20 (3): 307-315. 10.1093/bioinformatics/btg405.
CAS
PubMed
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5 (10): R80-10.1186/gb-2004-5-10-r80.
PubMed Central
PubMed
Google Scholar
Zhijin Wu RAI, Gentleman R, Martinez-Murillo F, Spencer F: A Model-Based Background Adjustment for Oligonucleotide Expression Arrays. J Am Stat Assoc. 2004, 99 (December): 909-917.
Google Scholar
Semeralul MO, Boutros PC, Likhodi O, Okey AB, Van-Tol HH, Wong AH: Microarray analysis of the developing cortex. J Neurobiol. 2006, 66 (14): 1646-1658. 10.1002/neu.20302.
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article3 Epub
Google Scholar
Efron B, Tibshirani R: Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002, 23 (1): 70-86. 10.1002/gepi.1124.
PubMed
Google Scholar
Boutros PC, Okey AB: Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief Bioinform. 2005, 6 (4): 331-343. 10.1093/bib/6.4.331.
CAS
PubMed
Google Scholar
Ernst J, Bar-Joseph Z: STEM: a tool for the analysis of short time series gene expression data. BMC Bioinforma. 2006, 7: 191-10.1186/1471-2105-7-191.
Google Scholar