Baker CJ, Harrington TC, Krauss U, Alfenas AC: Genetic variability and host specialization in the latin american clade of ceratocystis fimbriata. Phytopathology. 2003, 93 (10): 1274-1284. 10.1094/PHYTO.2003.93.10.1274.
CAS
PubMed
Google Scholar
Johnson JA, Harrington TC, Engelbrecht CJ: Phylogeny and taxonomy of the North American clade of the ceratocystis fimbriata complex. Mycologia. 2005, 97 (5): 1067-1092. 10.3852/mycologia.97.5.1067.
CAS
PubMed
Google Scholar
Barnes I, Gaur A, Burgess T, Roux J, Wingfield BD, Wingfield MJ: Microsatellite markers reflect intra-specific relationships between isolates of the vascular wilt pathogen Ceratocystis fimbriata. Mol Plant Pathol. 2001, 2 (6): 319-325. 10.1046/j.1464-6722.2001.00080.x.
CAS
PubMed
Google Scholar
Engelbrecht CJ, Harrington TC, Steimel J, Capretti P: Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Mol Ecol. 2004, 13 (10): 2995-3005. 10.1111/j.1365-294X.2004.02312.x.
CAS
PubMed
Google Scholar
Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ: Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One. 2008, 3 (6): e2300-10.1371/journal.pone.0002300.
PubMed Central
PubMed
Google Scholar
Engelbrecht CJ, Harrington TC: Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia. 2005, 97 (1): 57-69. 10.3852/mycologia.97.1.57.
PubMed
Google Scholar
Bastos CNE HC: Ocorrencia de Ceratocystis fimbriata. Acta Amazonica. 1978, 8 (4): 543-544.
Google Scholar
Bezerra JL: Ceratocystis fimbriata causing death of budded cocoa seedlings in Bahia, Brazil. Incoped Newsletter. 1997, 1:
Google Scholar
Malaguti G: Ceratostomella fimbriata en el cacao de Venezuela. Acta cientif venezol. 1952, 3 (3): 94-97.
Google Scholar
Harrington TC: Host specialization and speciation in the American wilt pathogen Ceratocystis fimbriata. Fitopatol Bras. 2000, 25S: 262-263.
Google Scholar
Spence JL: Preliminary observations on a wilt condition of cocoa. J Agric Soc Trinidad and Tobago. 1958, 58 (3): 349-359.
Google Scholar
Thorold CA: Diseseas of cocoa. 1975, Oxford: Clarendon Press, 423-XII
Google Scholar
Engelbrecht CJ, Harrington TC, Alfenas A: Ceratocystis wilt of cacao-a disease of increasing importance. Phytopathology. 2007, 97 (12): 1648-1649. 10.1094/PHYTO-97-12-1648.
PubMed
Google Scholar
Ferreira MA, Harrington TC, Alfenas AC, Mizubuti ES: Movement of genotypes of Ceratocystis fimbriata within and among Eucalyptus plantations in Brazil. Phytopathology. 2011, 101 (8): 1005-1012. 10.1094/PHYTO-01-11-0015.
PubMed
Google Scholar
Harrington TC, Thorpe DJ, Alfenas AC: Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology. 2011, 101 (5): 555-566. 10.1094/PHYTO-08-10-0228.
PubMed
Google Scholar
Shingu-Vazquez M, Traven A: Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell. 2011, 10 (11): 1376-1383. 10.1128/EC.05184-11.
PubMed Central
CAS
PubMed
Google Scholar
Schatz G: Mitochondria: beyond oxidative phosphorylation. Biochim Biophys Acta. 1995, 1271 (1): 123-126. 10.1016/0925-4439(95)00018-Y.
PubMed
Google Scholar
Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD: Calcium and mitochondria. FEBS Lett. 2004, 567 (1): 96-102. 10.1016/j.febslet.2004.03.071.
CAS
PubMed
Google Scholar
Muhlenhoff U, Richhardt N, Gerber J, Lill R: Characterization of iron-sulfur protein assembly in isolated mitochondria. A requirement for ATP, NADH, and reduced iron. J Biol Chem. 2002, 277 (33): 29810-29816. 10.1074/jbc.M204675200.
CAS
PubMed
Google Scholar
Eisenberg T, Buttner S, Kroemer G, Madeo F: The mitochondrial pathway in yeast apoptosis. Apoptosis. 2007, 12: 1011-1023. 10.1007/s10495-007-0758-0.
CAS
PubMed
Google Scholar
Lorin S, Dufour E, Sainsard-Chanet A: Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1757, 5–6: 604-610.
Google Scholar
Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H: A new senescence-inducing mitochondrial linear plasmid in field-isolated <i>Neurospora crassa strains from India. Curr Genet. 1991, 19 (2): 129-137. 10.1007/BF00326294.
CAS
PubMed
Google Scholar
Torriani SF, Goodwin SB, Kema GH, Pangilinan JL, McDonald BA: Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. FG & B. 2008, 45 (5): 628-637.
CAS
Google Scholar
Solieri L: Mitochondrial inheritance in budding yeasts: towards an integrated understanding. Trends Microbiol. 2010, 18 (11): 521-530. 10.1016/j.tim.2010.08.001.
CAS
PubMed
Google Scholar
Wiedemann N, Frazier AE, Pfanner N: The protein import machinery of mitochondria. J Biol Chem. 2004, 279 (15): 14473-14476. 10.1074/jbc.R400003200.
CAS
PubMed
Google Scholar
Gray MW, Lang BF: Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 1998, 6 (1): 1-3. 10.1016/S0966-842X(97)01182-7.
CAS
PubMed
Google Scholar
Dolezal P, Likic V, Tachezy J, Lithgow T: Evolution of the molecular machines for protein import into mitochondria. Science. 2006, 313 (5785): 314-318. 10.1126/science.1127895.
CAS
PubMed
Google Scholar
Neupert W, Herrmann JM: Translocation of proteins into mitochondria. Annu Rev Biochem. 2007, 76: 723-749. 10.1146/annurev.biochem.76.052705.163409.
CAS
PubMed
Google Scholar
Schmidt O, Pfanner N, Meisinger C: Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010, 11 (9): 655-667. 10.1038/nrm2959.
CAS
PubMed
Google Scholar
Costa GG, Cabrera OG, Tiburcio RA, Medrano FJ, Carazzolle MF, Thomazella DP, Schuster SC, Carlson JE, Guiltinan MJ, Bailey BA: The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao. Fungal Biol. 2012, 116 (5): 551-562. 10.1016/j.funbio.2012.01.008.
CAS
PubMed
Google Scholar
David Day A, Heazlewood J, Julian Tonti-Filippini S, Alexander Gout M, David Day A, James W, Harvey Millar A: Experimental analysis of the arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell. 2004, 16 (1): 241-256. 10.1105/tpc.016055.
PubMed Central
PubMed
Google Scholar
Mercer Tim R, Neph S, Dinger Marcel E, Crawford J, Smith Martin A, Shearwood A-Marie J, Haugen E, Bracken Cameron P, Rackham O, Stamatoyannopoulos John A: The human mitochondrial transcriptome. Cell. 2011, 146 (4): 645-658. 10.1016/j.cell.2011.06.051.
PubMed Central
CAS
PubMed
Google Scholar
Prokisch H, Scharfe C, Camp DG, Xiao W, David L, Andreoli C, Monroe ME, Moore RJ, Gritsenko MA, Kozany C: Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol. 2004, 2 (6): e160-10.1371/journal.pbio.0020160.
PubMed Central
PubMed
Google Scholar
Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A: Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res. 2006, 5 (7): 1543-1554. 10.1021/pr050477f.
CAS
PubMed
Google Scholar
Doyle C, Donaldson M, Morrison E, Saville B: Ustilago maydis transcript features identified through full-length cDNA analysis. Mol Genet Genomics. 2011, 286 (2): 143-159. 10.1007/s00438-011-0634-z.
CAS
PubMed
Google Scholar
Tan K-C, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS: Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol. 2009, 10 (5): 703-715. 10.1111/j.1364-3703.2009.00565.x.
CAS
PubMed
Google Scholar
Gonzalez-Fernandez R, Prats E, Jorren-Novo JV: Proteomics of plant pathogenic fungi. J Biomed Biotechnol. 2010, 2010: 1-36.
Google Scholar
Yajima W, Kav NNV: The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics. 2006, 6 (22): 5995-6007. 10.1002/pmic.200600424.
CAS
PubMed
Google Scholar
Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, López JA, Cantoral JM, Jorrín J: Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics. 2006, 6 (S1): S88-S96. 10.1002/pmic.200500436.
PubMed
Google Scholar
Medina M: Genomes, phylogeny, and evolutionary systems biology. Proc Natl Acad Sci U S A. 2005, 102 (Suppl 1): 6630-6635.
PubMed Central
CAS
PubMed
Google Scholar
Godfrey D, Zhang Z, Saalbach G, Thordal-Christensen H: A proteomics study of barley powdery mildew haustoria. Proteomics. 2009, 9 (12): 3222-3232. 10.1002/pmic.200800645.
CAS
PubMed
Google Scholar
Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, DeAngelis YM, Reeder NL, Johnstone KR: Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. 2007, 104 (47): 18730-18735. 10.1073/pnas.0706756104.
PubMed Central
CAS
PubMed
Google Scholar
Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos Damien P, Arumugam M, Bork P, Hurt E: Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell. 2011, 146 (2): 277-289. 10.1016/j.cell.2011.06.039.
CAS
PubMed
Google Scholar
Paquin B, Franz Lang B: The mitochondrial DNA of allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol. 1996, 255 (5): 688-701. 10.1006/jmbi.1996.0056.
CAS
PubMed
Google Scholar
Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW: The complete mitochondrial DNA sequences of nephroselmis olivacea and pedinomonas minor: Two radically different evolutionary patterns within green algae. The Plant Cell Online. 1999, 11 (9): 1717-1729.
CAS
Google Scholar
Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G: Genes within genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within an rnl group I intron of ophiostoma and related taxa. Mol Biol Evol. 2009, 26 (10): 2299-2315. 10.1093/molbev/msp145.
CAS
PubMed
Google Scholar
Sethuraman J, Majer A, Iranpour M, Hausner G: Molecular evolution of the mtDNA encoded rps3 gene among filamentous ascomycetes fungi with an emphasis on the ophiostomatoid fungi. J Mol Evol. 2009, 69 (4): 372-385. 10.1007/s00239-009-9291-9.
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25 (5): 955-964.
PubMed Central
CAS
PubMed
Google Scholar
Pantou MP, Kouvelis VN, Typas MA: The complete mitochondrial genome of the vascular wilt fungus Verticillium dahliae: a novel gene order for Verticillium and a diagnostic tool for species identification. Curr Genet. 2006, 50 (2): 125-136. 10.1007/s00294-006-0079-9.
CAS
PubMed
Google Scholar
Pantou MP, Kouvelis VN, Typas MA: The complete mitochondrial genome of fusarium oxysporum: insights into fungal mitochondrial evolution. Gene. 2008, 419 (1–2): 7-15.
CAS
PubMed
Google Scholar
Ferandon C, Moukha S, Callac P, Benedetto JP, Castroviejo M, Barroso G: The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns. PLoS One. 2010, 5 (11): e14048-10.1371/journal.pone.0014048.
PubMed Central
PubMed
Google Scholar
Chevalier BS, Stoddard BL: Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001, 29 (18): 3757-3774. 10.1093/nar/29.18.3757.
PubMed Central
CAS
PubMed
Google Scholar
Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, Plattner RD: A genetic map of Gibberella zeae (Fusarium graminearum). Genetics. 2002, 160 (4): 1451-1460.
PubMed Central
CAS
PubMed
Google Scholar
Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S: The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003, 422 (6934): 859-868. 10.1038/nature01554.
CAS
PubMed
Google Scholar
Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K: Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutat Res. 1989, 219 (1): 9-15. 10.1016/0921-8734(89)90036-2.
CAS
PubMed
Google Scholar
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF: The complete genome sequence of Escherichia coli K-12. Science. 1997, 277 (5331): 1453-1462. 10.1126/science.277.5331.1453.
CAS
PubMed
Google Scholar
Andersson SG, Kurland CG: Ancient and recent horizontal transfer events: the origins of mitochondria. APMIS Suppl. 1998, 84: 5-14.
CAS
PubMed
Google Scholar
Schmitt S, Prokisch H, Schlunck T, Camp DG, Ahting U, Waizenegger T, Scharfe C, Meitinger T, Imhof A, Neupert W: Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics. 2006, 6 (1): 72-80.
CAS
PubMed
Google Scholar
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK:A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology. Cell. 2008, 134 (1): 112-123. 10.1016/j.cell.2008.06.016.
PubMed Central
CAS
PubMed
Google Scholar
Koski LB, Gray MW, Lang BF, Burger G: AutoFACT: an automatic functional annotation and classification tool. BMC Bioinforma. 2005, 6: 151-10.1186/1471-2105-6-151.
Google Scholar
McGinnis S, Madden TL: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32 (suppl 2): W20-W25.
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28 (1): 27-30. 10.1093/nar/28.1.27.
PubMed Central
CAS
PubMed
Google Scholar
Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res. 2000, 28 (1): 263-266. 10.1093/nar/28.1.263.
PubMed Central
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21 (18): 3674-3676. 10.1093/bioinformatics/bti610.
CAS
PubMed
Google Scholar
Wilhelm BT, Landry J-R: RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009, 48 (3): 249-257. 10.1016/j.ymeth.2009.03.016.
CAS
PubMed
Google Scholar
Au KF, Jiang H, Lin L, Xing Y, Wong WH: Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res. 2010, 38 (14): 4570-4578. 10.1093/nar/gkq211.
PubMed Central
CAS
PubMed
Google Scholar
Richard H, Schulz MH, Sultan M, Nürnberger A, Schrinner S, Balzereit D, Dagand E, Rasche A, Lehrach H, Vingron M: Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res. 2010, 38 (10): e112-10.1093/nar/gkq041.
PubMed Central
PubMed
Google Scholar
Rogers M, Thomas J, Reddy A, Ben-Hur A: SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol. 2012, 13 (1): R4-10.1186/gb-2012-13-1-r4.
PubMed Central
CAS
PubMed
Google Scholar
Torres TT, Dolezal M, Schlötterer C, Ottenwälder B: Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res. 2009, 37 (22): 7509-7518. 10.1093/nar/gkp856.
PubMed Central
CAS
PubMed
Google Scholar
Neira-Oviedo M, Tsyganov-Bodounov A, Lycett GJ, Kokoza V, Raikhel AS, Krzywinski J: The RNA-Seq approach to studying the expression of mosquito mitochondrial genes. Insect Mol Biol. 2011, 20 (2): 141-152. 10.1111/j.1365-2583.2010.01053.x.
CAS
PubMed
Google Scholar
Chang JH, Tong L: Mitochondrial poly(A) polymerase and polyadenylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 1819, 9–10: 992-997.
Google Scholar
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B: The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A. 2003, 100 (23): 13207-13212. 10.1073/pnas.2135385100.
PubMed Central
CAS
PubMed
Google Scholar
Keeping A, DeAbreu D, DiBernardo M, Collins RA: Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora. Fungal Genet Biol. 2011, 48 (5): 526-536. 10.1016/j.fgb.2010.11.011.
CAS
PubMed
Google Scholar
Scheffler IE: Mitochondria make a come back. Adv Drug Deliv Rev. 2001, 49 (1–2): 3-26.
CAS
PubMed
Google Scholar
Idnurm A, Howlett BJ: Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol. 2001, 2 (4): 241-255. 10.1046/j.1464-6722.2001.00070.x.
CAS
PubMed
Google Scholar
Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun H-P, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O: Analysis of the aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin a biosynthesis gene cluster in response to hypoxia. J Proteome Res. 2011, 10 (5): 2508-2524. 10.1021/pr1012812.
PubMed Central
PubMed
Google Scholar
Calvo S, Jain M, Xie X, Sheth SA, Chang B, Goldberger OA, Spinazzola A, Zeviani M, Carr SA, Mootha VK: Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet. 2006, 38 (5): 576-582. 10.1038/ng1776.
CAS
PubMed
Google Scholar
Mengiste T: Plant immunity to necrotrophs. Annu Rev Phytopathol. 2012, 50 (1): 267-294. 10.1146/annurev-phyto-081211-172955.
CAS
PubMed
Google Scholar
Coleman JJ, White GJ, Rodriguez-Carres M, VanEtten HD: An ABC transporter and a cytochrome P450 of nectria haematococca MPVI Are virulence factors on Pea and Are the major tolerance mechanisms to the phytoalexin pisatin. Mol Plant Microbe Interact. 2010, 24 (3): 368-376.
Google Scholar
de Waard MA: Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci. 1997, 51 (3): 271-275. 10.1002/(SICI)1096-9063(199711)51:3<271::AID-PS642>3.0.CO;2-#.
CAS
Google Scholar
Jacoby WBaZ DM: The enzymes of detoxification. J Biol Chem. 1990, 256: 20715-20718.
Google Scholar
Coleman M, Henricot B, Arnau J, Oliver RP: Starvation-induced genes of the tomato pathogen cladosporium fulvum are also induced during growth in planta. Mol Plant Microbe Interact. 1997, 10 (9): 1106-1109. 10.1094/MPMI.1997.10.9.1106.
CAS
PubMed
Google Scholar
Mariani D, Mathias C, da Silva C, Herdeiro RS, Pereira R, Panek A, Eleutherio E, Pereira MD: Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Rep. 2008, 13 (6): 246-254. 10.1179/135100008X309028.
CAS
PubMed
Google Scholar
Cohen E, Gamliel A, Katan J: Glutathione and glutathione-S-transferase in fungi: Effect of pentachloronitrobenzene and 1-chloro-2,4-dinitrobenzene; Purification and characterization of the transferase from Fusarium. Pestic Biochem Physiol. 1986, 26 (1): 1-9. 10.1016/0048-3575(86)90056-8.
CAS
Google Scholar
Mao P, Meshul CK, Thuillier P, Goldberg NRS, Reddy PH: CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria. PLoS One. 2012, 7 (1): e29343-10.1371/journal.pone.0029343.
PubMed Central
CAS
PubMed
Google Scholar
Joseph-Horne T, Hollomon DW: Functional diversity within the mitochondrial electron transport chain of plant pathogenic fungi. Pest Manag Sci. 2000, 56 (1): 24-30. 10.1002/(SICI)1526-4998(200001)56:1<24::AID-PS71>3.0.CO;2-Y.
CAS
Google Scholar
Avila-Adame C, Köller W: Disruption of the alternative oxidase gene in magnaporthe grisea and its impact on host infection. Mol Plant Microbe Interact. 2002, 15 (5): 493-500. 10.1094/MPMI.2002.15.5.493.
CAS
PubMed
Google Scholar
Voulgaris I, O'Donnell A, Harvey LM, McNeil B: Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield?. Sci Rep. 2012, 2 (322): 1-9.
Google Scholar
Miguez M, Reeve C, Wood PM, Hollomon DW: Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola to QOI fungicides. Pest Manag Sci. 2004, 60 (1): 3-7. 10.1002/ps.837.
CAS
PubMed
Google Scholar
Kaneko I, Ishii H: Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale. J Gen Plant Pathol. 2009, 75 (5): 388-398. 10.1007/s10327-009-0178-9.
CAS
Google Scholar
Thomazella DPT, Teixeira PJPL, Oliveira HC, Saviani EE, Rincones J, Toni IM, Reis O, Garcia O, Meinhardt LW, Salgado I: The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development. New Phytol. 2012, 194 (4): 1025-1034. 10.1111/j.1469-8137.2012.04119.x.
PubMed Central
CAS
PubMed
Google Scholar
Inoue I, Namiki F, Tsuge T: Plant colonization by the vascular wilt fungus fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. The Plant Cell Online. 2002, 14 (8): 1869-1883. 10.1105/tpc.002576.
CAS
Google Scholar
Warn PA, Sharp A, Guinea J, Denning DW: Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother. 2004, 53 (5): 743-749. 10.1093/jac/dkh153.
CAS
PubMed
Google Scholar
Adachi H, Shimizu K, Hattori H, Tanaka R, Chibana H, Takagi Y, Tomita Y, Kanbe T: Genotyping of candida albicans by fragment analysis of microsatellites combined with 25S rDNA and RPS-based strategies. Nippon Ishinkin Gakkai Zasshi. 2009, 50 (3): 167-174. 10.3314/jjmm.50.167.
CAS
Google Scholar
Spicer R, Holbrook NM: Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia?. Plant Cell Environ. 2005, 28 (2): 192-201. 10.1111/j.1365-3040.2004.01262.x.
Google Scholar
Grahl N, Cramer RA: Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi?. Medical Mycology. 2010, 48 (1): 1-15. 10.3109/13693780902947342.
PubMed Central
PubMed
Google Scholar
Mondego J, Carazzolle M, Costa G, Formighieri E, Parizzi L, Rincones J, Cotomacci C, Carraro D, Cunha A, Carrer H: A genome survey of moniliophthora perniciosa gives new insights into Witches' broom disease of cacao. BMC Genomics. 2008, 9 (1): 548-10.1186/1471-2164-9-548.
PubMed Central
PubMed
Google Scholar
Zerbino DR, McEwen GK, Margulies EH, Birney E: Pebble and rock band: heuristic resolution of repeats and scaffolding in the velvet short-read de novo assembler. PLoS One. 2009, 4 (12): e8407-10.1371/journal.pone.0008407.
PubMed Central
PubMed
Google Scholar
Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25 (15): 1966-1967. 10.1093/bioinformatics/btp336.
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocols. 2007, 2 (4): 953-971. 10.1038/nprot.2007.131.
CAS
PubMed
Google Scholar
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007, 35 (suppl 2): W585-W587.
PubMed Central
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth. 2008, 5 (7): 621-628. 10.1038/nmeth.1226.
CAS
Google Scholar
Sorensen M, Sanz A, Gómez J, Pamplona R, Portero-Otín M, Gredilla R, Barja G: Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res. 2006, 40 (4): 339-347. 10.1080/10715760500250182.
CAS
PubMed
Google Scholar
Hanna SL, Sherman NE, Kinter MT, Goldberg JB: Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography–tandem mass spectrometry. Microbiology. 2000, 146 (10): 2495-2508.
CAS
PubMed
Google Scholar
Paes Leme AF, Sherman NE, Smalley DM, Sizukusa LO, Oliveira AK, Menezes MC, Fox JW, Serrano SMT: Hemorrhagic activity of HF3, a snake venom metalloproteinase: insights from the proteomic analysis of mouse skin and blood plasma. J Proteome Res. 2011, 11 (1): 279-291.
PubMed
Google Scholar
Escalante T, Rucavado A, Pinto AFM, Terra RMS, Gutiérrez JM, Fox JW: Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins. J Proteome Res. 2009, 8 (11): 5120-5131. 10.1021/pr900489m.
CAS
PubMed
Google Scholar
Eming SA, Koch M, Krieger A, Brachvogel B, Kreft S, Bruckner-Tuderman L, Krieg T, Shannon JD, Fox JW: Differential proteomic analysis distinguishes tissue repair biomarker signatures in wound exudates obtained from normal healing and chronic wounds. J Proteome Res. 2010, 9 (9): 4758-4766. 10.1021/pr100456d.
CAS
PubMed
Google Scholar