Schönbach C, Tan TW, Kelso J, Rost B, Nathan S, Ranganathan S: InCoB celebrates its tenth anniversary as first joint conference with ISCB-Asia. BMC Genomics. 2011, 12 (Suppl 3): S1-10.1186/1471-2164-12-S3-S1.
Article
PubMed Central
PubMed
Google Scholar
Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW: Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics. 2011, 12 (Suppl 13): S1-10.1186/1471-2105-12-S13-S1.
Article
PubMed Central
PubMed
Google Scholar
Graham-Rowe D, Goldston D, Doctorow C, Waldrop M, Lynch C, Frankel F, Reid R, Nelson S, Howe D, Rhee SY et al: Big data: science in the petabyte era. Nature. 2008, 455: 1-50.
Article
Google Scholar
Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005, 15 (10): 1451-1455. 10.1101/gr.4086505.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Team G: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11 (8): R86-10.1186/gb-2010-11-8-r86.
Article
PubMed Central
PubMed
Google Scholar
Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010, Chapter 19: Unit 19.10.1-21.
Google Scholar
CBIIT-Galaxy. [http://galaxy.cbiit.cuhk.edu.hk/]
Abouelhoda M, Issa SA, Ghanem M: Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support. BMC Bioinformatics. 2012, 13: 77-10.1186/1471-2105-13-77.
Article
PubMed Central
PubMed
Google Scholar
Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 2006, 34 (Web Server): W729-W732. 10.1093/nar/gkl320.
Article
PubMed Central
CAS
PubMed
Google Scholar
EasyGenomics. [https://www.easygenomics.com/]
Belhajjame K, Corcho O, Garijo D, Zhao J, Missier P, Newman D, Palma R, Bechhofer S, Garcia-Cuesta E, Gómez-Pérez J, Klyne G, Page K, Roos M, Ruiz J, Soiland-Reyes S, Verdes-Montenegro L, Roure DD, Goble C: Workflow-centric research objects: a first class citizen in the scholarly discourse. Proceedings of the ESWC2012 Workshop on the Future of Scholarly Communication in the Semantic Web. 2012
Google Scholar
Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang H, Neumann S, Tong W, Amaral-Zettler L, Begley K, Booth T, Bougueleret L, Burns G, Chapman B, Clark T, Coleman LA, Copeland J, Das S, de Daruvar A, de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P, Gilbert J, Goble C, Griffin JL, Jacob D, Kleinjans J, Harland L, Haug K, Hermjakob H, Sui SJH, Laederach A, Liang S, Marshall S, McGrath A, Merrill E, Reilly D, Roux M, Shamu CE, Shang CA, Steinbeck C, Trefethen A, Williams-Jones B, Wolstencroft K, Xenarios I, Hide W: Toward interoperable bioscience data. Nat Genet. 2012, 44 (2): 121-126. 10.1038/ng.1054.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y: Identifying personal genomes by surname inference. Science. 2013, 339 (6117): 321-324. 10.1126/science.1229566.
Article
CAS
PubMed
Google Scholar
Tretyakov K, Laur S, Smant G, Vilo J, Prins P: Fast probabilistic file fingerprinting for big data. BMC Genomics. 2013, 14 (Suppl 2): S8-10.1186/1471-2164-14-S2-S8.
Article
PubMed Central
PubMed
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL: Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics. 2011, 27 (13): i94-101. 10.1093/bioinformatics/btr216.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao Z, Nguyen T, Deng N, Johnson K, Zhu D: SPATA: A Seeding and Patching Algorithm for de novo Transcriptome Assembly. Bioinformatics & Biomedicine Workshops, IEEE International Conference. 2011
Google Scholar
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992, 89 (5): 1827-1831. 10.1073/pnas.89.5.1827.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frith MC, Mori R, Asai K: A mostly traditional approach improves alignment of bisulfite-converted DNA. Nucleic Acids Res. 2012, 40 (13): e100-10.1093/nar/gks275.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kolekar P, Kale M, Kulkarni-Kale U: Alignment-free distance measure based on return time distribution for sequence analysis: applications to clustering, molecular phylogeny and subtyping. Mol Phylogenet Evol. 2012, 65 (2): 510-522. 10.1016/j.ympev.2012.07.003.
Article
PubMed
Google Scholar
Sun K, Chen X, Jiang P, Song X, Wang H, Sun H: iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics. 2013, 14 (Suppl 2): S7-
PubMed Central
PubMed
Google Scholar
Menor M, Baek K, Poisson G: Multiclass relevance units machine: benchmark evaluation and application to small ncRNA discovery. BMC Genomics. 2013, 14 (Suppl 2): S6-10.1186/1471-2164-14-S2-S6.
Article
PubMed Central
PubMed
Google Scholar
Deng F, Cui W, Wang L: A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genomics. 2013, 14 (Suppl 2): S2-
PubMed Central
PubMed
Google Scholar
Matsumoto H, Kiryu H: MixSIH: a mixture model for single individual haplotyping. BMC Genomics. 2013, 14 (Suppl 2): S5-
PubMed Central
PubMed
Google Scholar
Xu F, Wang W, Wang P, Li MJ, Sham PC, Wang J: A fast and accurate SNP detection algorithm for next-generation sequencing data. Nat Commun. 2012, 3: 1258-
Article
PubMed
Google Scholar
Nong G, Zhang S, Chan WH: Two Efficient Algorithms for Linear Time Suffix Array Construction. Computers, IEEE Transactions on. 2011, 60 (10): 1471-1484.
Article
Google Scholar
Maher B: ENCODE: The human encyclopaedia. Nature. 2012, 489 (7414): 46-48. 10.1038/489046a.
Article
PubMed
Google Scholar
Conner S: Scientists debunk 'junk DNA' theory to reveal vast majority of human genes perform a vital function. The Independent. 2012, [http://www.independent.co.uk/news/science/scientists-debunk-junk-dna-theory-to-reveal-vast-majority-of-human-genes-perform-a-vital-function-8106777.html]
Google Scholar
McKie R: Scientists attacked over claim that 'junk DNA' is vital to life. The Observer. 2013, [http://www.guardian.co.uk/science/2013/feb/24/scientists-attacked-over-junk-dna-claim]
Google Scholar
Kurosawa J, Nishiyori H, Hayashizaki Y: Deep cap analysis of gene expression. Methods Mol Biol. 2011, 687: 147-163. 10.1007/978-1-60761-944-4_10.
Article
CAS
PubMed
Google Scholar
Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z: Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 2012, 22 (9): 1798-1812. 10.1101/gr.139105.112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leung KS, Wong KC, Chan TM, Wong MH, Lee KH, Lau CK, Tsui SKW: Discovering protein-DNA binding sequence patterns using association rule mining. Nucleic Acids Res. 2010, 38 (19): 6324-6337. 10.1093/nar/gkq500.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fujiwara T, Yada T: miRNA-target prediction based on transcriptional regulation. BMC Genomics. 2013, 14 (Suppl 2): S3-10.1186/1471-2164-14-S2-S3.
Article
PubMed Central
PubMed
Google Scholar
Balaga O, Friedman Y, Linial M: Toward a combinatorial nature of microRNA regulation in human cells. Nucleic Acids Res. 2012, 40 (19): 9404-9416. 10.1093/nar/gks759.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsuyuzaki K, Tominaga D, Kwon Y, Miyazaki S: Two-way AIC: Detection of Differentially Expressed Genes from Large Scale Microarray Meta-Dataset. BMC Genomics. 2013, 14 (Suppl 2): S9-
PubMed Central
PubMed
Google Scholar
Parikh AP, Wu W, Curtis RE, Xing EP: TREEGL: reverse engineering tree-evolving gene networks underlying developing biological lineages. Bioinformatics. 2011, 27 (13): i196-i204. 10.1093/bioinformatics/btr239.
Article
PubMed Central
CAS
PubMed
Google Scholar
Davis MJ, Shin CJ, Jing N, Ragan MA: Rewiring the dynamic interactome. Mol Biosyst. 2012, 8 (8): 2054-66. 10.1039/c2mb25050k.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011, 8 (10): 785-786. 10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
Ashby C, Johnson D, Walker K, Kanj IA, Xia G, Huang X: New enumeration algorithm for protein structure comparison and classification. BMC Genomics. 2013, 14 (Suppl 2): S1-10.1186/1471-2164-14-S2-S1.
Article
PubMed Central
PubMed
Google Scholar
Gajula MP, Vogel K, Rai A, Dietrich F, Steinhoff H: How far in-silico computing meets real experiments. A study on the structure and dynamics of spin labeled vinculin tail protein by molecular dynamics simulations and EPR spectroscopy. BMC Genomics. 2013, 14 (Suppl 2): S4-10.1186/1471-2164-14-S2-S4.
Article
Google Scholar
Esquivel-Rodríguez J, Yang YD, Kihara D: Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins. 2012, 80 (7): 1818-1833.
PubMed Central
PubMed
Google Scholar
Esquivel-Rodríguez J, Kihara D: Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors. J Phys Chem B. 2012, 116 (23): 6854-6861. 10.1021/jp212612t.
Article
PubMed Central
PubMed
Google Scholar
Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin SF, Schwarz RF, Curtis C, Dunning MJ, Bard-well H, Johnson N, Doyle S, Turashvili G, Provenzano E, Aparicio S, Caldas C, Markowetz F: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med. 2012, 4 (157): 157ra143-10.1126/scitranslmed.3004330.
Article
PubMed
Google Scholar
Beckman RA, Schemmann GS, Yeang CH: Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer. Proc Natl Acad Sci USA. 2012, 109 (36): 14586-14591. 10.1073/pnas.1203559109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ: Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 2012, 40 (19): 9379-9391. 10.1093/nar/gks725.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ding D, Lou X, Hua D, Yu W, Li L, Wang J, Gao F, Zhao N, Ren G, Li L, Lin B: Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach. PLoS Genet. 2012, 8 (12): e1003065-10.1371/journal.pgen.1003065.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, Abeysinghe S, Krawczak M, Cooper DN: Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003, 21 (6): 577-581. 10.1002/humu.10212.
Article
CAS
PubMed
Google Scholar
HKU Lab Software Downloads. [http://paed.hku.hk/uploadarea/yangwl/html/software.html]
Jiang P, Chan KCA, Liao GJW, Zheng YWL, Leung TY, Chiu RWK, Lo YMD, Sun H: FetalQuant: deducing fractional fetal DNA concentration from massively parallel sequencing of DNA in maternal plasma. Bioinformatics. 2012, 28 (22): 2883-2890. 10.1093/bioinformatics/bts549.
Article
CAS
PubMed
Google Scholar
Pungpapong V: Empirical Bayes Variable Selection for High-Dimensional Regression. PhD thesis. 2012, Purdue University
Google Scholar
Pungpapong V, Muir WM, Li X, Zhang D, Zhang M: A fast and efficient approach for genomic selection with high-density markers. G3 (Bethesda). 2012, 2 (10): 1179-1184. 2012.
Article
Google Scholar
Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001, 157 (4): 1819-1829.
PubMed Central
CAS
PubMed
Google Scholar