Clarke PA, Poele R, Wooster R, Workman P: Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochemical Pharmacology. 2001, 62: 1311-1336. 10.1016/S0006-2952(01)00785-7.
Article
CAS
PubMed
Google Scholar
Trevino V, Falciani F, Barrera-Saldana A: DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research. Molecular Medicine. 2007, 13: 527-541.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeLisa MP, Wu CF, Wang L, Valdes JJ, Bentley WE: DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-stimulated Quorum Sensing in Escherichia coli. Journal of Bacteriology. 2001, 183: 5239-5247. 10.1128/JB.183.18.5239-5247.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kadota K, Shimizu K: Evaluating methods for ranking differentially expressed genes applied to microArray quality control data. BMC Bioinformatics. 2011, 12:
Google Scholar
Kadota K, Nakai Y, Shimizu K: Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity. Algorithm for Molecular Biology. 2009, 4:
Google Scholar
Broberg P: Statistical methods for ranking differentially expressed genes. Genome Biology. 2003, 4:
Google Scholar
Murie C, Woody O, Lee AY, Nadon R: Comparison of small n statistical tests of differential expression applied to microarrays. BMC Bioinformatics. 2009, 10:
Google Scholar
Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallha MA: The Structure of Pyoverdine Pa, The Siderophore of Pseudomonas aeruginosa. Tetrahedron Letters. 1983, 24: 4877-4880. 10.1016/S0040-4039(00)94031-0.
Article
CAS
Google Scholar
Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, Gotz F, Steinmetz I, Eberl L, Tummler B: Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology. 2004, 150: 831-841. 10.1099/mic.0.26906-0.
Article
CAS
PubMed
Google Scholar
Meyer JM, Neely A, Stintzi A, Georges C, Holder IA: Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infection and Immunity. 1996, 64: 518-523.
PubMed Central
CAS
PubMed
Google Scholar
Churchill GA: Using ANOVA to analyze microarray data. Biotechniques. 2004, 37: 173-175.
CAS
PubMed
Google Scholar
Barrera L, Benner C, Tao YC, Winzeler E, Zhou Y: Leveraging two-way probe-level block design for identifying differential gene expression with highdensity oligonucleotide arrays. BMC Bioinformatics. 2004, 5:
Google Scholar
Dudoit S, Yang YH, Callow MJ, Speed TP: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica. 2002, 12: 111-139.
Google Scholar
Haan JR, Wehrens R, Bauerschmidt S, Piek E, Schaik RC, Buydens LMC: Interpretation of ANOVA models for microarray data using PCA. Bioinformatics. 2007, 12: 111-139.
Google Scholar
Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, J SC: Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biology. 2005, 6:
Google Scholar
Kadota K, Konishi T, Shimizu K: Evaluation of Two Outlier-Detection-Based Methods for Detecting Tissue-Selective Genes from Microarray Data. Gene Regulation and Systems Biology. 2007, 1: 9-15.
PubMed Central
PubMed
Google Scholar
Dudoit S, Shaffer JP, Boldrick JC: Multiple Hypothesis Testing in Microarray Experiments. Statistical Science. 2003, 18: 71-103. 10.1214/ss/1056397487.
Article
Google Scholar
Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davision T, Shi T, Tong W, Shi L, Hong H, Zhao C, Elloumi F, Shi W, Thomas R, Lin S, Tillinghast G, Liu G, Zhou Y, Herman D, Li Y, Deng Y, Fang H, Bushel P, Woods M, Zhang J: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal. 2010, 10: 278-291. 10.1038/tpj.2010.57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ueda T: Simple method for the detection of outliers. Japanese Journal of Applied Statistics. 1996, 25: 17-26. 10.5023/jappstat.25.17.
Article
CAS
Google Scholar
Ueda T: A Simple Method For The Detection Of Outliers. Electronic Journal of Applied Statistical Analysis. 2009, 2: 67-76.
Google Scholar
Jacob F, Monad J: Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology. 1961, 3: 318-356. 10.1016/S0022-2836(61)80072-7.
Article
CAS
PubMed
Google Scholar
Sabbatti C, Rohlin L, Oh MK, Liao JC: Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucleic Acids Research. 2002, 20: 2886-2893.
Article
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002, 30: 207-210. 10.1093/nar/30.1.207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA: ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Research. 2003, 31: 68-71. 10.1093/nar/gkg091.
Article
PubMed Central
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Barclay YDB, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4: 249-264. 10.1093/biostatistics/4.2.249.
Article
PubMed
Google Scholar
Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, Cho YH, Lee GR: HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the immune responses through the nuclear factor-kB pathway. Immunology. 2010, 129: 578-588. 10.1111/j.1365-2567.2009.03160.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jain S, Ohman DE: Role of an Alginate Lyase for Alginate Transport in Mucoid Pseudomonas aeuginosa. Infection and Immunity. 2005, 73: 6429-6436. 10.1128/IAI.73.10.6429-6436.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okuda S, Katayama T, Kawashima S, Goto S, Kanehisa M: ODB: a database of operons accumulating known operons across multiple genomes. Nucleic Acids Research. 2006, 34: D358-D362. 10.1093/nar/gkj037.
Article
PubMed Central
CAS
PubMed
Google Scholar
Winsor GL, Rossum TV, Lo R, Khaira B, Whiteside MD, Hancock REW, Brinkman FSL: Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Research. 2009, 37: D483-D488. 10.1093/nar/gkn861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB: Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics. 2002, 18: 1454-1461. 10.1093/bioinformatics/18.11.1454.
Article
CAS
PubMed
Google Scholar
Breitling R, Armengaud P, Amtmann A, Herzyk P: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters. 2004, 573: 83-92. 10.1016/j.febslet.2004.07.055.
Article
CAS
PubMed
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. PNAS. 2001, 98: 5116-5121. 10.1073/pnas.091062498.
Article
PubMed Central
CAS
PubMed
Google Scholar
Price MN, Huang KH, Arkin AP, Alm EJ: Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Research. 2005, 15: 809-819. 10.1101/gr.3368805.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benjamin Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approarch to Multiple Testing. Journal of the Royal Statistical Society. 1995, 57: 289-300.
Google Scholar
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. PNAS. 2004, 25: 9309-9314.
Article
Google Scholar
Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP: The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science. 1998, 280: 295-298. 10.1126/science.280.5361.295.
Article
CAS
PubMed
Google Scholar
Kirisits MJ, Parsek MR: Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?. Cellular Microbiology. 2006, 8: 1841-1849. 10.1111/j.1462-5822.2006.00817.x.
Article
CAS
PubMed
Google Scholar
Kievit TR: Quorum Sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology. 2009, 11: 279-288. 10.1111/j.1462-2920.2008.01792.x.
Article
PubMed
Google Scholar
Huse HK, Kwon T, Zlosnik JEA, Speert DP, Marcotte EM, Whiteley M: Parallel Evolution in Pseudomonas aeruginosa over 39,000 Generations In Vivo. mBio. 2010, 1: 1-8.
Article
Google Scholar
Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT: In Vivo Evidence of Pseudomonas aeruginosa Nutrient Acquisition and Pathogenesis in the Lungs of Cystic Fibrosis Patients. Infection and Immunity. 2007, 75: 5313-5324. 10.1128/IAI.01807-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kievit TR, Iglewski BH: Bacterial Quorum Sensing in Pathogenic Relationships. Infection and Immunity. 2000, 68: 4839-4849. 10.1128/IAI.68.9.4839-4849.2000.
Article
PubMed Central
PubMed
Google Scholar
Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzekczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC: Identification of Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA. Science. 1989, 245: 1066-1073. 10.1126/science.2475911.
Article
CAS
PubMed
Google Scholar
Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP: Quorum-sensing signals indicate that cystic fibrosis lung are infected with bacterial biofilms. Nature. 2000, 407: 762-764. 10.1038/35037627.
Article
CAS
PubMed
Google Scholar